Recent Advancements in the Utilization of s-Block Organometallic Reagents in Organic Synthesis with Sustainable Solvents
Abstract
:1. Introduction
2. Addition of RLi/RMgX Reagents into Different Electrophiles in Green Solvents
2.1. Chemoselective Addition of Polar Organometallic Reagents (RLi/RMgX) to Esters under Air at Room Temperature and Using Either Water or ChCl-Based Eutectic Mixtures as Reaction Media
2.2. Continuous, Stable and Safe Organometallic Reactions in Flow at Room Temperature Assisted by Deep Eutectic Solvents
2.3. Fast Addition of s-Block Organometallic Reagents to CO2-Derived Cyclic Carbonates at Room Temperature, under Air and in 2-MeTHF
2.4. One-Pot/Two-Step Modular Double Addition of Different Highly Polar Organometallic Reagents (RLi/RMgX) into Nitriles to Produce Asymmetric Tertiary Alcohols under Aerobic/Room Temperature and in Neat Conditions
2.5. Addition of Organolithium Reagents (RLi) into Amides as a General and Fast Route to Ketones Using CPME as a Sustainable Solvent under Aerobic Ambient Conditions
2.6. Fast and Selective Addition of In Situ Generated Lithium Amides (LiNR2) into Carbodiimides (R-N=C=N-R) or Nitriles (R-C≡N) in 2-MeTHF or CPME under Air and at Room Temperature
3. Directed ortho-Metalation or Anionic Fries Rearrangement of O-Arylcarbamates Promoted by Lithium Amides under Aerobic Conditions in Sustainable Reaction Media (DESs/CPME)
4. Pd-Catalyzed C–C Coupling Reactions Using RLi Reagents in Green Solvents
5. Organosodium Chemistry (RNa) in Green Solvents
6. One-Pot Tandem Hybrid Combinations of RLi Reagents with Other Synthetic Organic Tools in Water or Deep Eutectic Solvents (DESs)
6.1. Design of One-Pot Hybrid Chemoenzymatic Protocols That Rely on the Use of RLi/RMgX Reagents in Aqueous Media
6.2. Combination of Brønsted–Acidic–DES-Promoted Organic Protocols with the Addition of RLi Reagents
6.3. Combination of a Cu-Catalyzed Oxidation of Primary Alcohols into Aldehydes with the Addition of RLi Reagents in DESs
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
API | Active Pharmaceutical Ingredient |
Boc | t-Butyloxycarbonyl |
ChCl | Choline chloride |
CPME | Cyclopentyl methyl ether |
CSTR | Continuous Stirring Tank Reactor |
DES | Deep Eutectic Solvent |
DoM | Directed ortho-Metalation |
Fruc | Fructose |
Gly | Glycerol |
IRAS | Interphase-Rich Aqueous Systems |
Mal | Malonic Acid |
Pro | L-proline |
SBs | Sodium Bricks |
SNAc | Nucleophilic Acyl Substitution reaction |
TMEDA | N,N,N’,N’-tetramethylethylenediamine |
TMP | 2,2,6,6-tetramethylpiperidine |
US | Under Sonication |
References
- Clayden, J. Organolithiums: Selectivity for Synthesis; Pergamon: Oxford, UK, 2002. [Google Scholar]
- Rappoport, Z.; Marek, I. (Eds.) The Chemistry of Organolithium Compounds; Wiley: Chichester, UK, 2005. [Google Scholar]
- Capriati, V.; Perna, F.M.; Salomone, A. “The Great Beauty” of Organolithium Chemistry: A Land Still Worth Exploring. Dalton Trans. 2014, 43, 14204–14210. [Google Scholar] [CrossRef]
- Luisi, R.; Capriati, V. Lithium Compounds in Organic Synthesis: From Fundamentals to Applications; John Wiley & Sons: Weinheim, Germany, 2014. [Google Scholar]
- Wietelmann, U.; Klett, J. 200 Years of Lithium and 100 Years of Organolithium Chemistry. Z. Anorg. Allg. Chem. 2018, 644, 194–204. [Google Scholar] [CrossRef]
- Seyferth, D. Alkyl and Aryl Derivatives of the Alkali Metals: Useful Synthetic Reagents as Strong Bases and Potent Nucleophiles. 1. Conversion of Organic Halides to Organoalkali-Metal Compounds. Organometallics 2006, 25, 2–24. [Google Scholar] [CrossRef]
- Robertson, S.D.; Uzelac, M.; Mulvey, R.E. Alkali-Metal-Mediated Synergistic Effects in Polar Main Group Organometallic Chemistry. Chem. Rev. 2019, 119, 8332–8405. [Google Scholar] [CrossRef]
