Detection of Adulterated Naodesheng Tablet (Naodesheng Pian) via In-Depth Chemical Analysis and Subsequent Reconstruction of Its Pharmacopoeia Q-Markers
Abstract
:1. Introduction
2. Results and Discussion
2.1. UHPLC-Q-Orbitrap MS Identification
ID | R.T. min | Name | Molecular Ion | Experimental m/z Value | Theoretical m/z Value | Error δ (ppm) | Diagnostic Fragments m/z | Plant Resource |
---|---|---|---|---|---|---|---|---|
1 | 0.53 | D-gluconic acid | C6H11O7- | 195.0506 | 195.0510 | 2.05 | 177.0396, 159.0295, 129.0182 | Sanqi [26] |
2 | 0.58 | citric acid | C6H7O7- | 191.0192 | 191.0192 | 0.00 | 173.0078, 129.0184, 111.0077 | Shanzha [1] |
3 | 1.17 | L-phenylalanine | C9H10NO2- | 164.0709 | 164.0712 | 1.83 | 148.0777, 147.0446, 103.0540 | Sanqi [26] |
4 | 1.56 | protocatechuic acid | C7H5O4- | 153.0182 | 153.0188 | 3.92 | 110.0316, 109.0290, 108.0211 | Chuanxiong Shanzha [27] |
5 | 1.73 | L-tryptophan | C11H11N2O2- | 203.0821 | 203.0821 | 0.00 | 186.0546, 159.0918, 142.0651, 116.0494 | Chuanxiong [28] |
6 | 3.68 | chlorogenic acid | C16H17O9- | 353.0883 | 353.0873 | 2.83 | 191.0556, 173.0450, 161.0237, 127.0395 | Shanzha [27] |
7 | 3.95 | HSYA | C27H31O16- | 611.1616 | 611.1612 | 0.65 | 491.1191, 403.1029, 325.0712, 283.0597, 119.0492 | Honghua [29,30] |
8 | 4.33 | vanillic acid | C8H7O4- | 167.0349 | 167.0344 | 2.99 | 152.0104, 123.0439, 108.0204 | Chuanxiong [28] |
9 | 4.40 | caffeic acid | C9H7O4- | 179.0343 | 179.0344 | 0.56 | 136.0473, 135.0446, 117.0334, 107.0496 | Chuanxiong [28] |
10 | 4.50 | cryptochlorogenic acid | C16H17O9- | 353.0867 | 353.0873 | 1.70 | 191.0556, 179.0348, 173.0445, 135.0446 | Chuanxiong [28] |
11 | 5.89 | 3′-hydroxy puerarin | C21H19O10- | 431.0985 | 431.0978 | 1.62 | 311.0556, 283.0606, 255.0657, 227.0708 | Gegen [31] |
12 | 7.94 | puerarin | C21H19O9- | 415.1038 | 415.1029 | 2.17 | 295.0611, 267.0657, 253.0512, 132.0211 | Gegen [31] |
13 | 8.23 | 3′-methoxy puerarin | C22H19O10- | 445.1138 | 445.1135 | 0.67 | 325.0713, 282.0534, 253.0509, 225.0551, 148.0155 | Gegen [31] |
14 | 8.39 | mirificin | C26H27O13- | 547.1447 | 547.1452 | 0.91 | 325.0712, 295.0606, 267.0657, 132.0205 | Gegen [31] |
15 | 8.47 | daidzin | C21H19O9- | 415.1029 | 415.1029 | 0.00 | 252.0421, 223.0395, 195.0446, 167.0493 | Gegen [31] |
16 | 8.57 | ferulic acid | C10H9O4- | 193.0506 | 193.0501 | 2.59 | 178.0261, 149.0579, 137.0239, 134.0362 | Chuanxiong [28], Honghua [3] Shanzha [4] |
17 | 8.66 | isoferulic acid | C10H9O4- | 193.0498 | 193.0501 | 1.55 | 178.0261, 149.0579, 137.0239, 134.0362 | Honghua [3] |
18 | 8.72 | glycitin | C22H21O10- | 445.1143 | 445.1136 | 1.57 | 325.0727, 267.0300, 239.0345, 211.0395 | Sanqi [26] |
19 | 9.16 | genistin | C21H19O10- | 431.0978 | 431.0978 | 0.00 | 268.0372, 239.0344, 211.0395, 195.0446 | Gegen [31] |
20 | 9.23 | 4-methyl-2,6-dimethoxyphenol | C9H11O3- | 169.0861 | 169.0865 | 2.37 | 137.0592111.0446, 109.0653, 107.0497 | Honghua [3] Chuanxiong [32] |
21 | 9.42 | hyperoside | C21H19O12- | 463.0873 | 463.0877 | 0.86 | 300.0268, 271.0244, 255.0293, 243.0293 | Shanzha [27], Chuanxiong [28] |
22 | 9.50 | rutin | C27H29O16- | 609.1461 | 609.1456 | 0.82 | 300.0269, 271.0244, 255.0292, 243.0291 | Honghua [3] Shanzha [27] |
23 | 9.55 | isoquercitrin | C21H19O12- | 463.0877 | 463.0877 | 0.00 | 300.0269, 271.0244, 255.0293, 243.0293 | Shanzha [27] |
24 | 9.66 | S-naringin | C27H31O14- | 579.1703 | 579.1314 | 6.17 | 271.0612, 151.0025, 119.0497, 107.0126 | Gegen [33] |
