The Role and Mechanism of Paeoniae Radix Alba in Tumor Therapy
Abstract
:1. Introduction
2. Effects of the Main Active Ingredients of PRA
2.1. Total Glucosides of Paeony (TGP)
2.2. Paeoniflorin (PF)
2.3. Others
3. Antitumor Therapy Mechanisms
3.1. Inhibits Tumor Cell Proliferation
3.2. Induces Apoptosis in Tumor Cells
3.3. Inhibits Tumor Metastasis
3.4. Anti-Inflammatory and Immunomodulatory
Cancer | Ingredient | Experimental Model | Mechanism | Target of Action | Phenotype | Ref. |
---|---|---|---|---|---|---|
Gastric cancer | Paeoniflorin | AGS | IL-6-STAT3-MMP | Inhibition of IL-6 production and secretion by up-regulation of microRNA149 expression in GCAFs and subsequent blocking of IL-6-STAT3-MMP signaling in AGS cells activated by GCAFs | Metastasis | [75] |
Gastric cancer | Paeoniflorin | MGC803, SGC7901 | Hippo | Inhibits cell growth, enhances apoptosis and reduces cell infiltration | Proliferation, apoptosis, metastasis | [95] |
Gastric cancer | Paeoniflorin | MGC803 | microRNA-124, PI3K/AKT/STAT3 | Inhibits cell activity and induces apoptosis by up-regulating miR-124 and inhibiting PI3K/Akt and STAT3 signaling | Proliferation apoptosis | [59] |
Gastric cancer | Paeoniflorin | SGC7901 | NF-κB | Inhibits NF-κB activity and enhances apoptosis in gastric cancer cells | Apoptosis | [68] |
Breast cancer | Paeoniflorin | MDA-MB-231, MCF-7 | Notch-1 | PF inhibits the proliferation and invasion of breast cancer cells by inhibiting the Notch-1 signaling pathway | Proliferation, metastasis | [60] |
Breast cancer | Paeoniflorin | MCF-7 | miR-15b/FOXO1/CCND1/β-catenin | Inhibition of breast cancer cell growth, pro-apoptosis and promotion of FOXO1 expression through down-regulation of miR-15b, leading to transcriptional inhibition of CCND1 and subsequent blockade of β-catenin protein signaling | Proliferation, apoptosis | [96] |
Pancreatic cancer | Paeoniflorin | Panc-1 | Mitochondrial apoptosis pathway | The expression of caspase-3 and Cleave caspase3 increased with the increase in PF concentration, and the opposite was true for Bcl-2 | Proliferation, apoptosis | [97] |
Pancreatic cancer | Paeoniflorin | Capan-1, MIAPaCa-2 | HTRA3 | Decreased cell proliferation and increased apoptotic Bax protein expression | Proliferation, apoptosis | [98] |
Pancreatic cancer | Paeoniflorin | BxPC-3 and L3.6pl. A tumor model in BALB/c nude mice | ErbB3/PI3K/AKT | Inhibition of ErbB3/PI3K/Akt phosphorylation | Proliferation, apoptosis | [99] |
Pancreatic cancer | Total glucosides of paeony | ASPC-1 | - | PCNA, MMP-2, MMP-9 protein and mRNA expression levels were significantly reduced in the administered group | Proliferation, metastasis | [81] |
Tongue cancer | Total glucosides of paeony | HSC3 | LINC00319/miR-608 | LINC00319 targets to negatively regulate miR-608 expression and LINC00319 overexpression reverses the effect of TGP on proliferation, migration and invasion of HSC3 cells | Proliferation, metastasis | [100] |
Laryngeal cancer | Total glucosides of paeony | Hep-2 | PI3K/Akt/GSK3β | p-PI3K, p-Akt, p-GSK3β protein expression levels were significantly reduced | Proliferation, metastasis | [61] |
Liver cancer | Paeoniflorin | BEL-7402 | Hedgehog/Gli | Associated with inhibition of Hedgehog/Gli signaling pathway activation, inhibition of MAPK/ERK pathway activity and inhibition of MMP-9 expression | Metastasis | [101] |
Liver cancer | Paeoniflorin | HepG2, BEL-7402 | MMP-9/E-CAD/ERK | Growth inhibition and significant reduction in invasion, metastasis and adhesion of hepatocellular carcinoma cell lines | Metastasis | [76] |
Liver cancer | Paeoniflorin | HepG2, SMMC-7721 | Mitochondrial apoptosis pathway | Induction of apoptosis in hepatocellular carcinoma cells through down-regulation of EP2 expression and concomitant increase in Bax/Bcl-2 ratio, leading to up-regulation of caspase-3 activity | Proliferation, apoptosis | [102] |
Liver cancer | Paeoniflorin | HepG2, SMMC-7721 | 5-HT1D, Wnt/β-catenin | Blocking Wnt/β-conjugated protein pathway expression by down-regulating 5-HT1D | Proliferation, metastasis | [103] |
Lung cancer | Paeoniflorin | A tumor model in C57BL/6J mice | - | Lung metastatic colonization in Lewis lung cancer-loaded mice in the paeoniflorin group was significantly less than that in the model group | Metastasis | [104] |
Lung cancer | Paeoniflorin | A549 | Fas/APO-1 | Antiproliferative activity is mediated by cell cycle arrest in G0/G1 phase block and Fas/Fas ligand-mediated apoptotic pathways | Proliferation, apoptosis | [105] |
Ovarian cancer | Paeoniflorin | HO8910 | Mitochondrial apoptosis pathway | The expression level of intracellular caspase-3 in the paeoniflorin-treated group was significantly higher than that in the control group, and the expression levels of Bcl-2 and nuclear factor-κB p56 were significantly lower than those in the control group | Proliferation, apoptosis, metastasis | [106] |
Cervical carcinoma | Paeoniflorin | HeLa | Mitochondrial apoptosis pathway | Decreased expression of Bcl-2 and enhanced expression of Bax and caspase-3 | Apoptosis | [69] |
Colorectal cancer | Paeoniflorin | A tumor model in CAC mice | IL-6/STAT3 | PF increased survival and decreased the number and size of colon tumors in mice | Anti-inflammatory, immunomodulation | [92] |
Colorectal cancer | Paeoniflorin | A tumor model in CAC mice. HT29 | p53/14-3-3 | Cell cycle arrest mainly in G1 phase, activation of caspase-3 and caspase-9 demonstrated the pro-apoptotic effect of PF | Proliferation, apoptosis | [107] |
Colorectal cancer | Paeoniflorin | HCT116 | FOXM1 | PF inhibited cell growth and induced apoptosis and suppressed cell cycle progression in the G0/G1 phase. It also inhibited colorectal cancer cell migration and invasion | Proliferation, metastasis | [108] |