- Woltornist, R.A.; Ma, Y.; Algera, R.F.; Zhou, Y.; Zhang, Z.; Collum, D.B. Structure, Reactivity, and Synthetic Applications of Sodium Diisopropylamide. Synthesis 2020, 52, 1478–1497. [Google Scholar] [PubMed]
- Anderson, D.E.; Tortajada, J.A.; Hevia, E. New Frontiers in Organosodium Chemistry as Sustainable Alternatives to Organolithium Reagents. Angew. Chem. Int. Ed. 2023, 62, e202313556. [Google Scholar]
- Garst, J.F.; Soriaga, M.P. Grignard reagent formation. Chem. Soc. Rev. 2004, 248, 623–652. [Google Scholar]
- Rappoport, Z.; Marek, I. (Eds.) The Chemistry of Organomagnesium Compounds; Patai Series; Wiley: Chichester, UK, 2008. [Google Scholar]
- Seyferth, D. The Grignard Reagents. Organometallics 2009, 28, 1598–1605. [Google Scholar] [CrossRef]
- Schlenk, W.; Holtz, J. Über die einfachsten metallorganischen Alkaliverbindungen. Ber. Dtsch. Chem. Ges. 1917, 50, 262–274. [Google Scholar] [CrossRef]
- Ziegler, K.; Colonius, H. Untersuchungen über alkali-organische Verbindungen. V. Eine bequeme Synthese einfacher Lithiumalkyle. Justus Liebigs Ann. Chem. 1930, 479, 135–149. [Google Scholar] [CrossRef]
- Wittig, G.; Leo, M. Über das Tetraphenyl-o-xylylen. Ber. Dtsch. Chem. Ges. 1931, 64, 2395–2405. [Google Scholar] [CrossRef]
- Gilman, H.; Zoellner, E.; Selby, W. An Improved Procedure for the Preparation of Organolithium Compounds. J. Am. Chem. Soc. 1932, 54, 1957–1962. [Google Scholar] [CrossRef]
- Gilman, H.; Moore, F.W.; Baine, O. Secondary and Tertiary Alkyllithium Compounds and Some Interconversion Reactions with Them. J. Am. Chem. Soc. 1941, 63, 2479–2482. [Google Scholar] [CrossRef]
- Gilman, H.; Haubein, A.; Hartzfeld, H. The Cleavage of Some Ethers by Organolithium Compounds. J. Org. Chem. 1954, 19, 1034–1040. [Google Scholar] [CrossRef]
- Bates, B.; Kroposki, L.; Potter, D. Cycloreversions of anions from tetrahydrofurans. Convenient synthesis of lithium enolates of aldehydes. J. Org. Chem. 1972, 37, 560–562. [Google Scholar] [CrossRef]
- For previous revisions in this field the interested readers are also encouraged to consult references [21–27].
- García-Álvarez, J. Deep Eutectic Mixtures: Promising Sustainable Solvents for Metal-Catalysed and Metal-Mediated Organic Reactions. Eur. J. Inorg. Chem. 2015, 2015, 5147–5157. [Google Scholar] [CrossRef]
- García-Álvarez, J.; Hevia, E.; Capriati, V. Reactivity of Polar Organometallic Compounds in Unconventional Reaction Media: Challenges and Opportunities. Eur. J. Org. Chem. 2015, 2015, 6779. [Google Scholar] [CrossRef]
- García-Álvarez, J.; Hevia, E.; Capriati, V. The Future of Polar Organometallic Chemistry Written in Bio-Based Solvents and Water. Chem. Eur. J. 2018, 24, 14854–14863. [Google Scholar] [CrossRef]
- Hevia, E. Towards a Paradigm Shift in Polar Organometallic Chemistry. Chimia 2020, 74, 681–688. [Google Scholar] [CrossRef]
- Gentner, T.X.; Mulvey, R.E. Alkali-Metal Mediation: Diversity of Applications in Main-Group Organometallic Chemistry. Angew. Chem. Int. Ed. 2021, 60, 9247–9262. [Google Scholar] [CrossRef]
- Perna, F.M.; Vitale, P.; Capriati, V. Synthetic Applications of Polar Organometallic and Alkali-Metal Reagents under Air and Moisture. Curr. Opin. Green Sustain. Chem. 2021, 30, 100487. [Google Scholar] [CrossRef]
- García-Garrido, S.E.; Presa Soto, A.; Hevia, E.; García-Álvarez, J. Advancing Air- and Moisture-Compatible s-Block Organometallic Chemistry Using Sustainable Solvents. Eur. J. Inorg. Chem. 2021, 2021, 3116–3130. [Google Scholar] [CrossRef]
- Hansen, B.B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J.M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B.W.; et al. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem. Rev. 2021, 121, 1232–1285. [Google Scholar] [CrossRef]
- For recent revisions on this field, see references [30–32].