25 | 9.77 | cosmosiin | C21H19O10- | 431.0981 | 431.0978 | 0.70 | 268.0377, 211.0395, 151.0031, 130.0410, 117.0340 | Chuanxiong [32] |
26 | 9.97 | astragalin | C21H19O11- | 447.0924 | 447.0927 | 0.67 | 327.0495, 284.0321, 255.0293, 227.0341 | Honghua [3], Gegen [33], Chuanxiong [28] |
27 | 10.23 | 2′-hydroxygenistein | C15H9O6- | 285.0339 | 285.0359 | 7.02 | 217.0502, 199.0390, 149.0233, 133.0283 | Gegen [34] |
28 | 10.47 | daidzein | C15H9O4- | 253.0505 | 253.0501 | 1.58 | 223.0395, 208.0528, 195.0446, 180.0575 | Gegen [31] |
29 | 10.59 | calycosin | C16H11O5- | 283.0613 | 283.0606 | 2.47 | 268.0372, 239.0347, 211.0395, 195.0446 | Honghua [35] |
30 | 10.64 | quercetin | C15H9O7- | 301.0353 | 301.0348 | 1.66 | 245.0445, 151.0025, 139.0391, 121.0283 | Honghua [3], Shanzha [27], Gegen [34] |
31 | 10.67 | 7,4′-dihydroxyflavone | C15H9O4- | 253.0504 | 253.0501 | 1.19 | 223.0395, 195.0446, 180.0571, 117.0340 | Gegen [33] |
32 | 10.68 | syringic acid | C9H9O5- | 197.045 | 197.0450 | 0.00 | 182.0210, 166.9975, 153.0548, 138.0311, 123.0076 | Honghua [3] Chuanxiong [32] |
33 | 10.70 | pectolinarigenin | C17H13O6- | 313.0718 | 313.0712 | 1.92 | 298.0482, 283.0243, 255.0293, 227.0334 | Gegen [36] |
34 | 10.86 | luteolin | C15H9O6- | 285.0404 | 285.0399 | 1.75 | 257.0434, 241.0492, 199.0391, 133.0283 | Shanzha [27] |
35 | 11.00 | genistein | C15H9O5- | 269.0457 | 269.0450 | 2.60 | 224.0471, 213.0553, 201.0552, 133.0285 | Gegen [31] |
36 | 11.01 | notoginsenoside R1 | C47H79O18- | 931.5266 | 931.5266 | 0.00 | 799.4864, 637.4324, 475.3787, 391.2855 | Sanqi [26,37,38] |
37 | 11.09 | pratensein | C16H11O6- | 299.0506 | 299.0556 | 16.72 | 284.0327, 255.0293, 227.0344, 211.0395 | Gegen [33] |
38 | 11.20 | diosmetin | C16H11O6- | 299.0561 | 299.0556 | 1.67 | 284.0322, 256.0372, 227.0341, 183.0441 | Gegen [33] |
39 | 11.30 | ginsenoside Rg1 | C42H71O14- | 799.4788 | 799.4844 | 7.00 | 637.4324, 475.3783, 391.2832, 179.0551 | Sanqi [26,38] |
40 | 11.39 | apigenin | C15H9O5- | 269.045 | 269.0450 | 0.00 | 241.0501, 225.0552, 213.0558, 117.0334 | Honghua [3] Shanzha [27] |
41 | 11.53 | isoliquiritigenin | C15H11O4- | 255.0657 | 255.0657 | 0.00 | 213.0552, 135.0076, 119.0497 | Gegen [39] |
42 | 11.78 | 7-methoxy-4′-hydroxyisoflavone | C16H11O4- | 267.0664 | 267.0657 | 2.62 | 252.0423, 223.0395, 195.0446, 132.0206 | Gegen [33] |
43 | 11.82 | kaempferol | C15H9O6- | 285.0403 | 285.0399 | 1.40 | 255.0293, 229.0501, 211, 0392, 117.0340 | Honghua [1,3], Sanqi [40], Shanzha [27] |
44 | 11.87 | formononetin | C16H11O4- | 267.0660 | 267.0657 | 1.12 | 252.0426, 223.0395, 195.0446, 132.0208 | Gegeng [31] |
45 | 12.26 | ginsenoside Rf | C42H71O14- | 799.4831 | 799.4844 | 1.63 | 637.4299, 475.3781, 391.2848, 161.0450 | Sanqi [26] |
46 | 12.35 | 20R-notoginsenoside R2 | C41H69O13- | 769.4735 | 769.4740 | 0.65 | 637.4312, 475.3795, 391.2855, 161.0445 | Sanqi [26] |
47 | 12.36 | prunetin | C16H11O5- | 283.0612 | 283.0606 | 2.12 | 268.0372, 239.0334, 211.0395, 195.0446 | Gegen [33,34] |
48 | 12.52 | ginsenoside Rg2 | C42H71O13- | 783.4887 | 783.4895 | 1.02 | 637.4316, 619.4217, 475.3784, 391.2850 | Sanqi [26] |
49 | 12.56 | 20S-ginsenoside Rh1 | C36H61O9- | 637.4323 | 637.4316 | 1.10 | 475.3780, 391.2863, 161.0448, 113.0234 | Sanqi [26] |
50 | 12.95 | ginsenoside Rb1 | C54H91O23- | 1107.5951 | 1107.5951 | 0.00 | 945.5407, 783.4895, 621.4379, 459.3838 | Sanqi [26,38] |