Colorectal cancer | Paeoniflorin | HCT116, SW480 | EMT | Inhibition of migration and invasive ability of colorectal cancer cells and reversal of epithelial–mesenchymal transition by suppressing HDAC2 expression | Metastasis | [77] |
Multiple myeloma | Paeoniflorin | SKO-007 | MMP-2/microRNA(miR)-29b | Inhibition of cell proliferation and promotion of apoptosis in multiple myeloma cells by inhibiting MMP-2 expression in multiple myeloma cells through miR-29b up-regulation | Proliferation, apoptosis | [109] |
Osteosarcoma | Paeoniflorin | HOS, Saos-2 | Mitochondrial apoptosis pathway | G2/M phase cell cycle arrest and apoptosis | Proliferation, apoptosis | [110] |
Glioma | Paeoniflorin | U87 | MMP-9/microRNA-16 | Increased miR-16 expression and decreased MMP-9 protein expression | Proliferation, apoptosis | [111] |
Glioma | Paeoniflorin | U87, U251 | Ubiquitin-proteasome pathway | Proteasome-dependent STAT3 degradation induces growth inhibition and apoptosis in human glioma cells | Proliferation, apoptosis | [112] |
Glioblastoma | Paeoniflorin | T98G, U251 | HGF/c-Met/RhoA/ROCK | Inhibition of HGF/c-Met/RhoA/ROCK signaling pathway | Metastasis | [113] |
Glioblastoma | Paeoniflorin | U87, U251 and T98G cells. A tumor model in BALB/c nude mice | EMT, TGFβ/MMP-2/9 | Treatment of glioblastoma by inhibition of the TGFβ signaling pathway and inhibition of EMT | Metastasis | [78] |
Prolactinoma | Paeoniflorin | MMQ, GH3 | Mitochondrial apoptosis pathway | Inhibition of proliferation and induction of apoptosis in prolactinoma cells | Proliferation, apoptosis | [70] |
Bladder carcinoma | Paeoniflorin | RT4. A tumor model in mice | Mitochondrial apoptosis pathway | Pro-apoptotic, blocked the translocation of STAT3 to the nucleus | Proliferation, apoptosis | [114] |
4. Preventive Effect
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef]
- Cao, W.; Chen, H.D.; Yu, Y.W.; Li, N.; Chen, W.Q. Changing profiles of cancer burden worldwide and in China: A secondary analysis of the global cancer statistics 2020. Chin. Med. J. 2021, 134, 783–791. [Google Scholar] [CrossRef]
- Wang, J.J.; Lei, K.F.; Han, F. Tumor microenvironment: Recent advances in various cancer treatments. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 3855–3864. [Google Scholar] [PubMed]
- Schirrmacher, V. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review). Int. J. Oncol. 2019, 54, 407–419. [Google Scholar] [CrossRef]
- Dasari, S.; Tchounwou, P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 2014, 740, 364–378. [Google Scholar] [CrossRef] [PubMed]
- Basu, S.; Dong, Y.; Kumar, R.; Jeter, C.; Tang, D.G. Slow-cycling (dormant) cancer cells in therapy resistance, cancer relapse and metastasis. Semin. Cancer Biol. 2022, 78, 90–103. [Google Scholar] [CrossRef]
- Seeneevassen, L.; Bessède, E.; Mégraud, F.; Lehours, P.; Dubus, P.; Varon, C. Gastric Cancer: Advances in Carcinogenesis Research and New Therapeutic Strategies. Int. J. Mol. Sci. 2021, 22, 3418. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, S.; Wang, K.; Lu, J.; Bao, X.; Wang, R.; Qiu, Y.; Wang, T.; Yu, H. Cellular senescence and cancer: Focusing on traditional Chinese medicine and natural products. Cell Prolif. 2020, 53, e12894. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Fu, J.L.; Hao, H.F.; Jiao, Y.N.; Li, P.P.; Han, S.Y. Metabolic reprogramming by traditional Chinese medicine and its role in effective cancer therapy. Pharmacol. Res. 2021, 170, 105728. [Google Scholar] [CrossRef]
- Xiang, Y.; Guo, Z.; Zhu, P.; Chen, J.; Huang, Y. Traditional Chinese medicine as a cancer treatment: Modern perspectives of ancient but advanced science. Cancer Med. 2019, 8, 1958–1975. [Google Scholar] [CrossRef]
- Zhang, Y.; Lou, Y.; Wang, J.; Yu, C.; Shen, W. Research Status and Molecular Mechanism of the Traditional Chinese Medicine and Antitumor Therapy Combined Strategy Based on Tumor Microenvironment. Front. Immunol. 2020, 11, 609705. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Kim, Y. Dietary advice in chronic care: Comparing traditional Chinese and western medicine practiced in mainland China. Soc. Sci. Med. 2022, 292, 114621. [Google Scholar] [CrossRef]
- Yang, M.; Li, J.; Gu, P.; Fan, X. The application of nanoparticles in cancer immunotherapy: Targeting tumor microenvironment. Bioact. Mater. 2021, 6, 1973–1987. [Google Scholar] [CrossRef] [PubMed]
- Vivekanandhan, S.; Bahr, D.; Kothari, A.; Ashary, M.A.; Baksh, M.; Gabriel, E. Immunotherapies in rare cancers. Mol. Cancer 2023, 22, 23. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Kim, D.H.; Jo, S.; Cho, M.J.; Cho, Y.R.; Lee, Y.J.; Byun, S. Immunomodulatory functional foods and their molecular mechanisms. Exp. Mol. Med. 2022, 54, 1–11. [Google Scholar] [CrossRef]
- Xue, X.; Liu, G.; Wei, Y.; Fu, B.; Li, F.; Wu, D.; Zhang, W. Multi-element Characteristics of Chinese Medical Baishao (Paeoniae Radix Alba) and Their Decoctions. Biol. Trace Elem. Res. 2021, 199, 2375–2386. [Google Scholar] [CrossRef]
- Liao, C.C.; Li, J.M.; Chen, C.H.; Lin, C.L.; Hsieh, C.L. Effect of Paeonia lactiflora, a traditional Chinese herb, on migraines based on clinical application and animal behavior analyses. Biomed. Pharmacother. 2019, 118, 109276. [Google Scholar] [CrossRef]
- Xu, C.H.; Wang, P.; Wang, Y.; Yang, Y.; Li, D.H.; Li, H.F.; Sun, S.Q.; Wu, X.Z. Pharmacokinetic comparisons of two different combinations of Shaoyao-Gancao Decoction in rats: Competing mechanisms between paeoniflorin and glycyrrhetinic acid. J. Ethnopharmacol. 2013, 149, 443–452. [Google Scholar] [CrossRef]