- Nagaki, A. Recent topics of functionalized organolithiums using flow microreactor chemistry. Tetrahedron Lett. 2019, 60, 150923. [Google Scholar] [CrossRef]
- Power, M.; Alcock, E.; McGlacken, G.P. Organolithium Bases in Flow Chemistry: A Review. Org. Process Res. Dev. 2020, 24, 1814–1838. [Google Scholar] [CrossRef]
- Colella, M.; Nagaki, A.; Luisi, R. Flow Technology for the Genesis and Use of (Highly) Reactive Organometallic Reagents. Chem. Eur. J. 2020, 26, 19–32. [Google Scholar] [CrossRef]
- Brucoli, J.; Gariboldi, D.; Puglisi, A.; Rossi, S.; Capriati, V.; Benaglia, M. In Continuo Pd-Catalysed Cross Coupling Reactions of Organolithium Reagents with Aryl Bromides under Aerobic Conditions. Eur. J. Org. Chem. 2024, 27, e202301289. [Google Scholar] [CrossRef]
- Franzén, R.G. Utilization of Grignard Reagents in Solid-phase Synthesis: A Review of the Literature. Tetrahedron 2000, 56, 685–691. [Google Scholar] [CrossRef]
- De Gonzalo, G.; Álcantara, A.R.; Domínguez de María, P. Cyclopentyl Methyl Ether (CPME): A Versatile Eco-Friendly Solvent for Applications in Biotechnology and Biorefineries. ChemSusChem 2019, 12, 2083–2097. [Google Scholar] [CrossRef]
- Dalvand, K.; Rubin, J.; Gunukula, S.; Wheeler, M.C.; Hunt, G. Economics of Biofuels: Market Potential of Furfural and its Derivatives. Biomass Bioenergy 2018, 115, 56–63. [Google Scholar] [CrossRef]
- Monticelli, S.; Castoldi, L.; Murgia, I.; Senatore, R.; Mazzeo, E.; Wackerlig, J.; Urban, E.; Langer, T.; Pace, V. Recent advancements on the use of 2-methyltetrahydrofuran in organometallic chemistry. Monatsh. Chem. 2017, 148, 37–48. [Google Scholar] [CrossRef]
- “In-water” or “on-water” are considered key concepts for organic reactions performed in water. For fundamental reviews in this field, which indicates the magnitude of this field of research, see references [39–42].
- Narayan, S.; Muldoon, J.; Finn, M.G.; Fokin, V.V.; Kolb, H.C.; Sharpless, K.B. “On Water”: Unique Reactivity of Organic Compounds in Aqueous Suspension. Angew. Chem. Int. Ed. 2005, 44, 3275–3279. [Google Scholar] [CrossRef]
- Hayashi, Y. In Water or in the Presence of Water? Angew. Chem. Int. Ed. 2006, 45, 8103–8104. [Google Scholar] [CrossRef]
- Chanda, A.; Fokin, V.V. Organic Synthesis “On Water”. Chem. Rev. 2009, 109, 725–748. [Google Scholar] [CrossRef]
- Zuo, Y.J.; Qu, J. How Does Aqueous Solubility of Organic Reactant Affect a Water-Promoted Reaction? J. Org. Chem. 2014, 79, 6832–6839. [Google Scholar] [CrossRef]
- For reviews/books dealing with peculiar dynamic three-dimensional hydrogen-bonded network of water, its colligative structure and its catalytic properties, see references [44–47].
