Preparations of 25 wt% of Pyraclostrobin Nanosuspension Concentrate (SC) Using Lignosulfonate-Based Colloidal Spheres to Improve Its Thermal Storage Stability
Abstract
:1. Introduction
2. Results and Discussion
2.1. Determination of the Optimum Grinding Conditions of Pyraclostrobin Nano-SC
2.2. Characterizations and Performance of Pyraclostrobin Nano-SC
2.3. Effects of Glycerin on the Properties of Pyraclostrobin Nano-SC
2.4. Characterizations of NaLS/CTAB Colloidal Spheres and Their Effects on Thermal Storage Stability of Pyraclostrobin Nano-SC
2.5. Pesticide Efficiency of Pyraclostrobin Nano-SC on Flowering Cabbage Downy Mildew Disease
3. Materials and Methods
3.1. Materials
3.2. Preparation of NaLS/CTAB Colloidal Spheres
3.3. Characterizations of NaLS/CTAB Colloidal Spheres
3.4. Preparations of Pyraclostrobin Nano-SC
3.5. Characterizations of Pyraclostrobin Nano-SC
3.6. Farmland Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raj, S.N.; Anooj, E.S.; Rajendran, K.; Vallinayagam, S. A comprehensive review on regulatory invention of nano pesticides in Agricultural nano formulation and food system. J. Mol. Struct. 2020, 1239, 130517. [Google Scholar]
- Oliveira, J.L.D.; Campos, E.V.R.; Bakshi, M.; Abhilash, P.C.; Fraceto, L.F. Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: Prospects and promises. Biotechnol. Adv. 2014, 32, 1550–1561. [Google Scholar] [CrossRef]
- Zhao, X.; Cui, H.X.; Wang, Y.; Sun, C.J.; Cui, B.; Zeng, Z.H. Development strategies and prospects of Nano-based smart pesticide formulation. J. Agric. Food Chem. 2018, 66, 6504–6512. [Google Scholar] [CrossRef] [PubMed]
- Abhilash, P.C.; Singh, N. Pesticide use and application: An Indian scenario. J. Hazard. Mater. 2009, 165, 1–12. [Google Scholar] [CrossRef]
- Ghormade, V.; Deshpande, M.V.; Paknikar, K.M. Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol. Adv. 2011, 29, 792–803. [Google Scholar] [CrossRef]
- Gomollón-Bel, F. Ten chemical innovations that will change our world: IUPAC identifies emerging technologies in chemistry with potential to make our planet more sustainable. Chem. Int. 2019, 41, 12–17. [Google Scholar] [CrossRef]
- Kah, M.; Hofmann, T. Nanopesticide research: Current trends and future priorities. Environ. Int. 2014, 63, 224–235. [Google Scholar] [CrossRef] [PubMed]
- Kah, M.; Beulke, S.; Tiede, K.; Hofmann, T. Nanopesticides: State of knowledge, environmental fate, and exposure modeling. Crit. Rev. Environ. Sci. Tec. 2013, 43, 1823–1867. [Google Scholar] [CrossRef]
- Cui, B.; Feng, L.; Pan, Z.Z.; Yu, M.L.; Zeng, Z.H.; Sun, C.J.; Zhao, X.; Wang, Y.; Cui, H.X. Evaluation of stability and biological activity of solid nanodispersion of lambda-cyhalothrin. PLoS ONE 2015, 10, 0135953. [Google Scholar] [CrossRef]
- Li, M.; Yaragudi, N.; Afolabi, A.; Dave, R.; Bilgili, E. Sub-100 nm drug particle suspensions prepared via wet milling with low bead contamination through novel process intensification. Chem. Eng. Sci. 2015, 130, 207–220. [Google Scholar] [CrossRef]
- Wang, Y.C.; Ma, Y.Y.; Zheng, Y.; Song, J.; Yang, X.; Bi, C.; Zhang, D.R.; Zhang, Q. In vitro and in vivo anticancer activity of a novel puerarin nanosuspension against colon cancer, with high efficacy and low toxicity. Int. J. Pharm. 2013, 441, 728–735. [Google Scholar] [CrossRef]
- Tanaka, Y.; Inkyo, M.; Yumoto, R.; Nagai, J.; Takano, M.; Nagata, S. Nanoparticulation of probucol, a poorly water-soluble drug, using a novel wet-milling process to improve in vitro dissolution and in vivo oral absorption. Drug Dev. Ind. Pharm. 2012, 38, 1015–1023. [Google Scholar] [CrossRef] [PubMed]