- Zhang, X.; Qiu, H.; Li, C.; Cai, P.; Qi, F. The positive role of traditional Chinese medicine as an adjunctive therapy for cancer. Biosci. Trends. 2021, 15, 283–298. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, M.; Zhang, K.; Zhang, J.; Yuan, X.; Zou, G.; Cao, Z.; Zhang, C. 6’-O-Galloylpaeoniflorin attenuates Helicobacter pylori-associated gastritis via modulating Nrf2 pathway. Int. Immunopharmacol. 2022, 111, 109122. [Google Scholar] [CrossRef]
- Kwon, D.A.; Kim, Y.S.; Baek, S.H.; Kim, S.K.; Kim, H.K.; Jo, S.K.; Jung, U.; Park, H.R.; Lee, H.S. Protective effects of a standardized extract (HemoHIM) using indomethacin- and ethanol/HCl-induced gastric mucosal injury models. Pharm. Biol. 2019, 57, 543–549. [Google Scholar] [CrossRef]
- Wei, C.; Qiu, J.; Wu, Y.; Chen, Z.; Yu, Z.; Huang, Z.; Yang, K.; Hu, H.; Liu, F. Promising traditional Chinese medicine for the treatment of cholestatic liver disease process (cholestasis, hepatitis, liver fibrosis, liver cirrhosis). J. Ethnopharmacol. 2022, 297, 115550. [Google Scholar] [CrossRef]
- Shakya, S.; Danshiitsoodol, N.; Sugimoto, S.; Noda, M.; Sugiyama, M. Anti-Oxidant and Anti-Inflammatory Substance Generated Newly in Paeoniae Radix Alba Extract Fermented with Plant-Derived Lactobacillus brevis 174A. Antioxidants 2021, 10, 1071. [Google Scholar] [CrossRef]
- Zhao, J.C.; Weng, Q.Q.; Zhang, Y.; Zhang, W.; Peng, H.S.; Yang, H.J.; Zhan, Z.L. Textual research on Chinese herbaceous peony in Chinese classical prescriptions. Zhongguo Zhong Yao Za Zhi 2019, 44, 5496–5502. [Google Scholar]
- Ruan, Y.; Ling, J.; Ye, F.; Cheng, N.; Wu, F.; Tang, Z.; Cheng, X.; Liu, H. Paeoniflorin alleviates CFA-induced inflammatory pain by inhibiting TRPV1 and succinate/SUCNR1-HIF-1α/NLPR3 pathway. Int. Immunopharmacol. 2021, 101, 108364. [Google Scholar] [CrossRef]
- Wu, X.X.; Huang, X.L.; Chen, R.R.; Li, T.; Ye, H.J.; Xie, W.; Huang, Z.M.; Cao, G.Z. Paeoniflorin Prevents Intestinal Barrier Disruption and Inhibits Lipopolysaccharide (LPS)-Induced Inflammation in Caco-2 Cell Monolayers. Inflammation 2019, 42, 2215–2225. [Google Scholar] [CrossRef]
- Li, X.; Qin, X.M.; Tian, J.S.; Gao, X.X.; Du, G.H.; Zhou, Y.Z. Integrated network pharmacology and metabolomics to dissect the combination mechanisms of Bupleurum chinense DC-Paeonia lactiflora Pall herb pair for treating depression. J. Ethnopharmacol. 2021, 264, 113281. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.T.; Xi, Z.Q.; Wei, X.Q.; Wang, K. A network pharmacology approach to predict potential targets and mechanisms of “Ramulus Cinnamomi (cassiae)—Paeonia lactiflora” herb pair in the treatment of chronic pain with comorbid anxiety and depression. Ann. Med. 2022, 54, 413–425. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Kan, J.; Zheng, N.; Li, B.; Hong, Y.; Yan, J.; Tao, X.; Wu, G.; Ma, J.; Zhu, W.; et al. A botanical dietary supplement from white peony and licorice attenuates nonalcoholic fatty liver disease by modulating gut microbiota and reducing inflammation. Phytomedicine 2021, 91, 153693. [Google Scholar] [CrossRef]
- Riley, R.S.; June, C.H.; Langer, R.; Mitchell, M.J. Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discov. 2019, 18, 175–196. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Yao, C.; Li, Y.; Li, Z.; Li, H.; Yao, S.; Qu, H.; Li, J.; Wei, W.; Zhang, J.; et al. A strategy for practical authentication of medicinal plants in traditional Chinese medicine prescription, paeony root in ShaoYao-GanCao decoction as a case study. J. Sep. Sci. 2021, 44, 2427–2437. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, Y.; Zhang, Q.; Ao, Q.; Luo, C.; Wang, B.; Bai, C.; Ge, X.; Wang, Y.; Wang, J.; et al. On the Core Prescriptions and Their Mechanisms of Traditional Chinese Medicine in Hepatitis B, Liver Cirrhosis, and Liver Cancer Treatment. J. Oncol. 2022, 2022, 5300523. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Zhang, Q.; Qin, L.; Yan, B. Single Standard Substance for the Simultaneous Determination of Eleven Components in the Extract of Paeoniae Radix Alba (Root of Paeonia lactiflora Pall). J. Anal Methods Chem. 2021, 2021, 8860776. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Peng, L.; Jin, L.; Fu, H.; Shou, Q. Network Pharmacology Analysis of the Identification of Phytochemicals and Therapeutic Mechanisms of Paeoniae Radix Alba for the Treatment of Asthma. J. Immunol. Res. 2021, 2021, 9659304. [Google Scholar] [CrossRef]
- Jiang, H.; Li, J.; Wang, L.; Wang, S.; Nie, X.; Chen, Y.; Fu, Q.; Jiang, M.; Fu, C.; He, Y. Total glucosides of paeony: A review of its phytochemistry, role in autoimmune diseases, and mechanisms of action. J. Ethnopharmacol. 2020, 258, 112913. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Wu, L.; Niu, L. Screening of Biomarkers and Quality Control of Shaoyao Gancao Decoction Using UPLC-MS/MS Combined with Network Pharmacology and Molecular Docking Technology. Evid.-Based Complement. Altern. Med. 2022, 2022, 2442681. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Chen, B.; Wang, Q.; Yang, L.; Guo, H. Paeonin extracted from potatoes protects gastric epithelial cells from H2O2-induced oxidative damage in vitro by PI3K/Akt-mediated Nrf2 signaling pathway. Sci. Rep. 2018, 8, 10865. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Yang, Y. Albiflorin attenuates high glucose-induced endothelial apoptosis via suppressing PARP1/NF-κB signaling pathway. Inflamm. Res. 2023, 72, 159–169. [Google Scholar] [CrossRef]
- Ma, X.; Song, M.; Yan, Y.; Ren, G.; Hou, J.; Qin, G.; Wang, W.; Li, Z. Albiflorin alleviates cognitive dysfunction in STZ-induced rats. Aging 2021, 13, 18287–18297. [Google Scholar] [CrossRef]