- Ohmine, I.; Saito, S. Water Dynamics: Fluctuation, Relaxation, and Chemical Reactions in Hydrogen Bond Network Rearrangement. Acc. Chem. Res. 1999, 32, 741–749. [Google Scholar] [CrossRef]
- Steiner, T. The Hydrogen Bond in the Solid State. Angew. Chem. Int. Ed. 2002, 41, 48–76. [Google Scholar] [CrossRef]
- Smith, J.D.; Cappa, C.D.; Wilson, K.R.; Messer, B.M.; Cohen, R.C.; Saykally, R.J. Energetics of Hydrogen Bond Network Rearrangements in Liquid Water. Science 2004, 306, 851–853. [Google Scholar] [CrossRef]
- Lindström, U.M. Organic Reactions in Water: Principles, Strategies and Applications, 1st ed.; Blackwell: Oxford, UK, 2007. [Google Scholar]
- Kubik, S. When Molecules Meet in Water-Recent Contributions of Supramolecular Chemistry to the Understanding of Molecular Recognition Processes in Water. ChemistryOpen 2022, 11, e202200028. [Google Scholar] [CrossRef]
- Cortes-Clerget, M.; Yu, J.; Kincaid, J.R.A.; Walde, P.; Gallou, F.; Lipshutz, B.H. Water as the reaction medium in organic chemistry: From our worst enemy to our best friend. Chem. Sci. 2021, 12, 4237–4266. [Google Scholar] [CrossRef]
- Li, G.; Wang, B.; Resasco, D.E. Water-Mediated Heterogeneously Catalyzed Reactions. ACS Catal. 2020, 10, 1294–1309. [Google Scholar] [CrossRef]
- Zhou, F.; Hernae, Z.; Li, C.-J. Water—The greenest solvent overall. Curr. Opin. Green Sustain. Chem. 2019, 18, 118–123. [Google Scholar] [CrossRef]
- Kitanosono, T.; Kobayashi, S. Reactions in Water Involving the “On-Water” Mechanism. Chem. Eur. J. 2020, 26, 9408–9429. [Google Scholar] [CrossRef]
- Addition of RLi/RMgX reagents into different organic electrophiles (i.e., ketones, aldehydes, imines) takes place in the scale of seconds when using protic and polar solvents like water or DESs. See references [21–27].
- Taylor, R. A novel preparation of tritium- and trimethylsilyl-labelled aromatics. Tetrahedron Lett. 1975, 16, 435–436. [Google Scholar] [CrossRef]
- Belaud-Rotureau, M.; Castanet, A.-S.; Nguyen, T.H.; Mortier, J. Uncatalyzed CO2Li-Mediated SNAr Reaction of Unprotected Benzoic Acids via Silicon Trickery. Aust. J. Chem. 2016, 69, 307–313. [Google Scholar] [CrossRef]
- Kuo, S.-C.; Chen, F.; Hou, D.; Kim-Meade, A.; Bernard, C.; Liu, J.; Levy, S.; Wu, G.G. A Novel Enantioselective Alkylation and its Application to the Synthesis of an Anticancer Agent. J. Org. Chem. 2003, 68, 4984–4987. [Google Scholar] [CrossRef]
- Quivelli, A.F.; D’Addato, G.; Vitale, P.; García-Ávarez, J.; Perna, F.M.; Capriati, V. Expeditious and Practical Synthesis of Tertiary Alcohols from Esters Enabled by Highly Polarized Organometallic Compounds under Aerobic Conditions in Deep Eutectic Solvents or Bulk Water. Tetrahedron 2021, 81, 131898. [Google Scholar] [CrossRef]
- Mulks, F.F.; Pinho, B.; Platten, A.W.J.; Andalibi, M.R.; Expósito, A.J.; Edler, K.J.; Hevia, E.; Torrente-Murciano, L. Continuous, Stable, and Safe Organometallic Reactions in Flow at Room Temperature Assisted by Deep Eutectic Solvents. Chem 2022, 8, 3382–3394. [Google Scholar] [CrossRef]
- Brucoli, J.; Puglisi, A.; Rossi, S.; Gariboldi, D.; Brenna, D.; Maule, I.; Benaglia, M. A three-minute gram-scale synthesis of aminesvia ultrafast “on-water” in continuo organolithium addition to imines. Cell. Rep. Phys. Sci. 2024, 5, 101838. [Google Scholar] [CrossRef]