- Keck, C.M.; Muller, R.H. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur. J. Pharm. Biopharm. 2006, 62, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Elek, N.; Hoffman, R.; Raviv, U.; Resh, R.; Ishaaya, I.; Magdassi, S. Novaluron nanoparticles: Formation and potential use in controlling agricultural insect pests. Colloids Surf. A 2010, 372, 66–72. [Google Scholar] [CrossRef]
- Thote, A.J.; Gupta, R.B. Formation of nanoparticles of a hydrophilic drug using supercritical carbon dioxide and microencapsulation for sustained release. Nanomed. Nanotechnol. Biol. Med. 2005, 1, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Shekunov, B.Y.; Chattopadhyay, P.; Seitzinger, J.; Huff, R. Nanoparticles of poorly water-soluble drugs prepared by supercritical fluid extraction of emulsions. Pharm. Res. 2006, 23, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Azad, M.; Davé, R.; Bilgili, E. Nanomilling of drugs for bioavailability enhancement: A holistic formulation-process perspective. Pharmaceutics 2016, 8, 17. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.H.; Li, J.; Lu, Z.L.; Zhang, Z.J.; Li, S.; Li, L. Preparation of 25% pyraclostrobin SC. J. Anhui Agri. Sci. 2017, 45, 143–144. [Google Scholar]
- Bian, W.X.; Zhu, J.; Liu, Y.S.; Zheng, H.K.; Ding, Y. The formula study of pyraclostrobin 25% SC. World Pestic. 2020, 42, 62–65. [Google Scholar]
- Tang, Q.Q.; Zhou, M.S.; Qiu, X.Q.; Yang, D.J. Effects of cationic cetyltrimethylammonium bromide on the aggregation behavior of sodium lignosulfonate (NaLS) in concentrated solutions and preparation of uniform lignosulfonatebased colloidal spheres. J. Agric. Food Chem. 2020, 68, 9451–9460. [Google Scholar] [CrossRef]
- Xu, J.Y.; Yang, Y.Y.; Liu, B.Y.; Kong, Y.; Du, B.Y.; Guo, Y.Z.; Zhou, J.H.; Wang, X. Ultrasonic assisted enhanced catalytic effect of perovskite to promote depolymerization of lignin. Int. J. Biol. Macromol. 2022, 218, 431–438. [Google Scholar] [CrossRef]
- Chen, H.Y.; Gnanasekar, P.; Nair, S.S.; Xu, W.B.; Chauhan, P.; Yan, N. Lignin as a key component in lignin-containing cellulose nanofibrils for enhancing the performance of polymeric diphenylmethane diisocyanate wood adhesives. ACS Sustain. Chem. Eng. 2020, 8, 17165–17176. [Google Scholar] [CrossRef]
- Du, B.Y.; Li, W.J.; Bai, Y.T.; Pan, Z.; Wang, Q.Y.; Wang, X.; Ding, H.; Lv, G.J.; Zhou, J.H. Fabrication of uniform lignin nanoparticles with tunable size for potential wound healing application. Int. J. Biol. Macromol. 2022, 214, 170–180. [Google Scholar] [CrossRef]
- Lin, X.L.; Liu, J.L.; Qiu, X.Q.; Liu, B.W.; Wang, X.F.; Chen, L.H.; Qin, Y.L. Ru-FeNi alloy heterojunctions on lignin-derived carbon as bifunctional electrocatalysts for efficient overall water splitting. Angew. Chem. Int. Ed. 2023, 62, e202306333. [Google Scholar] [CrossRef]
- Sun, M.Y.; Wang, X.; Ni, S.Z.; Jiao, L.; Bian, H.Y.; Dai, H.Q. Structural modification of alkali lignin into higher performance energy storage materials: Demethylation and cleavage of aryl ether bonds. Ind. Crop. Prod. 2022, 187, 115441–115449. [Google Scholar] [CrossRef]
- Qu, W.D.; Zhao, Z.Z.; Liang, C.; Hu, P.Y.; Ma, Z.Y. Simple, additive-free, extra pressure-free process to direct convert lignin into carbon foams. Int. J. Biol. Macromol. 2022, 209, 692–702. [Google Scholar] [CrossRef]
- Stanisz, M.; Klapiszewski, Ł.; Collins, M.N.; Jesionowski, T. Recent progress in biomedical and biotechnological applications of lignin-based spherical nano- and microstructures: A comprehensive review. Mater. Today Chem. 2022, 26, 101198–101219. [Google Scholar] [CrossRef]