- Feng, Y.; Yin, L.; Liu, Y.; Cao, L.; Zheng, N.; Li, M.; Zhan, S. Quantitative determination and optimun extraction technique of nine compounds of Paeoniae Radix Alba. Zhejiang Da Xue Xue Bao. Yi Xue Ban J. Zhejiang Univ. Med. Sci. 2020, 49, 356–363. [Google Scholar]
- Yen, P.H.; Kiem, P.V.; Nhiem, N.X.; Tung, N.H.; Quang, T.H.; Minh, C.V.; Kim, J.W.; Choi, E.M.; Kim, Y.H. A new monoterpene glycoside from the roots of Paeonia lactiflora increases the differentiation of osteoblastic MC3T3-E1 cells. Arch. Pharm. Res. 2007, 30, 1179–1185. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Mo, L.; Ye, C.; Xun, T.; Wang, X.; Lv, B.; Zhan, X.; Liu, B.; Ding, Q.; Peng, J.; et al. Effect of total glucosides of paeony and Tripterygium wilfordii polyglycosides on erythrocyte methotrexate polyglutamates in rats, analysed using ultra-high-performance liquid chromatography-tandem mass spectrometry. J. Pharm. Pharmacol. 2021, 73, 1039–1048. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Zhang, P.; Zhang, J.J.; Qi, X.M.; Wu, Y.G.; Shen, J.J. Effects of total glucosides of paeony on oxidative stress in the kidney from diabetic rats. Phytomedicine 2010, 17, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Wang, H.; Chen, Z.; Wang, Y.; Qin, K.; Huang, Y.; Shen, P.; Ba, X.; Lin, W.; Tu, S. Synergistic and Hepatoprotective Effect of Total Glucosides of Paeony on Ankylosing Spondylitis: A Systematic Review and Meta-Analysis. Front. Pharmacol. 2019, 10, 231. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, J.; Wang, C.; Wei, W. The effects of total glucosides of paeony (TGP) and paeoniflorin (Pae) on inflammatory-immune responses in rheumatoid arthritis (RA). Funct. Plant Biol. 2019, 46, 107–117. [Google Scholar] [CrossRef]
- Xiang, Y.; Zhang, Q.; Wei, S.; Huang, C.; Li, Z.; Gao, Y. Paeoniflorin: A monoterpene glycoside from plants of Paeoniaceae family with diverse anticancer activities. J. Pharm. Pharmacol. 2020, 72, 483–495. [Google Scholar] [CrossRef]
- Chen, F.; Elgaher, W.; Winterhoff, M.; Büssow, K.; Waqas, F.H.; Graner, E.; Pires-Afonso, Y.; Casares Perez, L.; de la Vega, L.; Sahini, N.; et al. Citraconate inhibits ACOD1 (IRG1) catalysis, reduces interferon responses and oxidative stress, and modulates inflammation and cell metabolism. Nat. Metab. 2022, 4, 534–546. [Google Scholar] [CrossRef]
- Park, H.R.; Choi, H.J.; Kim, B.S.; Chung, T.W.; Kim, K.J.; Joo, J.K.; Ryu, D.; Bae, S.J.; Ha, K.T. Paeoniflorin Enhances Endometrial Receptivity through Leukemia Inhibitory Factor. Biomolecules 2021, 11, 439. [Google Scholar] [CrossRef]
- Ippolito, L.; Comito, G.; Parri, M.; Iozzo, M.; Duatti, A.; Virgilio, F.; Lorito, N.; Bacci, M.; Pardella, E.; Sandrini, G.; et al. Lactate Rewires Lipid Metabolism and Sustains a Metabolic-Epigenetic Axis in Prostate Cancer. Cancer Res. 2022, 82, 1267–1282. [Google Scholar] [CrossRef]
- Ji, Y.; Dou, Y.-N.; Zhao, Q.-W.; Zhang, J.-Z.; Yang, Y.; Wang, T.; Xia, Y.-F.; Dai, Y.; Wei, Z.-F. Paeoniflorin suppresses TGF-β mediated epithelial-mesenchymal transition in pulmonary fibrosis through a Smad-dependent pathway. Acta Pharmacol. Sin. 2016, 37, 794–804. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yang, B.; Yu, B. Paeoniflorin Protects against Nonalcoholic Fatty Liver Disease Induced by a High-Fat Diet in Mice. Biol. Pharm. Bull. 2015, 38, 1005–1011. [Google Scholar] [CrossRef]
- Xu, S.Y.; Cao, H.Y.; Yang, R.H.; Xu, R.X.; Zhu, X.Y.; Ma, W.; Liu, X.B.; Yan, X.Y.; Fu, P. Genus Paeonia monoterpene glycosides: A systematic review on their pharmacological activities and molecular mechanisms. Phytomedicine 2024, 127, 155483. [Google Scholar] [CrossRef]
- Vaghari-Tabari, M.; Ferns, G.A.; Qujeq, D.; Andevari, A.N.; Sabahi, Z.; Moein, S. Signaling, metabolism, and cancer: An important relationship for therapeutic intervention. J. Cell Physiol. 2021, 236, 5512–5532. [Google Scholar] [CrossRef] [PubMed]
- Ou, T.T.; Wu, C.H.; Hsu, J.D.; Chyau, C.C.; Lee, H.J.; Wang, C.J. Paeonia lactiflora Pall inhibits bladder cancer growth involving phosphorylation of Chk2 in vitro and in vivo. J. Ethnopharmacol. 2011, 135, 162–172. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.; Zhang, Z.; Jin, D.; Cai, C.; Jia, C.; Liu, W.; Wang, T.; Li, S.; Zhang, H.; Huang, B.; et al. mTORC1 regulates PTHrP to coordinate chondrocyte growth, proliferation and differentiation. Nat. Commun. 2016, 7, 11151. [Google Scholar] [CrossRef]
- Mo, J.; Anastasaki, C.; Chen, Z.; Shipman, T.; Papke, J.B.; Yin, K.Y.; Gutmann, D.H.; Le, L.Q. Humanized neurofibroma model from induced pluripotent stem cells delineates tumor pathogenesis and developmental origins. J. Clin. Investig. 2021, 131, e139807. [Google Scholar] [CrossRef] [PubMed]
- Whiteside, T.L. Tumor-Derived Exosomes and Their Role in Cancer Progression. Adv. Clin. Chem. 2016, 74, 103–141. [Google Scholar]
- Zheng, Y.B.; Xiao, G.C.; Tong, S.L.; Ding, Y.; Wang, Q.-S.; Li, S.-B.; Hao, Z.-N. Paeoniflorin inhibits human gastric carcinoma cell proliferation through up-regulation of microRNA-124 and suppression of PI3K/Akt and STAT3 signaling. World J. Gastroenterol. 2015, 21, 7197–7207. [Google Scholar] [CrossRef]
- Zhang, Q.; Yuan, Y.; Cui, J.; Xiao, T.; Jiang, D. Paeoniflorin inhibits proliferation and invasion of breast cancer cells through suppressing Notch-1 signaling pathway. Biomed. Pharmacother. 2016, 78, 197–203. [Google Scholar] [CrossRef]
- Zhou Xiahong, Y.X.; Lian Lei, F.Z.; Zhaoxu, Y. Effects of Total Glucosides of Paeony on Proliferation, Invasion, Migration and PI3K/AKT/GSK3β Signaling Pathway of Laryngeal Cancer Hep-2 Cells. Label. Immunoass. Clin. 2022, 29, 236–241. [Google Scholar]
- Morana, O.; Wood, W.; Gregory, C.D. The Apoptosis Paradox in Cancer. Int. J. Mol. Sci. 2022, 23, 1328. [Google Scholar] [CrossRef] [PubMed]