- Elorriaga, D.; de la Cruz-Martínez, F.; Rodríguez-Álvarez, M.J.; Lara-Sánchez, A.; Castro-Osma, J.A.; García-Álvarez, J. Fast Addition of s-Block Organometallic Reagents to CO2-derived Cyclic Carbonates at Room Temperature, under Air, and in 2-Methyltetrahydrofuran. ChemSusChem 2021, 14, 2084–2092. [Google Scholar] [CrossRef]
- Elorriaga, D.; Carrillo-Hermosilla, F.; Parra-Cadenas, B.; Antiñolo, A.; García-Álvarez, J. Aerobic/Room-Temperature-Compatible s-Block Organometallic Chemistry in Neat Conditions: A Missing Synthetic Tool for the Selective Conversion of Nitriles into Asymmetric Alcohols. ChemSusChem 2022, 15, e202201348. [Google Scholar] [CrossRef]
- Ghinato, S.; Territo, D.; Maranzana, A.; Capriati, V.; Blangetti, M.; Prandi, C. A Fast and General Route to Ketones from Amides and Organolithium Compounds under Aerobic Conditions: Synthetic and Mechanistic Aspects. Chem. Eur. J. 2021, 27, 2868–2874. [Google Scholar] [CrossRef]
- Elorriaga, D.; Parra-Cadenas, B.; Antiñolo, A.; Carrillo-Hermosilla, F.; García-Álvarez, J. Combination of Air/Moisture/Ambient Temperature Compatible Organolithium Chemistry with Sustainable Solvents: Selective and Efficient Synthesis of Guanidines and Amidines. Green Chem. 2022, 24, 800–812. [Google Scholar] [CrossRef]
- Ghinato, S.; De Nardi, F.; Bolzoni, P.; Antenucci, A.; Blangetti, M.; Prandi, C. Chemo- and Regioselective Anionic Fries Rearrangement Promoted by Lithium Amides under Aerobic Conditions in Sustainable Reaction Media. Chem. Eur. J. 2022, 28, e202201154. [Google Scholar] [CrossRef]
- Antenucci, A.; Dughera, S. Cross-Coupling Reactions between Arenediazonium o-Benzenedisulfonimides and Organolithium Reagents in a Deep Eutectic Solvent. ChemistrySelect 2023, 8, e202303046. [Google Scholar] [CrossRef]
- Dilauro, A.G.; Luccarelli, C.; Quivelli, A.F.; Vitale, P.; Perna, F.M.; Capriati, C. Introducing Water and Deep Eutectic Solvents in Organosodium Chemistry: Chemoselective Nucleophilic Functionalizations in Air. Angew. Chem. Int. Ed. 2023, 62, e202304720. [Google Scholar] [CrossRef]
- Ramos-Martín, M.; Lecuna, R.; Cicco, L.; Vitale, P.; Capriati, V.; Ríos-Lombardía, N.; González-Sabín, J.; Presa-Soto, A.; García-Álvarez, J. A One-pot Two-step Synthesis of Tertiary Alcohols Combining the Biocatalytic laccase/TEMPO Oxidation System with Organolithium Reagents in Aerobic Aqueous Media at Room Temperature. Chem. Commun. 2021, 57, 13534–13537. [Google Scholar] [CrossRef]
- Arnodo, D.; Ramos-Martín, M.; Cicco, L.; Capriati, V.; Ríos-Lombardía, N.; González-Sabín, J.; Presa Soto, A.; García-Álvarez, J. From Oximes to Tertiary Alcohols in Water, at Room Temperature and under Air: A Hybrid One-Pot Tandem Assembly of Enzymatic Deoximation and RLi/RMgX Reagents. Org. Biomol. Chem. 2023, 21, 4414–4421. [Google Scholar] [CrossRef]
- Arnodo, D.; Meazzo, C.; Baldino, S.; Blangetti, M.; Prandi, C. Efficient and Low-Impact Acetalization Reactions in Deep Eutectic Solvents. Chem. Eur. J. 2023, 29, e202300820. [Google Scholar] [CrossRef]
- Arnodo, D.; De Nardo, E.; Ghinato, S.; Baldino, S.; Blangetti, M.; Prandi, C. A Mild, Efficient and Sustainable Tetrahydropyranylation of Alcohols Promoted by Acidic Natural Deep Eutectic Solvents. ChemSusChem 2023, 16, e202202066. [Google Scholar] [CrossRef]
- Cicco, L.; Roggio, M.; López-Aguilar, M.; Ramos-Martín, M.; Perna, F.M.; García-Álvarez, J.; Vitale, P.; Capriati, V. Selective Aerobic Oxidation of Alcohols in Low Melting Mixtures and Water and Use for Telescoped One-Pot Hybrid Reactions. ChemistryOpen 2022, 11, e202200160. [Google Scholar] [CrossRef]