51 | 12.97 | 8-prenyldaidzein | C20H17O4- | 321.1131 | 321.1127 | 1.25 | 266.0579, 237.0552, 209.0603, 143.0493 | Gegen [39] |
52 | 13.74 * | ginsenoside Rd | C48H83O18+ | 945.5411 | 945.5423 | 1.27 | 783.4895, 621.4366, 161.0450 | Chuanxiong [28] |
53 | 14.31 * | ginsenoside Rg3 | C42H73O13+ | 783.4877 | 783.4895 | 2.30 | 621.4366, 375.2899, 161.0450, 113.0239 | Sanqi [26] |
54 | 16.20 * | ethyl stearate | C20H41O2+ | 311.2955 | 311.2950 | 1.61 | 183.0111, 133.0654, 119.0491 | Sanqi [26] Honghua [35] |
55 | 0.88 * | matrine | C15H25N2O+ | 249.1952 | 249.1967 | 6.02 | 247.1801, 218.1544, 190.1227, 176.1052 | Gegen [33] |
56 | 1.17 * | 5-hydroxymethylfurfural | C6H7O3+ | 127.0391 | 127.0395 | 3.15 | 109.0288, 97.0284, 81.0339, 69.0341 | Sanqi [26] |
57 | 5.47 * | caffeine | C8H11N4O2+ | 195.0874 | 195.0882 | 4.10 | 138.0667, 123.0428, 110.0718, 108.0562, | Sanqi [26] |
58 | 9.29* | 1,5-dicaffeoylquinic acid | C25H25O12+ | 515.1158 | 515.1190 | 6.21 | 353.0871, 335.0760, 191.0551, 135.0446 | Shanzha [27] |
59 | 9.37 * | scoparone | C11H11O4+ | 207.0646 | 207.0652 | 2.90 | 191.0334, 163.0388, 151.0759, 146.0360 | Chuanxiong [32] |
60 | 11.98 * | S-senkyunolide A | C12H17O2+ | 193.1213 | 193.1229 | 8.28 | 175.1123, 147.1167, 137.0603, 105.0704 | Chuanxiong [28] |
61 | 12.59 * | Z-ligustilide | C12H15O2+ | 191.1063 | 191.1072 | 4.71 | 173.0603, 145.1017, 129.0704, 115.0548 | Chuanxiong [28] |
62 | 12.68 * | 3,3′,4′,5,6,7,8-heptamethoxyflavone | C22H25O9+ | 433.1481 | 433.1499 | 4.16 | 418.1254, 403.1014, 165.0552, 107.0496 | Gegen [33] |
63 | 12.88 * | tangeretin | C20H21O7+ | 373.1271 | 373.1287 | 4.29 | 358.1053, 343.0818, 297.0754, 271.0603, | Gegen [33] |
64 | 13.27 * | 5-hydroxyflavone | C15H11O3+ | 239.07 | 239.0708 | 3.35 | 221.0603, 137.0232, 129.0340, 103.0548 | Gegen [33] |
65 | 13.66 * | levistilide A | C24H29O4+ | 381.2084 | 381.2066 | 4.72 | 191.1067, 149.0593, 135.0442, 117.0702 | Chuanxiong [28] |
66 | 14.47 * | diosgenin | C27H43O3+ | 415.3198 | 415.3212 | 3.37 | 271.2050, 253.1940, 171.1174, 157, 1011 | Chuanxiong [41] |
67 | 16.22 * | chloesteryl acetate | C29H49O2+ | 429.3723 | 429.3727 | 0.93 | 401.3405, 205.1222, 165.0909, 105.0701 | Gegen [34] |
68 | 16.67 * | (+)-4-cholesten-3-one | C27H45O+ | 385.3459 | 385.3470 | 2.85 | 367.3365, 173.1321, 123.0807, 109.0653 | Gegen [34] |
2.2. UV-Vis Spectrum Scanning and Computational Chemistry Results
2.3. Adulteration Detection Validation Experiment Based on Five Adulterated Naodesheng Tablets and Low-Version LC-MS
3. Materials and Methods
3.1. Medicine Materials
3.2. Authentic Standards and Chemicals
3.3. Preparation of Lyophilized Aqueous Extract from Naodesheng Tablet and Authentic Standard Solution
3.4. UHPLC-Q-Orbitrap MS Identification
3.4.1. Chromatography and Mass Spectrometer Conditions
3.4.2. Software, Data Acquisition, and Putative Identification
3.4.3. Semi-Quantification of Re-Nominated Q-Markers
3.5. UV-Vis Spectrum Scanning
3.6. Adulteration Detection Validation Experiment Based on Low-Version LC-MS Analysis
3.7. Computational Details
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chinese-Pharmacopoeia-Commission. Chinese Pharmacopoeia (Part 1); Chinese Medical Science and Technology Press: Beijing, China, 2020; Volume 1. [Google Scholar]
- National Medical Products Administration of China. Data Search from National Medical Products Administration of China. Available online: https://www.nmpa.gov.cn/datasearch/ (accessed on 2 November 2023).