- Wong, R.S. Apoptosis in cancer: From pathogenesis to treatment. J. Exp. Clin. Cancer Res. 2011, 30, 87. [Google Scholar] [CrossRef]
- Kim, C.; Kim, B. Anti-Cancer Natural Products and Their Bioactive Compounds Inducing ER Stress-Mediated Apoptosis: A Review. Nutrients 2018, 10, 1021. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Lai, Y.; Hua, Z.C. Apoptosis and apoptotic body: Disease message and therapeutic target potentials. Biosci. Rep. 2019, 39, BSR20180992. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Ferrell, J.E., Jr. Apoptosis propagates through the cytoplasm as trigger waves. Science 2018, 361, 607–612. [Google Scholar] [CrossRef]
- Gyamfi, J.; Kim, J.; Choi, J. Cancer as a Metabolic Disorder. Int. J. Mol. Sci. 2022, 23, 1155. [Google Scholar] [CrossRef]
- Wu, H.; Li, W.; Wang, T.; Shu, Y.; Liu, P. Paeoniflorin suppress NF-kappaB activation through modulation of I kappaB alpha and enhances 5-fluorouracil-induced apoptosis in human gastric carcinoma cells. Biomed. Pharmacother. 2008, 62, 659–666. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, S. Modulating Bcl-2 family proteins and caspase-3 in induction of apoptosis by paeoniflorin in human cervical cancer cells. Phytother Res. 2011, 25, 1551–1557. [Google Scholar] [CrossRef]
- Wei, Y.; Zhou, X.; Ren, L.; Wang, C.; Li, Y. The prolactin-release inhibitor paeoniflorin suppresses proliferation and induces apoptosis in prolactinoma cells via the mitochondria-dependent pathway. J. Cell Biochem. 2018, 119, 5704–5714. [Google Scholar] [CrossRef]
- Mashouri, L.; Yousefi, H.; Aref, A.R.; Ahadi, A.M.; Molaei, F.; Alahari, S.K. Exosomes: Composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol. Cancer 2019, 18, 75. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Baker, D.; Ten Dijke, P. TGF-β-Mediated Epithelial-Mesenchymal Transition and Cancer Metastasis. Int. J. Mol. Sci. 2019, 20, 2767. [Google Scholar] [CrossRef] [PubMed]
- Gerstberger, S.; Jiang, Q.; Ganesh, K. Metastasis. Cell 2023, 186, 1564–1579. [Google Scholar] [CrossRef] [PubMed]
- Ganesh, K.; Massagué, J. Targeting metastatic cancer. Nat. Med. 2021, 27, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.F.; Ma, D.G.; Wang, L.; Feng, L.; Fu, J.-W.; Li, Y.; Wang, D.-T.; Jia, Y.-F. Paeoniflorin Inhibits Migration- and Invasion-Promoting Capacities of Gastric Cancer Associated Fibroblasts. Chin. J. Integr. Med. 2019, 25, 837–844. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.T.; He, W.; Song, S.S.; Wei, W. Paeoniflorin inhibited the tumor invasion and metastasis in human hepatocellular carcinoma cells. Bratisl. Lek. Listy 2014, 115, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.W.; Li, L.X.; Wu, W.Z.; Pan, T.J.; Yang, Z.S.; Yang, Y.K. Anti-Tumor Effects of Paeoniflorin on Epithelial-To-Mesenchymal Transition in Human Colorectal Cancer Cells. Med. Sci. Monit. 2018, 24, 6405–6413. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Z.; Yu, G.; Nie, X.; Jia, W.; Liu, R.-E.; Xu, R. Paeoniflorin Inhibits Migration and Invasion of Human Glioblastoma Cells via Suppression Transforming Growth Factor β-Induced Epithelial-Mesenchymal Transition. Neurochem. Res. 2018, 43, 760–774. [Google Scholar] [CrossRef]
- Cabral-Pacheco, G.A.; Garza-Veloz, I.; la Rosa, C.C.-D.; Ramirez-Acuña, J.M.; Perez-Romero, B.A.; Guerrero-Rodriguez, J.F.; Martinez-Avila, N.; Martinez-Fierro, M.L. The Roles of Matrix Metalloproteinases and Their Inhibitors in Human Diseases. Int. J. Mol. Sci. 2020, 21, 9739. [Google Scholar] [CrossRef]
- Hu, X.; Harvey, S.E.; Zheng, R.; Lyu, J.; Grzeskowiak, C.L.; Powell, E.; Piwnica-Worms, H.; Scott, K.L.; Cheng, C. The RNA-binding protein AKAP8 suppresses tumor metastasis by antagonizing EMT-associated alternative splicing. Nat. Commun. 2020, 11, 486. [Google Scholar] [CrossRef]
- Yi, L.; Yang, F.; Yi, Z. Studies on the effects of total white peony glycosides on the proliferation, migration and invasion of pancreatic cancer cells. Chin. Med. Her. 2021, 27, 68–72. [Google Scholar]
- Xiao, Y.; Yu, D. Tumor microenvironment as a therapeutic target in cancer. Pharmacol. Ther. 2021, 221, 107753. [Google Scholar] [CrossRef]
- Maida, C.D.; Norrito, R.L.; Daidone, M.; Tuttolomondo, A.; Pinto, A. Neuroinflammatory Mechanisms in Ischemic Stroke: Focus on Cardioembolic Stroke, Background, and Therapeutic Approaches. Int. J. Mol. Sci. 2020, 21, 6454. [Google Scholar] [CrossRef]
- Su, Y.; Huang, T.; Sun, H.; Lin, R.; Zheng, X.; Bian, Q.; Zhang, J.; Chen, S.; Wu, H.; Xu, D.; et al. High Targeting Specificity toward Pulmonary Inflammation Using Mesenchymal Stem Cell-Hybrid Nanovehicle for an Efficient Inflammation Intervention. Adv. Healthc. Mater. 2023, 12, e2300376. [Google Scholar] [CrossRef] [PubMed]
- Carnevale, S.; Ghasemi, S.; Rigatelli, A.; Jaillon, S. The complexity of neutrophils in health and disease: Focus on cancer. Semin. Immunol. 2020, 48, 101409. [Google Scholar] [CrossRef] [PubMed]
- Vitale, I.; Manic, G.; Coussens, L.M.; Kroemer, G.; Galluzzi, L. Macrophages and Metabolism in the Tumor Microenvironment. Cell Metab. 2019, 30, 36–50. [Google Scholar] [CrossRef] [PubMed]
