Recent Advances in the Chromatographic Analysis of Emerging Pollutants in Dairy Milk: A Review (2018–2023)
Abstract
:1. Introduction
2. Emerging Pollutants in Dairy Milk: A Concern for Public Health
3. Chromatographic Techniques for EP Analysis
3.1. LC-Based Techniques
3.2. GC-Based Techniques
4. Extraction of EPs from Milk
4.1. SPE
4.2. MSPE
4.3. SPME
4.4. FPSE
4.5. IAC
4.6. LLE
4.7. DLLME, ALLME and SALLE
4.8. QuEChERS
4.9. MAE and UAE
4.10. GDME
4.11. EME
5. Applications of Chromatographic Techniques for the Analysis of Different EP Categories in Milk
5.1. Pharmaceuticals
5.2. Endocrine-Disrupting Compounds
5.3. Pesticides
5.4. Mycotoxins
5.5. Other Emerging Pollutants
6. Concluding Remarks and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Souza, M.C.O.; Rocha, B.A.; Adeyemi, J.A.; Nadal, M.; Domingo, J.L.; Barbosa, F. Legacy and emerging pollutants in Latin America: A critical review of occurrence and levels in environmental and food samples. Sci. Total Environ. 2022, 848, 157774. [Google Scholar] [CrossRef]
- Morsi, R.; Bilal, M.; Iqbal, H.M.N.; Ashraf, S.S. Laccases and peroxidases: The smart, greener and futuristic biocatalytic tools to mitigate recalcitrant emerging pollutants. Sci. Total Environ. 2020, 714, 136572. [Google Scholar] [CrossRef]
- Peña-Guzmán, C.; Ulloa-Sánchez, S.; Mora, K.; Helena-Bustos, R.; Lopez-Barrera, E.; Alvarez, J.; Rodriguez-Pinzón, M. Emerging pollutants in the urban water cycle in Latin America: A review of the current literature. J. Environ. Manag. 2019, 237, 408–423. [Google Scholar] [CrossRef]
- Arman, N.Z.; Salmiati, S.; Aris, A.; Salim, M.R.; Nazifa, T.H.; Muhamad, M.S.; Marpongahtun, M. A Review on Emerging Pollutants in the Water Environment: Existences, Health Effects and Treatment Processes. Water 2021, 13, 3258. [Google Scholar] [CrossRef]
- Ramírez-Malule, H.; Quiñones-Murillo, D.H.; Manotas-Duque, D. Emerging contaminants as global environmental hazards. A bibliometric analysis. Emerg. Contam. 2020, 6, 179–193. [Google Scholar] [CrossRef]
- Rasheed, T.; Bilal, M.; Nabeel, F.; Adeel, M.; Iqbal, H.M.N. Environmentally-related contaminants of high concern: Potential sources and analytical modalities for detection, quantification, and treatment. Environ. Int. 2019, 122, 52–66. [Google Scholar] [CrossRef] [PubMed]
- Barroso, P.J.; Santos, J.L.; Martín, J.; Aparicio, I.; Alonso, E. Emerging contaminants in the atmosphere: Analysis, occurrence and future challenges. Crit. Rev. Environ. Sci. Technol. 2019, 49, 104–171. [Google Scholar] [CrossRef]
- Souza, M.C.O.; Rocha, B.A.; Souza, J.M.O.; Jacinto Souza, J.C.; Barbosa, F. Levels of polybrominated diphenyl ethers in Brazilian food of animal origin and estimation of human dietary exposure. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2021, 150, 112040. [Google Scholar] [CrossRef] [PubMed]
- Egbuna, C.; Amadi, C.N.; Patrick-Iwuanyanwu, K.C.; Ezzat, S.M.; Awuchi, C.G.; Ugonwa, P.O.; Orisakwe, O.E. Emerging pollutants in Nigeria: A systematic review. Environ. Toxicol. Pharmacol. 2021, 85, 103638. [Google Scholar] [CrossRef] [PubMed]
- Bonefeld-Jorgensen, E.C.; Long, M.; Bossi, R.; Ayotte, P.; Asmund, G.; Krüger, T.; Ghisari, M.; Mulvad, G.; Kern, P.; Nzulumiki, P.; et al. Perfluorinated compounds are related to breast cancer risk in Greenlandic Inuit: A case control study. Environ. Health 2011, 10, 88. [Google Scholar] [CrossRef]
- Lang, I.A.; Galloway, T.S.; Scarlett, A.; Henley, W.E.; Depledge, M.; Wallace, R.B.; Melzer, D. Association of urinary bisphenol A concentration with medical disorders and laboratory abnormalities in adults. JAMA 2008, 300, 1303–1310. [Google Scholar] [CrossRef]