- Zhang, L.L.; Tian, K.; Tang, Z.H.; Chen, X.J.; Bian, Z.X.; Wang, Y.T.; Lu, J.J. Phytochemistry and Pharmacology of Carthamus tinctorius L. Am. J. Chin. Med. 2016, 44, 197–226. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, F.; Perrone, A.; Yousefi, S.; Papini, A.; Castiglione, S.; Guarino, F.; Cicatelli, A.; Aelaei, M.; Arad, N.; Gholami, M.; et al. Botanical, Phytochemical, Anti-Microbial and Pharmaceutical Characteristics of Hawthorn (Crataegusmonogyna Jacq.), Rosaceae. Molecules 2021, 26, 7266. [Google Scholar] [CrossRef]
- Wang, G.; Li, Q.; Song, T.; Fan, W.; Zhang, M.; Liu, Y. Determination of Puerarin and hydroxy safflor yellow A in Nuodesheng soft capsule by HPLC. China Pharm. 2009, 12, 699–702. (In Chinese) [Google Scholar]
- Jiang, M.; Chen, L. Determination of Puerarin and Ferulic Acid in Naodesheng tablets by HPLC. Strait Pharm. J. 2014, 26, 53–58. [Google Scholar]
- Cui, X.; Shan, Y.; Jiang, F.; Wang, L.; Zhang, Q.; Zhao, R. Quantitative study of 10 components in Naodesheng tablets. Northwest Pharmaceul. J. (Xibei Yaoxue Zazhi) 2019, 34, 317–322. (In Chinese) [Google Scholar]
- Wang, J.; Liang, S.; Fu, L.; Zhang, L. Determination of isoflavones in Naodesheng tablets. Chin. Pharm. 2008, 11, 423–429. (In Chinese) [Google Scholar]
- Wu, J.; Cai, B.; Zhang, A.; Zhao, P.; Du, Y.; Liu, X.; Zhao, D.; Yang, L.; Liu, X.; Li, J. Chemical Identification and Antioxidant Screening of Bufei Yishen Formula using an Offline DPPH Ultrahigh-Performance Liquid Chromatography Q-Extractive Orbitrap MS/MS. Int. J. Anal. Chem. 2022, 2022, 1423801. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Li, X.; Cai, R.; Li, C.; Chen, S. Jinhua Qinggan Granule UHPLC-Q-extractive-Orbitrap-MS assay: Putative identification of 45 potential anti-COVID-19 constituents, confidential addition, and pharmacopoeia quality-markers recommendation. J. Food Drug Anal. 2023, 31, 534–551. [Google Scholar] [CrossRef]
- Fu, S.; Cheng, R.; Deng, Z.; Liu, T. Qualitative analysis of chemical components in Lianhua Qingwen capsule by HPLC-Q Exactive-Orbitrap-MS coupled with GC-MS. J. Pharm. Anal. 2021, 11, 709–716. [Google Scholar] [CrossRef]
- Xu, T.; Yang, M.; Li, Y.; Chen, X.; Wang, Q.; Deng, W.; Pang, X.; Yu, K.; Jiang, B.; Guan, S.; et al. An integrated exact mass spectrometric strategy for comprehensive and rapid characterization of phenolic compounds in licorice. Rapid Commun. Mass. Spectrom. 2013, 27, 2297–2309. [Google Scholar]
- Li, X.C.; Zeng, J.; Cai, R.; Li, C. New UHPLC-Q-Orbitrap MS/MS-based Library-comparison Method Simultaneously Distinguishes 22 Phytophenol Isomers from Desmodium styracifolium. Microchem. J. 2023, 190, 108938. [Google Scholar] [CrossRef]
- Gao, X.; Wang, N.; Jia, J.; Wang, P.; Zhang, A.; Qin, X. Chemical profliling of Dingkun Dan by ultra High performance liquid chromatography Q exactive orbitrap high resolution mass spectrometry. J. Pharm. Biomed. Anal. 2020, 177, 112732. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Wang, G.C.; Khan, G.J.; Su, X.H.; Guo, S.L.; Niu, Y.M.; Cao, W.G.; Wang, W.T.; Zhai, K.F. Identification and characterization of potential antioxidant components in Isodon amethystoides (Benth.) Hara tea leaves by UPLC-LTQ-Orbitrap-MS. Food Chem. Toxicol. 2021, 148, 111961. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.; Lee, A.; Hwang, Y.H. Qualitative Profiling and Quantitative Analysis of Major Constituents in Jinmu-tang by UHPLC-Q-Orbitrap-MS and UPLC-TQ-MS/MS. Molecules 2022, 27, 7887. [Google Scholar] [CrossRef] [PubMed]
- More, G.K.; Chokwe, C.R.; Meddows-Taylor, S. The attenuation of antibiotic resistant non-albicans Candida species, cytotoxicity, anti-inflammatory effects and phytochemical profiles of five Vachellia species by FTIR and UHPLC-Q/Orbitrap/MS. Heliyon 2021, 7, e08425. [Google Scholar] [CrossRef]