- Hinshaw, D.C.; Shevde, L.A. The Tumor Microenvironment Innately Modulates Cancer Progression. Cancer Res. 2019, 79, 4557–4566. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.P.; Booker, R.C.; Brosseau, J.P.; Chen, Z.; Mo, J.; Tchegnon, E.; Wang, Y.; Clapp, D.W.; Le, L.Q. Contributions of inflammation and tumor microenvironment to neurofibroma tumorigenesis. J. Clin. Investig. 2018, 128, 2848–2861. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, Q.; Chen, Y.; Liang, C.L.; Liu, H.; Qiu, F.; Dai, Z. Antitumor effects of immunity-enhancing traditional Chinese medicine. Biomed. Pharmacother. 2020, 121, 109570. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.J.; Zhang, T. Integration of traditional Chinese medicine and Western medicine in the era of precision medicine. J. Integr. Med. 2017, 15, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Tan, X.; Shi, H.; Xia, D. Nutrition and traditional Chinese medicine (TCM): A system’s theoretical perspective. Eur. J. Clin. Nutr. 2021, 75, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Si, X.L.; Wang, Y.; Song, B.N.; Zhang, Y.; Yang, Q.-X.; Li, Z.; Luo, Y.-P.; Duan, Y.-Q.; Ma, X.-M.; Zhang, Y.-Y. Potential Chemoprevention of Paeoniflorin in Colitis-Associated Colorectal Cancer by Network Pharmacology, Molecular Docking, and In Vivo Experiment. Chem. Biodivers. 2022, 19, e202200295. [Google Scholar] [CrossRef] [PubMed]
- Ling, C.Q.; Yue, X.Q.; Ling, C. Three advantages of using traditional Chinese medicine to prevent and treat tumor. J. Integr. Med. 2014, 12, 331–335. [Google Scholar] [CrossRef] [PubMed]
- Zappavigna, S.; Cossu, A.M.; Grimaldi, A.; Bocchetti, M.; Ferraro, G.A.; Nicoletti, G.F.; Filosa, R.; Caraglia, M. Anti-Inflammatory Drugs as Anticancer Agents. Int. J. Mol. Sci. 2020, 21, 2605. [Google Scholar] [CrossRef] [PubMed]
- Niu, K.; Liu, Y.; Zhou, Z.; Wu, X.; Wang, H.; Yan, J. Antitumor Effects of Paeoniflorin on Hippo Signaling Pathway in Gastric Cancer Cells. J. Oncol. 2021, 2021, 4724938. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Q.; Li, X.; Luo, G.; Shen, M.; Shi, J.; Wang, X.; Tang, L. Paeoniflorin Sensitizes Breast Cancer Cells to Tamoxifen by Downregulating microRNA-15b via the FOXO1/CCND1/β-Catenin Axis. Drug Des. Devel. Ther. 2021, 15, 245–257. [Google Scholar] [CrossRef]
- Huang, W.; Sun, C.; Yu, C.; Zhen, P.; Tian, S.; Zhang, Y.; Chen, S.; Jiang, J. Effect of paeoniflorin on proliferation and apoptosis of human pancreatic cancer Panc-1 cell line. J. Guizhou Med. Univ. 2018, 43, 874–878. [Google Scholar]
- Li, Y.; Gong, L.; Qi, R.; Sun, Q.; Xia, X.; He, H.; Ren, J.; Zhu, O.; Zhuo, D. Paeoniflorin suppresses pancreatic cancer cell growth by upregulating HTRA3 expression. Drug Des. Devel Ther. 2017, 11, 2481–2491. [Google Scholar] [CrossRef]
- Hao, J.; Yang, X.; Ding, X.L.; Guo, L.-M.; Zhu, C.-H.; Ji, W.; Zhou, T.; Wu, X.-Z. Paeoniflorin Potentiates the Inhibitory Effects of Erlotinib in Pancreatic Cancer Cell Lines by Reducing ErbB3 Phosphorylation. Sci. Rep. 2016, 6, 32809. [Google Scholar] [CrossRef]
- Liu, H.; Wei, J.; Qin, W.; Chen, M. Mechanism study on the regulation of proliferation, migration and invasion of tongue cancer HSC3 cells by total paeonia lactiflora glycosides. Pharm. Biotechnol. 2023, 30, 140–146. [Google Scholar]
- Lu, J. Hedgehog/Gli Signaling Pathway Mediates Invasive Metastasis of Hepatocellular Carcinoma and the Effect of Paeoniflorin on It; Anhui Medical University: Anhui, China, 2012. [Google Scholar]
- Hu, S.; Sun, W.; Wei, W.; Wang, D.; Jin, J.; Wu, J.; Chen, J.; Wu, H.; Wang, Q. Involvement of the prostaglandin E receptor EP2 in paeoniflorin-induced human hepatoma cell apoptosis. Anticancer Drugs 2013, 24, 140–149. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, X.; Gao, Y.; Tan, R.; Wu, Z.; Zhong, Q.; Zeng, F. Paeoniflorin Affects Hepatocellular Carcinoma Progression by Inhibiting Wnt/β-Catenin Pathway through Downregulation of 5-HT1D. Curr. Pharm. Biotechnol. 2021, 22, 1246–1253. [Google Scholar] [CrossRef]
- Chen, G.; Su, X.; Ling, F.; Li, Z.; Li, R.; Li, C. Tumor-suppressive effect of paeoniflorin on Lewis lung cancer in mice with spontaneous lung metastases. Chin. Med. Pharmacol. Clin. 2013, 29, 61–62. [Google Scholar]
- Hung, J.Y.; Yang, C.J.; Tsai, Y.M.; Huang, H.W.; Huang, M.S. Antiproliferative activity of paeoniflorin is through cell cycle arrest and the Fas/Fas ligand-mediated apoptotic pathway in human non-small cell lung cancer A549 cells. Clin. Exp. Pharmacol. Physiol. 2008, 35, 141–147. [Google Scholar] [CrossRef]
- Gao, T.; Li, X.; Dong, S.; Cheng, C.; Shi, R.; Jia, L.; Wang, J.; Liu, B. Effects of paeoniflorin on the proliferation, apoptosis and migration of human epithelial ovarian cancer HO8910 cells and its mechanisms. Pharm. Res. 2019, 38, 198–200+204. [Google Scholar]
- Wang, H.; Zhou, H.; Wang, C.-X.; Li, Y.-S.; Xie, H.-Y.; Luo, J.-D.; Zhou, Y. Paeoniflorin inhibits growth of human colorectal carcinoma HT 29 cells in vitro and in vivo. Food Chem. Toxicol. 2012, 50, 1560–1567. [Google Scholar] [CrossRef]
- Yue, M.; Li, S.; Yan, G.; Li, C.; Kang, Z. Paeoniflorin inhibits cell growth and induces cell cycle arrest through inhibition of FoxM1 in colorectal cancer cells. Cell Cycle 2018, 17, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, W. Paeoniflorin inhibits proliferation and promotes apoptosis of multiple myeloma cells via its effects on microRNA-29b and matrix metalloproteinase-2. Mol. Med. Rep. 2016, 14, 2143–2149. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.B.; Zhu, J.; Liang, C.Z.; Tao, L.-J.; Liu, B.; Yu, W.; Zou, H.H.; Wang, J.-J.; Tao, H. Paeoniflorin induces G2/M cell cycle arrest and caspase-dependent apoptosis through the upregulation of Bcl-2 X-associated protein and downregulation of B-cell lymphoma 2 in human osteosarcoma cells. Mol. Med. Rep. 2018, 17, 5095–5101. [Google Scholar] [CrossRef]
- Li, W.; Qi, Z.; Wei, Z.; Liu, S.; Wang, P.; Chen, Y.; Zhao, Y. Paeoniflorin inhibits proliferation and induces apoptosis of human glioma cells via microRNA-16 upregulation and matrix metalloproteinase-9 downregulation. Mol. Med. Rep. 2015, 12, 2735–2740. [Google Scholar] [CrossRef]
- Xu, R.-X.; Nie, X.-H.; Jia, O.-Y.; Xing, Y.; Li, D.-Y.; Dong, X.-Y.; Liu, R.-E. Paeoniflorin inhibits human glioma cells via STAT3 degradation by the ubiquitin-proteasome pathway. Drug Des. Devel. Ther. 2015, 9, 5611–5622. [Google Scholar] [CrossRef]