- Evans, J.S.; Jackson, L.J.; Habibi, H.R.; Ikonomou, M.G. Feminization of Longnose Dace (Rhinichthys cataractae) in the Oldman River, Alberta, (Canada) Provides Evidence of Widespread Endocrine Disruption in an Agricultural Basin. Scientifica 2012, 2012, 521931. [Google Scholar] [CrossRef] [PubMed]
- Jia, Q.; Qiu, J.; Zhang, L.; Liao, G.; Jia, Y.; Qian, Y. Multiclass Comparative Analysis of Veterinary Drugs, Mycotoxins, and Pesticides in Bovine Milk by Ultrahigh-Performance Liquid Chromatography–Hybrid Quadrupole–Linear Ion Trap Mass Spectrometry. Foods 2022, 11, 331. [Google Scholar] [CrossRef] [PubMed]
- Mesa, R.; Kabir, A.; Samanidou, V.; Furton, K.G. Simultaneous determination of selected estrogenic endocrine disrupting chemicals and bisphenol A residues in whole milk using fabric phase sorptive extraction coupled to HPLC-UV detection and LC-MS/MS. J. Sep. Sci. 2019, 42, 598–608. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.; Yu, Z.; Wu, W.; Ho, H.; Wang, J.; Wang, Y.; Han, R. A Survey of 61 Veterinary Drug Residues in Commercial Liquid Milk Products in China. J. Food Prot. 2020, 83, 1227–1233. [Google Scholar] [CrossRef] [PubMed]
- Tripathy, V.; Sharma, K.K.; Yadav, R.; Devi, S.; Tayade, A.; Sharma, K.; Pandey, P.; Singh, G.; Patel, A.N.; Gautam, R.; et al. Development, validation of QuEChERS-based method for simultaneous determination of multiclass pesticide residue in milk, and evaluation of the matrix effect. J. Environ. Sci. Health. Part B Pestic. Food Contam. Agric. Wastes 2019, 54, 394–406. [Google Scholar] [CrossRef]
- Vercelli, C.; Amadori, M.; Gambino, G.; Re, G. A review on the most frequently used methods to detect antibiotic residues in bovine raw milk. Int. Dairy J. 2023, 144, 105695. [Google Scholar] [CrossRef]
- Chang, J.; Zhou, J.; Gao, M.; Zhang, H.; Wang, T. Research Advances in the Analysis of Estrogenic Endocrine Disrupting Compounds in Milk and Dairy Products. Foods 2022, 11, 3057. [Google Scholar] [CrossRef]
- Chiesa, L.M.; Di Cesare, F.; Nobile, M.; Villa, R.; Decastelli, L.; Martucci, F.; Fontana, M.; Pavlovic, R.; Arioli, F.; Panseri, S. Antibiotics and Non-Targeted Metabolite Residues Detection as a Comprehensive Approach toward Food Safety in Raw Milk. Foods 2021, 10, 544. [Google Scholar] [CrossRef]
- Ishaq, Z.; Nawaz, M.A. Analysis of contaminated milk with organochlorine pesticide residues using gas chromatography. Int. J. Food Prop. 2018, 21, 879–891. [Google Scholar] [CrossRef]
- Amenu, K.; Shitu, D.; Abera, M. Microbial contamination of water intended for milk container washing in smallholder dairy farming and milk retailing houses in southern Ethiopia. SpringerPlus 2016, 5, 1195. [Google Scholar] [CrossRef]
- Yuan, S.; Yang, F.; Yu, H.; Xie, Y.; Guo, Y.; Yao, W. Biodegradation of the organophosphate dimethoate by Lactobacillus plantarum during milk fermentation. Food Chem. 2021, 360, 130042. [Google Scholar] [CrossRef]
- Schopf, M.F.; Pierezan, M.D.; Rocha, R.; Pimentel, T.C.; Esmerino, E.A.; Marsico, E.T.; De Dea Lindner, J.; da Cruz, A.G.; Verruck, S. Pesticide residues in milk and dairy products: An overview of processing degradation and trends in mitigating approaches. Crit. Rev. Food Sci. Nutr. 2023, 63, 12610–12624. [Google Scholar] [CrossRef]
- Wang, J.; Leung, D.; Chow, W.; Chang, J.; Wong, J.W. Target screening of 105 veterinary drug residues in milk using UHPLC/ESI Q-Orbitrap multiplexing data independent acquisition. Anal. Bioanal. Chem. 2018, 410, 5373–5389. [Google Scholar] [CrossRef]