- Zheng, G.; Liu, M.; Chao, Y.; Yang, Y.; Zhang, D.; Tao, Y.; Zhang, J.; Zeng, C.; Wei, M. Identification of lipophilic components in Citri Reticulatae Pericarpium cultivars by supercritical CO(2) fluid extraction with ultra-high-performance liquid chromatography-Q Exactive Orbitrap tandem mass spectrometry. J. Sep. Sci. 2020, 43, 3421–3440. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Cao, J.; Zhao, J.; Wei, P.; Wu, R.; Zhang, J.; Wan, L. Chemical analysis of Chrysosplenium from different species by UPLC-Q exactive orbitrap HRMS and HPLC-DAD. J. Pharm. Biomed. Anal. 2022, 218, 114861. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhou, W.; Wang, Q.; Zhang, Y.; Ling, Y.; Zhao, T.; Zhang, H.; Li, P. A novel and comprehensive strategy for quality control in complex Chinese medicine formula using UHPLC-Q-Orbitrap HRMS and UHPLC-MS/MS combined with network pharmacology analysis: Take Tangshen formula as an example. J. Chromatogr. B 2021, 1183, 122889. [Google Scholar] [CrossRef]
- Wang, P.; Zhong, L.; Yang, H.; Zhang, J.; Hou, X.; Wu, C.; Zhang, R.; Cheng, Y. Comprehensive comparative analysis of lipid profile in dried and fresh walnut kernels by UHPLC-Q-Exactive Orbitrap/MS. Food Chem. 2022, 386, 132706. [Google Scholar] [CrossRef]
- Wang, N.; Yang, B.; Zhang, J.; Zheng, Y.; Wang, S.; Zhang, X.; Situ, H.; Lin, Y.; Wang, Z. Metabolite profiling of traditional Chinese medicine XIAOPI formula: An integrated strategy based on UPLC-Q-Orbitrap MS combined with network pharmacology analysis. Biomed. Pharmacother. 2020, 121, 109569. [Google Scholar] [CrossRef]
- Wang, S.; Sun, X.; An, S.; Sang, F.; Zhao, Y.; Yu, Z. High-Throughput Identification of Organic Compounds from Polygoni Multiflori Radix Praeparata (Zhiheshouwu) by UHPLC-Q-Exactive Orbitrap-MS. Molecules 2021, 26, 3977. [Google Scholar] [CrossRef]
- Qiao, X.; Li, R.; Song, W.; Miao, W.J.; Liu, J.; Chen, H.B.; Guo, D.A.; Ye, M. A targeted strategy to analyze untargeted mass spectral data: Rapid chemical profiling of Scutellaria baicalensis using ultra-high performance liquid chromatography coupled with hybrid quadrupole orbitrap mass spectrometry and key ion filtering. J. Chromatogr. A 2016, 1441, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Bai, G.; Chen, C.; Xu, J.; Han, Y.; Gong, S.; Zhang, H.; Liu, C. Research approaches of quality marker (Q-marker) of Chinese materia medica formula based on five principles. Zhong Yao Cai 2018, 49, 1–13. [Google Scholar]
- Liu, H.; Lu, X.; Hu, Y.; Fan, X. Chemical constituents of Panax ginseng and Panax notoginseng explain why they differ in therapeutic efficacy. Pharmacol. Res. 2020, 161, 105263. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Liu, P. Composition and health effects of phenolic compounds in hawthorn (Crataegus spp.) of different origins. J. Sci. Food Agric. 2012, 92, 1578–1590. [Google Scholar] [CrossRef] [PubMed]
- Zeng, P.; Yi, Y.; Su, H.F.; Ye, C.Y.; Sun, Y.W.; Zhou, X.W.; Lu, Y.; Shi, A.; Tian, Q. Key Phytochemicals and Biological Functions of Chuanxiong Rhizoma Against Ischemic Stroke: A Network Pharmacology and Experimental Assessment. Front. Pharmacol. 2021, 12, 758049. [Google Scholar] [CrossRef] [PubMed]
- Yue, S.; Tang, Y.; Li, S.; Duan, J.A. Chemical and biological properties of quinochalcone C-glycosides from the florets of Carthamus tinctorius. Molecules 2013, 18, 15220–15254. [Google Scholar] [CrossRef]
- Zhang, H.; Duan, C.P.; Luo, X.; Feng, Z.M.; Yang, Y.N.; Zhang, X.; Jiang, J.S.; Zhang, P.C. Two new quinochalcone glycosides from the safflower yellow pigments. J. Asian Nat. Prod. Res. 2020, 22, 1130–1137. [Google Scholar] [CrossRef]