- Vidal, C.; García-Álvarez, J.; Hernán-Gómez, A.; Kennedy, A.R.; Hevia, E. Introducing Deep Eutectic Solvents to Polar Organometallic Chemistry: Chemoselective Addition of Organolithium and Grignard Reagents to Ketones in Air. Angew. Chem. Int. Ed. 2014, 53, 5969–5973. [Google Scholar] [CrossRef]
- García-Álvarez, J. Deep Eutectic Solvents (DESs) are emerging as a new class of biorenewable, save and cheap solvents in organic synthesis. Deep Eutectic Solvents and Their Applications as New Green and Biorenewable Reaction Media. In Handbook of Solvents, vol. 2, 3rd ed.: Use, Health, and Environment; Wypych, G., Ed.; ChemTec Publishing: Toronto, ON, Canada, 2019. [Google Scholar]
- Vidal, C.; García-Álvarez, J.; Hernán-Gómez, A.; Kennedy, A.R.; Hevia, E. Exploiting Deep Eutectic Solvents and Organolithium Reagent Partnerships: Chemoselective Ultrafast Addition to Imines and Quinolines under Aerobic Ambient Temperature Conditions. Angew. Chem. Int. Ed. 2016, 55, 16145–16148. [Google Scholar] [CrossRef]
- Dilauro, G.; Dell’Aera, M.; Vitale, P.; Capriati, V.; Perna, F.M. Unprecedented Nucleophilic Additions of Highly Polar Organometallic Compounds to Imines and Nitriles Using Water as a Non-Innocent Reaction Medium. Angew. Chem. Int. Ed. 2017, 56, 10200–10203. [Google Scholar] [CrossRef]
- Cicco, L.; Salomone, A.; Vitale, P.; Ríos-Lombardía, N.; González-Sabín, J.; García-Álvarez, J.; Perna, F.M.; Capriati, V. Addition of Highly Polarized Organometallic Compounds to N-tert-Butanesulfinyl Imines in Deep Eutectic Solvents under Air: Preparation of Chiral Amines of Pharmaceutical Interest. ChemSusChem 2020, 13, 3583–3588. [Google Scholar] [CrossRef]
- Rodríguez-Álvarez, M.J.; García-Álvarez, J.; Uzelac, M.; Fairley, M.; O’Hara, C.T.; Hevia, E. Introducing Glycerol as a Sustainable Solvent to Organolithium Chemistry: Ultrafast Chemoselective Addition of Aryllithium Reagents to Nitriles under Air and at Ambient Temperature. Chem. Eur. J. 2018, 24, 1720–1725. [Google Scholar] [CrossRef]
- Cicco, L.; Fombona-Pascual, A.; Sánchez-Condado, A.; Carriedo, G.; Perna, F.M.; Capriati, V.; Presa Soto, A.; García-Álvarez, J. Fast and Chemoselective Addition of Highly Polarized Lithium Phosphides Generated in Deep Eutectic Solvents to Aldehydes and Epoxides. ChemSusChem 2020, 13, 4967–4973. [Google Scholar] [CrossRef]
- Movsisyan, M.; Delbeke, E.I.P.; Berton, J.K.; Battilocchio, C.; Ley, S.V.; Stevens, C.V. Taming Hazardous Chemistry by Continuous Flow Technology. Chem. Soc. Rev. 2016, 45, 4892–4928. [Google Scholar] [CrossRef]
- Kockmann, N.; Thené, P.; Fleischer-Trebes, C.; Laudadio, G.; Noël, T. Safety Assessment in Development and Operation of Modular Continuous-Flow Processes. React. Chem. Eng. 2017, 2, 258–280. [Google Scholar] [CrossRef]
- Capriati, V. Polar organometallic chemistry meets deep eutectic solvents in flow. Chem 2022, 8, 3159–3174. [Google Scholar] [CrossRef]
- Hurst, T.E.; Deichert, J.A.; Kapeniak, L.; Lee, R.; Harris, J.; Jessop, P.G.; Snieckus, V. Sodium Methyl Carbonate as an Effective C1 Synthon. Synthesis of Carboxylic Acids, Benzophenones, and Unsymmetrical Ketones. Org. Lett. 2019, 21, 3882–3885. [Google Scholar] [CrossRef]
- Ye, R.; Zhao, J.; Wickemeyer, B.B.; Toste, F.D.; Somorjai, G.A. Foundations and Strategies of the Construction of Hybrid Catalysts for Optimized Performances. Nat. Catal. 2018, 1, 318–325. [Google Scholar] [CrossRef]