- Yu, G.; Wang, Z.; Zeng, S.; Liu, S.; Zhu, C.; Xu, R.; Liu, R.-E. Paeoniflorin Inhibits Hepatocyte Growth Factor-(HGF-) Induced Migration and Invasion and Actin Rearrangement via Suppression of c-Met-Mediated RhoA/ROCK Signaling in Glioblastoma. Biomed. Res. Int. 2019, 2019, 9053295. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Ren, Y.; Lou, Z.G.; Wan, X.; Weng, G.B.; Cen, D. Paeoniflorin inhibits the growth of bladder carcinoma via deactivation of STAT3. Acta Pharm. 2018, 68, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, Y.; Kong, H.; Zhang, M.; Cheng, J.; Wu, J.; Qu, H.; Zhao, Y. Carbon Dots from Paeoniae Radix Alba Carbonisata: Hepatoprotective Effect. Int. J. Nanomed. 2020, 15, 9049–9059. [Google Scholar] [CrossRef] [PubMed]
- Jo, G.H.; Kim, S.N.; Kim, M.J.; Heo, Y. Protective effect of Paeoniae radix alba root extract on immune alterations in mice with atopic dermatitis. J. Toxicol. Environ. Health A 2018, 81, 502–511. [Google Scholar] [CrossRef]
- Wang, S.; Xu, J.; Wang, C.; Li, J.; Wang, Q.; Kuang, H.; Yang, B.; Chen, R.; Luo, Z. Paeoniae radix alba polysaccharides obtained via optimized extraction treat experimental autoimmune hepatitis effectively. Int. J. Biol. Macromol. 2020, 164, 1554–1564. [Google Scholar] [CrossRef]
- Benić, M.S.; Nežić, L.; Vujić-Aleksić, V.; Mititelu-Tartau, L. Novel Therapies for the Treatment of Drug-Induced Liver Injury: A Systematic Review. Front. Pharmacol. 2021, 12, 785790. [Google Scholar] [CrossRef]
- Wang, J.; Li, G.; Zhong, W.; Zhang, H.; Yang, Q.; Chen, L.; Wang, J.; Yang, X. Effect of Dietary Paeoniae Radix Alba Extract on the Growth Performance, Nutrient Digestibility and Metabolism, Serum Biochemistry, and Small Intestine Histomorphology of Raccoon Dog During the Growing Period. Front. Vet. Sci. 2022, 9, 839450. [Google Scholar] [CrossRef]
- Asai, M.; Kawashima, D.; Katagiri, K.; Takeuchi, R.; Tohnai, G.; Ohtsuka, K. Protective effect of a molecular chaperone inducer, paeoniflorin, on the HCl- and ethanol-triggered gastric mucosal injury. Life Sci. 2011, 88, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Hu, X. Watching Red Mansions and Talking about Chinese Medicine; Shandong Pictorial Publishing House: Jinan, China, 2006. [Google Scholar]
- Guo, G.; Xu, J.H.; Han, J.H.; Liang, F.; Zhang, Y.; Zhang, Q.; Sun, J.; Fan, Z.Z. Chinese herbal decoction Shiquan Dabu Tang inhibits tumor growth and angiogenesis of metastasis after primary tumor surgical removal in mice. Zhong Xi Yi Jie He Xue Bao J. Chin. Integr. Med. 2012, 10, 436–447. [Google Scholar] [CrossRef]
- Meng, S.; Huang, J. Tumor Food Therapy Expert Talk; People’s Military Medical Publishing House: Beijing, China, 2014. [Google Scholar]
- Li, G.; He, X.; Song, X. Chinese Medicine Rehabilitation Terminology; Sunshine Publishing House: Beijing, China, 2015. [Google Scholar]
- Hu, Y. Diagnosis and Treatment of Gastric Diseases; Shanghai Science and Technology Literature Publishing House: Shanghai, China, 2023. [Google Scholar]
- Zhang, Q.; Zhao, H. Specialized Chinese Medicine Treatment for Stroke; Chemical Industry Press: Beijing, China, 2018. [Google Scholar]
- Liu, Z.; You, W.; Jian, H. Home Remedies; China Traditional Chinese Medicine Press: Beijing, China, 2017. [Google Scholar]
- Zhao, W.; Wei, J. Aquatic Cuisine; Dalian Publishing House: Dalian, China, 2009. [Google Scholar]
- Yang, G.; Yang, L.; Cai, X. Dietary Therapy for Gastrointestinal Disorders; People’s Military Medical Publishing House: Beijing, Chin, 2012. [Google Scholar]
- Yan, B.; Shen, M.; Fang, J.; Wei, D.; Qin, L. Advancement in the chemical analysis of Paeoniae Radix (Shaoyao). J. Pharm. Biomed. Anal. 2018, 160, 276–288. [Google Scholar] [CrossRef] [PubMed]
- Chien, M.Y.; Lin, Y.T.; Peng, F.C.; Lee, H.-J.; Chang, J.-M.; Yang, C.-M.; Chen, C.-H. Gastroprotective potential against indomethacin and safety assessment of the homology of medicine and food formula cuttlebone complex. Food Funct. 2015, 6, 2803–2812. [Google Scholar] [CrossRef] [PubMed]
- Pan, D.; Gong, X.; Wang, X.; Li, M. Role of Active Components of Medicinal Food in the Regulation of Angiogenesis. Front. Pharmacol. 2020, 11, 594050. [Google Scholar] [CrossRef] [PubMed]
- Song, D.X.; Jiang, J.G. Hypolipidemic Components from Medicine Food Homology Species Used in China: Pharmacological and Health Effects. Arch. Med. Res. 2017, 48, 569–581. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, Y.; Si, J.; Wu, L. Metabolites of medicine food homology-derived endophytic fungi and their activities. Curr. Res. Food Sci. 2022, 5, 1882–1896. [Google Scholar] [CrossRef]
- Wang, X.Z.; Xia, L.; Zhang, X.Y.; Chen, Q.; Li, X.; Mou, Y.; Wang, T.; Zhang, Y.N. The multifaceted mechanisms of Paeoniflorin in the treatment of tumors: State-of-the-Art. Biomed. Pharmacother. 2022, 149, 112800. [Google Scholar] [CrossRef]
Name | Structural Formula |
---|---|
Total glucosides of paeony | |
Paeoniflorin |
Name | Ingredient | Methods of Production | Efficacy | Book |
---|---|---|---|---|
Baishao decoction | Paeoniae Radix Alba (Baishao) 10 g, rice 50 g | Paeoniae Radix Alba thick decoction of the juice added to boiled rice into thin porridge to serve, 1 dose per day | Nourish the Yin and soften the liver | Watching Red Mansions and Talking about Chinese Medicine [121] |
Baishao Fushen decoction | Paeoniae Radix Alba (Baishao), Sophora flavescens Aiton (fushen) each 10 g, rice 100 g, moderate amount of icing sugar | All the medicines’ decocted juices added to rice porridge, to be cooked with rock sugar and then boiled, 1 dose per day | Clearing the liver and laxing fire, submerging Yang and tranquilizing the mind | Watching Red Mansions and Talking about Chinese Medicine |