- Du, G.; Zhao, H.Y.; Zhang, Q.W.; Li, G.H.; Yang, F.Q.; Wang, Y.; Li, Y.C.; Wang, Y.T. A rapid method for simultaneous determination of 14 phenolic compounds in Radix Puerariae using microwave-assisted extraction and ultra high performance liquid chromatography coupled with diode array detection and time-of-flight mass spectrometry. J. Chromatogr. A 2010, 1217, 705–714. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, C.; Gao, F.; Fu, Q.; Fu, C.; He, Y.; Zhang, J. A systematic review on the rhizome of Ligusticum chuanxiong Hort. (Chuanxiong). Food Chem. Toxicol. 2018, 119, 309–325. [Google Scholar] [CrossRef]
- Xiong, Y.; Ma, P.; Huang, L.; Li, Y.; Wang, X. Widely targeted metabolomics analysis of different parts of kudzu. BMC 2023, 37, e5545. [Google Scholar] [CrossRef] [PubMed]
- Maji, A.; Pandit, S.; Banerji, P.; Banerjee, D. Pueraria tuberosa: A review on its phytochemical and therapeutic potential. Nat. Prod. Res. 2014, 28, 2111–2127. [Google Scholar] [CrossRef] [PubMed]
- Asgarpanah, J.; Kazemivash, N. Phytochemistry, pharmacology and medicinal properties of Carthamus tinctorius L. Chem. J. Integr. Med. 2013, 19, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Zhang, Y.; Zhang, F.; Liu, J.; Ren, Z.; Xu, Y.; Liu, T.; Zhou, W.; Li, H.; Zhang, C. An analytical strategy for accurate, rapid and sensitive quantitative analysis of isoflavones in traditional Chinese medicines using ultra-high performance supercritical fluid chromatography: Take Radix Puerariae as an example. J. Chromatogr. A 2019, 1606, 460385. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Gao, H.; Liu, R.; Xia, M.; Lu, Y.; Wang, J.; Chen, X.; Zhang, Y.; Li, D.; Tong, Y.; et al. Key Glycosyltransferase Genes of Panax notoginseng: Identification and Engineering Yeast Construction of Rare Ginsenosides. ACS Synth. Biol. 2022, 11, 2394–2404. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Meng, X.; Zhai, Y.; Zhou, P.; Ye, T.; Wang, Z.; Sun, G.; Sun, X. Panax Notoginseng Saponins: A Review of Its Mechanisms of Antidepressant or Anxiolytic Effects and Network Analysis on Phytochemistry and Pharmacology. Molecules 2018, 23, 940. [Google Scholar] [CrossRef]
- Yue, S.Y.; Zhou, R.R.; Nan, T.G.; Huang, L.Q.; Yuan, Y. Comparison of major chemical components in Puerariae Thomsonii Radix and Puerariae Lobatae Radix. China J. Chin. Mater. Medica 2022, 47, 2689–2697. (In Chinese) [Google Scholar]
- Wang, T.; Guo, R.; Zhou, G.; Zhou, X.; Kou, Z.; Sui, F.; Li, C.; Tang, L.; Wang, Z. Traditional uses, botany, phytochemistry, pharmacology and toxicology of Panax notoginseng (Burk.) F.H. Chen: A review. J. Ethnopharmacol. 2016, 188, 234–258. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, J.; Hong, Y.; Feng, Y.; Chen, M.; Wang, Y. Phytochemical and pharmacological review of da chuanxiong formula: A famous herb pair composed of chuanxiong rhizoma and gastrodiae rhizoma for headache. Evid. Based Complement. Altern. Med. 2013, 2013, 425369. [Google Scholar]
- Liu, C.X.; Liu, L.; Guo, D.A. Quality marker of TCMs: Concept and applications. Phytomedicine 2018, 44, 85–86. [Google Scholar] [CrossRef]
- Feng, X.; Tang, J.; Cao, X.; Zhao, M.; Ouyang, Z. Comparison of Excretion of Hydroxysafflor Yellow A after Oral Administration of Monomer, Medicinal Substance Aqueous Extract and Naodesheng Tablets in Rats. Chin. Pharm. J. 2012, 47, 448–452. (In Chinese) [Google Scholar]
- Wang, J.; Liang, S.; Nan, H. Determination of hydroxysafflower yellow A in Naodesheng tablets by RP-HPLC. J. Guangdong Coll. Pharm. 2007, 23, 650–652. (In Chinese) [Google Scholar]
- Fan, W.; Wang, G.; Lin, N.; Liu, Y. HPLC-ELSD determination of notoginsenoside R1, ginsenoside Rg1 and Rb1 in Naodesheng tablets. Chin. J. Pharm. Anal. 2009, 29, 830–833. (In Chinese) [Google Scholar]