- Fierens, T.; Van Holderbeke, M.; Willems, H.; De Henauw, S.; Sioen, I. Transfer of eight phthalates through the milk chain—A case study. Environ. Int. 2013, 51, 1–7. [Google Scholar] [CrossRef]
- Bongers, I.E.A.; van de Schans, M.G.M.; Nibbeling, C.V.M.; Elbers, I.J.W.; Berendsen, B.J.A.; Zuidema, T. A single method to analyse residues from five different classes of prohibited pharmacologically active substances in milk. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2021, 38, 1717–1734. [Google Scholar] [CrossRef]
- Guedes-Alonso, R.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J.; Kabir, A.; Furton, K.G. Fabric Phase Sorptive Extraction of Selected Steroid Hormone Residues in Commercial Raw Milk Followed by Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry. Foods 2021, 10, 343. [Google Scholar] [CrossRef]
- Izzo, L.; Rodríguez-Carrasco, Y.; Tolosa, J.; Graziani, G.; Gaspari, A.; Ritieni, A. Target analysis and retrospective screening of mycotoxins and pharmacologically active substances in milk using an ultra-high-performance liquid chromatography/high-resolution mass spectrometry approach. J. Dairy Sci. 2020, 103, 1250–1260. [Google Scholar] [CrossRef]
- Decheng, S.; xia, f.; Zhiming, X.; Shulin, W.; Shi, W.; Peilong, W. Trace analysis of progesterone and 21 progestins in milk by ultra-performance liquid chromatography coupled with high-field quadrupole-orbitrap high-resolution mass spectrometry. Food Chem. 2021, 361, 130115. [Google Scholar] [CrossRef]
- He, S.; Wang, R.; Wei, W.; Liu, H.; Ma, Y. Simultaneous determination of 22 residual steroid hormones in milk by liquid chromatography–tandem mass spectrometry. Int. J. Dairy Technol. 2020, 73, 357–365. [Google Scholar] [CrossRef]
- Wu, X.; Tong, K.; Yu, C.; Hou, S.; Xie, Y.; Fan, C.; Chen, H.; Lu, M.; Wang, W. Development of a High-Throughput Screening Analysis for 195 Pesticides in Raw Milk by Modified QuEChERS Sample Preparation and Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry. Separations 2022, 9, 98. [Google Scholar] [CrossRef]
- Bang Ye, S.; Huang, Y.; Lin, D.-Y. QuEChERS sample pre-processing with UPLC–MS/MS: A method for detecting 19 quinolone-based veterinary drugs in goat’s milk. Food Chem. 2022, 373, 131466. [Google Scholar] [CrossRef]
- Di Marco Pisciottano, I.; Guadagnuolo, G.; Busico, F.; Alessandroni, L.; Neri, B.; Vecchio, D.; Di Vuolo, G.; Cappelli, G.; Martucciello, A.; Gallo, P. Determination of 20 Endocrine-Disrupting Compounds in the Buffalo Milk Production Chain and Commercial Bovine Milk by UHPLC–MS/MS and HPLC–FLD. Animals 2022, 12, 410. [Google Scholar] [CrossRef]
- Hasan, G.M.M.A.; Shaikh, M.A.A.; Satter, M.A.; Hossain, M.S. Detection of indicator polychlorinated biphenyls (I-PCBs) and polycyclic aromatic hydrocarbons (PAHs) in cow milk from selected areas of Dhaka, Bangladesh and potential human health risks assessment. Toxicol. Rep. 2022, 9, 1514–1522. [Google Scholar] [CrossRef]
- Huang, X.-C.; Ma, J.-K.; Wei, S.-L. Preparation and application of a novel magnetic molecularly imprinted polymer for simultaneous and rapid determination of three trace endocrine disrupting chemicals in lake water and milk samples. Anal. Bioanal. Chem. 2020, 412, 1835–1846. [Google Scholar] [CrossRef]
- Kubica, P.; Pielaszewska, M.; Jatkowska, N. Analysis of bisphenols and their derivatives in infant and toddler ready-to-feed milk and powdered milk by LCMS/MS. J. Food Compos. Anal. 2023, 120, 105366. [Google Scholar] [CrossRef]