- Hayashi, Y. Time and Pot Economy in Total Synthesis. Acc. Chem. Res. 2021, 54, 1385–1398. [Google Scholar] [CrossRef]
- Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- Ghinato, S.; Dilauro, G.; Perna, F.M.; Capriati, V.; Blangetti, M.; Prandi, C. Directed ortho-Metalation–Nucleophilic Acyl Substitution Strategies in Deep Eutectic Solvents: The Organolithium Base Dictates the Chemoselectivity. Chem. Commun. 2019, 55, 7741–7744. [Google Scholar] [CrossRef]
- Sureshbabu, P.; Azeez, S.; Muniyappan, N.; Sabiah, S.; Kandasamy, J. Chemoselective Synthesis of Aryl Ketones from Amides and Grignard Reagents via C(O)–N Bond Cleavage under Catalyst-Free Conditions. J. Org. Chem. 2019, 84, 11823–118385. [Google Scholar] [CrossRef]
- Fairley, M.; Bole, L.J.; Mulks, F.F.; Main, L.; Kennedy, A.R.; O’Hara, C.T.; García-Alvarez, J.; Hevia, E. Ultrafast Amidation of Esters Using Lithium Amides under Aerobic Ambient Temperature Conditions in Sustainable Solvents. Chem. Sci. 2020, 11, 6500–6509. [Google Scholar] [CrossRef]
- Mulks, F.F.; Bole, L.J.; Davin, L.; Hernán-Gómez, A.; Kennedy, A.; García-Álvarez, J.; Hevia, E. Ambient Moisture Accelerates Hydroamination Reactions of Vinylarenes with Alkali-Metal Amides under Air. Angew. Chem. Int. Ed. 2020, 59, 19021–19026. [Google Scholar] [CrossRef]
- Mallardo, V.; Rizzi, R.; Sassone, F.C.; Mansueto, R.; Perna, F.M.; Salomone, A.; Capriati, V. Regioselective Desymmetrization of Diaryltetrahydrofurans via Directed ortho-Lithiation: An Unexpected Help from Green Chemistry. Chem. Commun. 2014, 50, 8655–8658. [Google Scholar] [CrossRef]
- Sassone, F.C.; Perna, F.M.; Salomone, A.; Florio, S.; Capriati, V. Unexpected Lateral-Lithiation-Induced Alkylative Ring Opening of Tetrahydrofurans in Deep Eutectic Solvents: Synthesis of Functionalised Primary Alcohols. Chem. Commun. 2015, 51, 9459–9462. [Google Scholar] [CrossRef]
- Arnodo, D.; Ghinato, S.; Nejrotti, S.; Blangetti, M.; Prandi, C. Lateral Lithiation in Deep Eutectic Solvents: Regioselective Functionalization of Substituted Toluene Derivatives. Chem. Commun. 2020, 56, 2391–2394. [Google Scholar] [CrossRef]
- Snieckus, V. Directed ortho Metalation. Tertiary Amide and O-carbamate Directors in Synthetic Strategies for Polysubstituted Aromatics. Chem. Rev. 1990, 90, 879–933. [Google Scholar] [CrossRef]
- Korb, M.; Lang, H. The Anionic Fries Rearrangement: A Convenient Route to ortho-Functionalized Aromatics. Chem. Soc. Rev. 2019, 48, 2829–2882. [Google Scholar] [CrossRef]
- Murahashi, S.; Yamamura, M.; Yanagisawa, K.; Mita, N.; Kondo, K. Stereoselective Synthesis of Alkenes and Alkenyl Sulfides from Alkenyl Halides using Palladium and Ruthenium Catalysts. J. Org. Chem. 1979, 44, 2408–2417. [Google Scholar] [CrossRef]
- Pinxterhuis, E.B.; Giannerini, M.; Hornillos, V.; Feringa, B.L. Fast, Greener and Scalable Direct Coupling of Organolithium Compounds with no Additional Solvents. Nat. Commun. 2016, 7, 11698. [Google Scholar] [CrossRef]
- Dilauro, G.; Quivelli, A.F.; Vitale, P.; Capriati, V.; Perna, F.M. Water and Sodium Chloride: Essential Ingredients for Robust and Fast Pd-Catalysed Cross-Coupling Reactions between Organolithium Reagents and (Hetero)aryl Halides. Angew. Chem. Int. Ed. 2019, 58, 1799–1802. [Google Scholar] [CrossRef]