- Li, X.C.; Ouyang, X.; Chen, B.; Liu, S.; Zeng, J. Linkage and Stereochemistry Characters of Phenolic Antioxidant Product Formation. J. Agric. Food Chem. 2023, 71, 5382–5390. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Li, Y.; Zhong, J.; Fan, X. Identification of major components of traditional Chinese medicine Naodesheng tablet by HPLC-DAD-MSn. J. Zhejiang Univ. 2012, 41, 32–42. [Google Scholar]
- Liao, J.; Wu, Y.; Xu, F.; Chen, W.; Zheng, Z.; Han, X.; Liu, B.; Wang, S.; Guo, D. Comprehensive evaluation of NAODESHENG by combining UPLC quantitative fingerprint and antioxidant activity. J. Pharm. Biomed. Anal. 2021, 193, 113636. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zhao, J.; Guo, P.; Wang, Z.; Xu, L.; Liu, A. Effects of Naodesheng tablets on amyloid beta-induced dysfunction: A traditional Chinese herbal formula with novel therapeutic potential in Alzheimer’s disease revealed by systems pharmacology. Biomed. Pharmacother. 2021, 141, 111916. [Google Scholar] [CrossRef]
- Piller, C. Blots on a field? Science 2022, 377, 358–363. [Google Scholar] [CrossRef]
- Li, X.C. Solvent effects and improvements in the deoxyribose degradation assay for hydroxyl radical-scavenging. Food Chem. 2013, 141, 2083–2088. [Google Scholar] [CrossRef]
- Chen, B.; Li, X.; Liu, J.; Qin, W.; Liang, M.; Liu, Q.; Chen, D. Antioxidant and Cytoprotective effects of Pyrola decorata H. Andres and its five phenolic components. BMC Complement. Altern. Med. 2019, 19, 275. [Google Scholar] [CrossRef]
- Jiang, Q.; Li, X.C.; Tian, Y.G.; Lin, Q.Q.; Xie, H.; Lu, W.B.; Chi, Y.G.; Chen, D.F. Lyophilized aqueous extracts of Mori Fructus and Mori Ramulus protect Mesenchymal stem cells from •OH-treated damage: Bioassay and antioxidant mechanism. BMC Complement. Altern. Med. 2017, 16, 423. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, X.; Hua, Y.; Li, Z.; Chen, B.; Liu, A.; Lu, W.B.; Zhao, X.; Diao, Y.; Chen, D. Antioxidant product analysis of Hulu Tea (Tadehagi triquetrum). New J. Chem. 2021, 45, 20257–20265. [Google Scholar] [CrossRef]
- Xie, H.; Li, X.C.; Ren, Z.X.; Qiu, W.M.; Chen, J.L.; Jiang, Q.; Chen, B.; Chen, D.F. Antioxidant and Cytoprotective Effects of Tibetan Tea and Its Phenolic Components. Molecules 2018, 23, 179. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Li, X.; Xu, J.; Jiang, Q.; Xie, H.; He, J.; Chen, D. Two phenolic antioxidants in Suoyang enhance viability of •OH-damaged mesenchymal stem cells: Comparison and mechanistic chemistry. Chem. Cent. J. 2017, 11, 84. [Google Scholar] [CrossRef] [PubMed]
- Li, X.C.; Chen, S.M.; Zeng, J.Y.; Cai, R.X.; Liang, Y.L.; Chen, C.B.; Chen, B.; Li, C.H. Database-aided UHPLC-Q-orbitrap MS/MS Strategy Putatively Identifies 52 Compounds from Wushicha Granule to Propose Anti-counterfeiting Quality-markers for Pharmacopoeia. Chin. Med. 2023, 18, 116. [Google Scholar] [CrossRef] [PubMed]
- Cai, R.; Li, X.; Li, C.; Zhu, J.; Zeng, J.; Li, J.; Tang, B.; Li, Z.; Liu, S.; Yan, Y. Standards-Based UPLC-Q-Exactive Orbitrap MS Systematically Identifies 36 Bioactive Compounds in Ampelopsis grossedentata (Vine Tea). Separations 2022, 9, 329. [Google Scholar] [CrossRef]
- Qi, P.; Zhou, Q.; Chen, G.; Lin, Z.; Zhao, J.; Xu, H.; Gao, H.; Liu, D.; Mao, X. Simultaneous qualitative and quantitative determination of 104 fat-soluble synthetic dyes in foods using disperse solid-phase extraction and UHPLC-Q-Orbitrap HRMS analysis. Food Chem. 2023, 427, 136665. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, B.P.; Altarawy, D.; Didier, B.; Gibson, T.D.; Windus, T.L. New Basis Set Exchange: An Open, Up-to-Date Resource for the Molecular Sciences Community. J. Chem. Inf. Model. 2019, 59, 4814–4820. [Google Scholar] [CrossRef]