- Lv, Z.L.; Xu, J.K.; Li, C.Y.; Dai, L.; Li, H.H.; Zhong, Y.D.; Si, C.L. pH-responsive lignin hydrogel for lignin fractionation. ACS Sustain. Chem. Eng. 2021, 9, 13972–13978. [Google Scholar] [CrossRef]
- Lin, X.L.; Wang, P.; Hong, R.T.; Zhu, X.; Liu, Y.C.; Pan, X.J.; Qiu, X.Q.; Qin, Y.L. Fully lignocellulosic biomass-based double-layered porous hydrogel for efficient solar steam generation. Adv. Funct. Mater. 2022, 32, 2209262. [Google Scholar] [CrossRef]
- Mancera, C.; Ferrando, F.; Salvado, J.; Mansouri, N.E. Kraft lignin behavior during reaction in an alkaline medium. Biomass Bioenergy 2011, 35, 2072–2079. [Google Scholar] [CrossRef]
- Qiu, X.Q.; Yan, M.F.; Yang, D.J.; Pang, Y.X.; Deng, Y.H. Effect of straight-chain alcohols on the physicochemical properties of calcium lignosulfonate. J. Colloid Interface Sci. 2009, 338, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.Q.; Zhou, M.S.; Li, Y.X.; Qiu, X.Q.; Yang, D.J. Formation of uniform colloidal spheres based on lignosulfonate, a renewable biomass resource recovered from pulping spent liquor. ACS Sustain. Chem. Eng. 2018, 6, 1379–1386. [Google Scholar] [CrossRef]
- GB/T 19136-2021; Testing Method of the Accelerated Storage Stability at Elevated Temperature for Pesticides. State Administration for Market Regulation and Standardization Administration of China: Beijing, China, 2021.
Serial Number | Formulation | Dosage (g) | D90 Particle Size (Before Dilution) (nm) | Dosage of Wetting Agent (g) | Average Plant Height (cm) | Number of Yellow Leaves |
---|---|---|---|---|---|---|
1-1 | 25 wt% of pyraclostrobin SC | 10 | 2985 | 0 | 44.0 | 18 |
1-2 | 25 wt% of pyraclostrobin SC | 15 | 2985 | 0 | 45.6 | 20 |
2-1 | 25 wt% of pyraclostrobin nano-SC | 10 | 215 | 0 | 46.8 | 12 |
2-2 | 25 wt% of pyraclostrobin nano-SC | 15 | 215 | 0 | 46.2 | 10 |
3-1 | 25 wt% of pyraclostrobin SC | 10 | 2985 | 0.5 | 44.2 | 15 |
3-2 | 25 wt% of pyraclostrobin SC | 15 | 2985 | 0.5 | 44.4 | 20 |
4-1 | 25 wt% of pyraclostrobin nano-SC | 10 | 215 | 0.5 | 47.8 | 6 |
4-2 | 25 wt% of pyraclostrobin nano-SC | 15 | 215 | 0.5 | 48.4 | 7 |
5-1 | 25 wt% of pyraclostrobin EC (Kairun) | 10 | - | 0 | 47.6 | 5 |
5-2 | 25 wt% of pyraclostrobin EC (Kairun) | 15 | - | 0 | 49.8 | 5 |
CK | Water | 15 | - | 0 | 42.8 | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Q.; Sun, Y.; Li, J.; Zhou, M.; Yang, D.; Pang, Y. Preparations of 25 wt% of Pyraclostrobin Nanosuspension Concentrate (SC) Using Lignosulfonate-Based Colloidal Spheres to Improve Its Thermal Storage Stability. Molecules 2024, 29, 1419. https://doi.org/10.3390/molecules29071419
Tang Q, Sun Y, Li J, Zhou M, Yang D, Pang Y. Preparations of 25 wt% of Pyraclostrobin Nanosuspension Concentrate (SC) Using Lignosulfonate-Based Colloidal Spheres to Improve Its Thermal Storage Stability. Molecules. 2024; 29(7):1419. https://doi.org/10.3390/molecules29071419
Chicago/Turabian StyleTang, Qianqian, Yu Sun, Jinnuo Li, Mingsong Zhou, Dongjie Yang, and Yuxia Pang. 2024. "Preparations of 25 wt% of Pyraclostrobin Nanosuspension Concentrate (SC) Using Lignosulfonate-Based Colloidal Spheres to Improve Its Thermal Storage Stability" Molecules 29, no. 7: 1419. https://doi.org/10.3390/molecules29071419
APA StyleTang, Q., Sun, Y., Li, J., Zhou, M., Yang, D., & Pang, Y. (2024). Preparations of 25 wt% of Pyraclostrobin Nanosuspension Concentrate (SC) Using Lignosulfonate-Based Colloidal Spheres to Improve Its Thermal Storage Stability. Molecules, 29(7), 1419. https://doi.org/10.3390/molecules29071419