- Cicco, L.; Rodríguez-Álvarez, M.J.; Perna, F.M.; García-Álvarez, J.; Capriati, V. One-pot sustainable synthesis of tertiary alcohols by combining ruthenium-catalysed isomerisation of allylic alcohols and chemoselective addition of polar organometallic reagents in deep eutectic solvents. Green Chem. 2017, 19, 3069–3077. [Google Scholar] [CrossRef]
- Elorriaga, D.; Rodríguez-Álvarez, M.J.; Ríos-Lombardía, N.; Morís, F.; Presa Soto, A.; González-Sabín, J.; Hevia, E.; García-Álvarez, J. Combination of organocatalytic oxidation of alcohols and organolithium chemistry (RLi) in aqueous media, at room temperature and under aerobic conditions. Chem. Commun. 2020, 56, 8932–8935. [Google Scholar] [CrossRef]
- Wellington, K.W. Application of Laccases in Organic Synthesis: A Review. In Green Chemistry; Luque, R., Ed.; Nova Science Publishers Inc.: New York, NY, USA, 2014. [Google Scholar]
- González-Sabín, J.; Ríos-Lombardía, N.; García, I.; Vior, N.M.; Braña, A.F.; Méndez, C.; Salas, J.A.; Morís, F. Laccase-Catalysed Biotransformation of Collismycin Derivatives. A Novel Enzymatic Approach for the Cleavage of Oximes. Green Chem. 2016, 18, 989–994. [Google Scholar] [CrossRef]
- Ünlu, A.E.; Arikaya, A.; Takaç, S. Use of Deep Eutectic Solvents as Catalyst: A Mini-Review. Green Process Synth. 2019, 8, 355–372. [Google Scholar] [CrossRef]
- Hooshmand, S.E.; KumarI, S.; Bahadur, I.; Singh, T.; Varma, R.S. Deep Eutectic Solvents as Reusable Catalysts and Promoter for the Greener Syntheses of Small Molecules: Recent Advances. J. Mol. Liq. 2023, 371, 121013. [Google Scholar] [CrossRef]
- Rahrt, R.; Koszinowski, K. C versus O Protonation in Zincate Anions: A Simple Gas-Phase Model for the Surprising Kinetic Stability of Organometallics. Chem. Eur. J. 2023, 29, e202203611. [Google Scholar] [CrossRef]
- Seebach, D. No Life on this Planet without PHB. Helv. Chim. Acta 2023, 106, e202200205. [Google Scholar] [CrossRef]
- Serrano-Luginbühl, S.; Ruiz-Mirazo, K.; Ostaszewski, R.; Gallou, F.; Walde, P. Soft and dispersed interface-rich aqueous systems that promote and guide chemical reactions. Nat. Chem. Rev. 2018, 2, 306–327. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Álvarez, M.J.; Ríos-Lombardía, N.; García-Garrido, S.E.; Concellón, C.; del Amo, V.; Capriati, V.; García-Álvarez, J. Recent Advancements in the Utilization of s-Block Organometallic Reagents in Organic Synthesis with Sustainable Solvents. Molecules 2024, 29, 1422. https://doi.org/10.3390/molecules29071422
Rodríguez-Álvarez MJ, Ríos-Lombardía N, García-Garrido SE, Concellón C, del Amo V, Capriati V, García-Álvarez J. Recent Advancements in the Utilization of s-Block Organometallic Reagents in Organic Synthesis with Sustainable Solvents. Molecules. 2024; 29(7):1422. https://doi.org/10.3390/molecules29071422
Chicago/Turabian StyleRodríguez-Álvarez, María Jesús, Nicolás Ríos-Lombardía, Sergio E. García-Garrido, Carmen Concellón, Vicente del Amo, Vito Capriati, and Joaquín García-Álvarez. 2024. "Recent Advancements in the Utilization of s-Block Organometallic Reagents in Organic Synthesis with Sustainable Solvents" Molecules 29, no. 7: 1422. https://doi.org/10.3390/molecules29071422
APA StyleRodríguez-Álvarez, M. J., Ríos-Lombardía, N., García-Garrido, S. E., Concellón, C., del Amo, V., Capriati, V., & García-Álvarez, J. (2024). Recent Advancements in the Utilization of s-Block Organometallic Reagents in Organic Synthesis with Sustainable Solvents. Molecules, 29(7), 1422. https://doi.org/10.3390/molecules29071422