- Zheng, Y.-Z.; Chen, D.-F.; Deng, G.; Guo, R.; Fu, Z.-M. The antioxidative activity of piceatannol and its different derivatives: Antioxidative mechanism analysis. Phytochemistry 2018, 156, 184–192. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Quantitative analysis of molecular surface based on improved Marching Tetrahedra algorithm. J. Mol. Graph. Model. 2012, 38, 314–323. [Google Scholar] [CrossRef]
- Gross, J.H. Mass Spectrometry; Science Press: Beijing, China, 2013. [Google Scholar]
Herbal Medicine | Plant Materials | Weight | Pharmacopoeia Q-Marker and Relevant Analytic Tool |
---|---|---|---|
Naodesheng Tablet (腦得生片) | 665 g | ginsenoside Rg1 and Rb1, notoginsenoside R1 (HPLC); puerarin (TLC); ferulic acid (TLC) | |
Gegen (葛根) | Radix of Pueraria lobata (Willd.) Ohwi | 261 g | puerarin (HPLC) |
Sanqi (三七) | Radix or Rhizoma of Panax notoginseng (Burk.) F. H. Chen | 78 g | ginsenoside Rg1 and Rb1, notoginsenoside R1 (HPLC) |
Honghua (红花) | Dried flower of Carthamus tinctorius L. | 91 g | HSYA (HPLC) |
Shanzha (山楂) | Dried fruit of Crataegus pinnatifida Bunge | 157 g | citric acid (HPLC) |
Chuanxiong (川芎) | Rhizoma of Ligusticum chuanxiong Hort. | 78 g | levistilide A (TLC) ferulic acid (HPLC) |
Reconstructed Q-Markers | |||||
---|---|---|---|---|---|
Citric Acid (2) [1] | HSYA (7) [43,44] | Puerarin (12) [6,7,8] | NGR1 (36) [45] | levistilide A (65) [1] | |
Traceability | √ | √ | √ | √ | √ |
Specificity | √ | √ | √ | √ | √ |
Testability | √ | √ | √ | √ | √ |
Efficiency relevance | √ | √ | √ | √ | √ |
TCM relevance | √ | √ | √ | √ | √ |
Characterized herbal medicines | Shanzha | Honghua | Gegen | Sanqi | Chuanxiong |
Q-Markers | Semi-Quantification/(%) | Computational Chemistry | |
---|---|---|---|
Dipole Moment | HOMO → LUMO | ||
citric acid (2) | 0.822 ± 0.021 | 2.0819 | 687.3211 |
HSYA (7) | 0.039 ± 0.002 | 6.6315 | 308.3945 |
puerarin (12) | 1.044 ± 0.176 | 1.9418 | 405.7099 |
notoginsenoside R1 (36) | 0.128 ± 0.001 | 7.2955 | 680.0210 |
levistilide A (65) | 0.070 ± 0.006 | 5.7291 | 402.9922 |
Name | Gegen | Sanqi | Honghua | Shanzha | Chuanxiong | Q-Marker for Analysis |
---|---|---|---|---|---|---|
CNT 1 | wood | √ | √ | √ | √ | puerarin (12) |
CNT 2 | √ | wood | √ | √ | √ | notoginsenoside R1 (36) |
CNT 3 | √ | √ | wood | √ | √ | HSYA (7) |
CNT 4 | √ | √ | √ | wood | √ | citric acid (2) |
CNT 5 | √ | √ | √ | √ | wood | levistilide A (65) |
Certified Tablet | √ | √ | √ | √ | √ | HSYA (7), puerarin (12), notoginsenoside R1 (36), levistilide A (65) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Li, X.; Zeng, J.; Cai, R.; Chen, S.; Chen, B.; Zhao, X. Detection of Adulterated Naodesheng Tablet (Naodesheng Pian) via In-Depth Chemical Analysis and Subsequent Reconstruction of Its Pharmacopoeia Q-Markers. Molecules 2024, 29, 1392. https://doi.org/10.3390/molecules29061392
Li C, Li X, Zeng J, Cai R, Chen S, Chen B, Zhao X. Detection of Adulterated Naodesheng Tablet (Naodesheng Pian) via In-Depth Chemical Analysis and Subsequent Reconstruction of Its Pharmacopoeia Q-Markers. Molecules. 2024; 29(6):1392. https://doi.org/10.3390/molecules29061392
Chicago/Turabian StyleLi, Chunhou, Xican Li, Jingyuan Zeng, Rongxin Cai, Shaoman Chen, Ban Chen, and Xiaojun Zhao. 2024. "Detection of Adulterated Naodesheng Tablet (Naodesheng Pian) via In-Depth Chemical Analysis and Subsequent Reconstruction of Its Pharmacopoeia Q-Markers" Molecules 29, no. 6: 1392. https://doi.org/10.3390/molecules29061392
APA StyleLi, C., Li, X., Zeng, J., Cai, R., Chen, S., Chen, B., & Zhao, X. (2024). Detection of Adulterated Naodesheng Tablet (Naodesheng Pian) via In-Depth Chemical Analysis and Subsequent Reconstruction of Its Pharmacopoeia Q-Markers. Molecules, 29(6), 1392. https://doi.org/10.3390/molecules29061392