Shanyao Baishao decoction | Dioscorea oppositifolia L. (Shanyao) 50 g, Paeoniae Radix Alba (Baishao) 15 g, rice 100 g, moderate amount of icing sugar | The two medicines’s decocted juice added to rice porridge, to be cooked with rock sugar and then boiled, 1 dose per day | Strengthens the spleen and softens the liver | Watching Red Mansions and Talking about Chinese Medicine |
Shiquan Dabu decoction | Angelica sinensis (Oliv.) Diels (Danggui), Paeoniae Radix Alba (Baishao), Codonopsis pilosula (Franch.) Nannf. (Dangshen), Smilax glabra Roxb. (Fuling), Rehmannia glutinosa (Gaertn.) DC. (Shudihuang), Atractylodes macrocephala Koidz. (Baizhu) each 10 g, Conioselinum anthriscoides ‘Chuanxiong’ (Chuanxiong) 8 g, Astragalus mongholicus Bunge (Huangqi) 5 g, Neolitsea cassia (L.) Kosterm. (Rougui) 4 g, Glycyrrhiza glabra L. (gancao) 5 g, Zingiber officinale Roscoe (Shengjiang) 25 g, 1000 g of pork elbow, 500 g of raw chicken bones | Put the first 10 flavors of medicine into a sand jar with water and decoct twice. Wash the hairs of the pork elbow, put it on a high fire until slightly charred and put it into the rice water to soak for 30 min. Fish and chicken bones added together into a casserole, add fresh soup to boil, simmer over medium heat for 90 min and then simmer over low heat until the elbow meat is soft and rotten. | Nourishing the liver and kidney, nourishing the heart and spleen, benefiting the vital energy and blood, tonifying the essence, and stimulating the brain and intellect | Taiping Huimin Hekebao Formula [122] |
Shanyao Gancao decoction | Paeoniae Radix Alba (Baishao) 30 g, Glycyrrhiza glabra L. (Gancao) 10 g, rice 50 g | First decoction of Paeoniae Radix Alba, licorice juice to remove slag, add round-grained rice to cook into thin rice and served warm in the morning and evening | Stops pain | Tumor Food Therapy Expert Talk [123] |
Guishen Niurou decoction | Angelica sinensis (Oliv.) Diels (Danggui), Codonopsis pilosula (Franch.) Nannf. (Dangshen), Conioselinum anthriscoides ‘Chuanxiong’ (Chuanxiong), Paeoniae Radix Alba (Baishao) each 10 g, Morus alba L. (Sangzhi), Hansenia weberbaueriana (Fedde ex H.Wolff) Pimenov and Kljuykov (qianghuo) each 15 g, Glycyrrhiza glabra L. (gancao) 5 g, 500 g of lamb | Cut the mutton and Paeoniae Radix Alba into pieces, wrap them in a medicinal cloth, add water and simmer them together until the mutton is cooked; cook and eat 2 times a day | Promoting blood circulation and removing blood stasis, clearing channels and relieving pain | Chinese Medicine Rehabilitation Terminology [124] |
Jianpi Xiaopi soup | Atractylodes macrocephala Koidz. (Baizhu), Paeoniae Radix Alba (Baishao), Citrus aurantium L. (Zhiqiao), rice | Put Paeoniae Radix Alba and corn into a casserole dish, add appropriate amount of water, bring to a boil over high heat, then switch to low heat and simmer for 30 min | Suppressing the liver and harmonizing the spleen, promoting qi circulation, eliminating lumps and relieving pain | Diagnosis and treatment of gastric diseases [125] |
Fufang Huangqi decoction | Astragalus mongholicus Bunge (Huangqi) 15 g, 10 g each of Paeoniae Radix Alba (Baishao) and Neolitsea cassia (L.) Kosterm. (Guizhi), Zingiber officinale Roscoe (Shengjiang) 15 g, Ziziphus jujuba Mill. (Dazao) 4, rice 100 g | Wash clean round-grained rice and jujube and cook into thin porridge | Benefiting qi and nourishing blood, warming the meridians and clearing the channels | Specialized Chinese Medicine Treatment for Stroke [126] |
Baishao Huanyu decoction | Paeoniae Radix Alba (Baishao) 20 g, 1 grass carp (about 1000 g) | Grass carp slaughtered and washed offal, fish body on both sides cut with a knife, fish on the plate with Paeoniae Radix Alba juice added into the pot and steamed for eight minutes and cooked | Tonifying qi, nourishing the kidneys, detoxifying and avoiding epidemics | Home remedies [127] |
Meigui Moyu decoction | Rose petals 30 g, Paeoniae Radix Alba (Baishao) 15 g, Cuttlefish 200 g | Rose and Paeoniae Radix Alba in gauze, cuttlefish washed and removed and boiled together to make soup | Regulating qi, dispersing liver, relieving depression and nourishing blood | Aquatic cuisine [128] |
Shaofu Shourou decoction | Paeoniae Radix Alba (Baishao), Cyperus rotundus L. (Xiangfu), Citrus aurantium L. (Zhiqiao) 6 g each, 100 g lean pork, seasoning in moderation | First of all, wash the pork lean meat, shredded, sizing, the remaining drugs with water decoction to make juice, added into the pork lean meat and cooked; seasoned food, 1 dose per day | Tonifying the liver and regulating qi, strengthening the spleen and harmonizing the stomach | Dietary therapy for gastrointestinal disorders [129] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Yuan, L.; Wang, K.; Lu, D.; Meng, F.; Xu, D.; Li, W.; Nan, Y. The Role and Mechanism of Paeoniae Radix Alba in Tumor Therapy. Molecules 2024, 29, 1424. https://doi.org/10.3390/molecules29071424
Yang Y, Yuan L, Wang K, Lu D, Meng F, Xu D, Li W, Nan Y. The Role and Mechanism of Paeoniae Radix Alba in Tumor Therapy. Molecules. 2024; 29(7):1424. https://doi.org/10.3390/molecules29071424
Chicago/Turabian StyleYang, Yating, Ling Yuan, Kaili Wang, Doudou Lu, Fandi Meng, Duojie Xu, Weiqiang Li, and Yi Nan. 2024. "The Role and Mechanism of Paeoniae Radix Alba in Tumor Therapy" Molecules 29, no. 7: 1424. https://doi.org/10.3390/molecules29071424
APA StyleYang, Y., Yuan, L., Wang, K., Lu, D., Meng, F., Xu, D., Li, W., & Nan, Y. (2024). The Role and Mechanism of Paeoniae Radix Alba in Tumor Therapy. Molecules, 29(7), 1424. https://doi.org/10.3390/molecules29071424