- Ramezani, S.; Mahdavi, V.; Gordan, H.; Rezadoost, H.; Oliver Conti, G.; Mousavi Khaneghah, A. Determination of multi-class pesticides residues of cow and human milk samples from Iran using UHPLC-MS/MS and GC-ECD: A probabilistic health risk assessment. Environ. Res. 2022, 208, 112730. [Google Scholar] [CrossRef]
- Di Marco Pisciottano, I.; Albrizio, S.; Guadagnuolo, G.; Gallo, P. Development and validation of a method for determination of 17 endocrine disrupting chemicals in milk, water, blood serum and feed by UHPLC-MS/MS. Food Addit. Contam. Part A 2022, 39, 1744–1758. [Google Scholar] [CrossRef]
- Jadhav, M.R.; Pudale, A.; Raut, P.; Utture, S.; Ahammed Shabeer, T.P.; Banerjee, K. A unified approach for high-throughput quantitative analysis of the residues of multi-class veterinary drugs and pesticides in bovine milk using LC-MS/MS and GC–MS/MS. Food Chem. 2019, 272, 292–305. [Google Scholar] [CrossRef]
- Sahebi, H.; Talaei, A.J.; Abdollahi, E.; Hashempour-Baltork, F.; Zade, S.V.; Jannat, B.; Sadeghi, N. Rapid determination of multiclass antibiotics and their metabolites in milk using ionic liquid-modified magnetic chitosan nanoparticles followed by UPLC-MS/MS. Talanta 2023, 253, 124091. [Google Scholar] [CrossRef]
- Nemati, M.; Tuzen, M.; Farazajdeh, M.A.; Kaya, S.; Afshar Mogaddam, M.R. Development of dispersive solid-liquid extraction method based on organic polymers followed by deep eutectic solvents elution; application in extraction of some pesticides from milk samples prior to their determination by HPLC-MS/MS. Anal. Chim. Acta 2022, 1199, 339570. [Google Scholar] [CrossRef]
- Macheka, L.R.; Olowoyo, J.O.; Mugivhisa, L.L.; Abafe, O.A. Determination and assessment of human dietary intake of per and polyfluoroalkyl substances in retail dairy milk and infant formula from South Africa. Sci. Total Environ. 2021, 755, 142697. [Google Scholar] [CrossRef]
- Wu, I.L.; Turnipseed, S.B.; Andersen, W.C.; Madson, M.R. Analysis of peptide antibiotic residues in milk using liquid chromatography-high resolution mass spectrometry (LC-HRMS). Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2020, 37, 1264–1278. [Google Scholar] [CrossRef]
- Wang, H.; Wang, H.-P.; Chen, M.-N.; Ai, L.-F.; Liang, S.-X.; Zhang, Y. Determination of Vancomycin and Norvancomycin Residues in Milk by Automated Online Solid-Phase Extraction Combined With Liquid Chromatography-High Resolution Mass Spectrometry. J. AOAC Int. 2022, 105, 941–949. [Google Scholar] [CrossRef]
- Badali, A.; Javadi, A.; Afshar Mogaddam, M.R.; Mashak, Z. Dispersive solid phase extraction-dispersive liquid–liquid microextraction of mycotoxins from milk samples and investigating their decontamination using microwave irradiations. Microchem. J. 2023, 190, 108645. [Google Scholar] [CrossRef]
- Murshed, S. Evaluation and Assessment of Aflatoxin M1 in Milk and Milk Products in Yemen Using High-Performance Liquid Chromatography. J. Food Qual. 2020, 2020, e8839060. [Google Scholar] [CrossRef]
- Liang, X.; Hu, P.; Zhang, H.; Tan, W. Hypercrosslinked strong anion-exchange polymers for selective extraction of fluoroquinolones in milk samples. J. Pharm. Biomed. Anal. 2019, 166, 379–386. [Google Scholar] [CrossRef]
- Shishov, A.; Nizov, E.; Bulatov, A. Microextraction of melamine from dairy products by thymol-nonanoic acid deep eutectic solvent for high-performance liquid chromatography-ultraviolet determination. J. Food Compos. Anal. 2023, 116, 105083. [Google Scholar] [CrossRef]
- Vaseghi Baba, F.; Esfandiari, Z.; Akbari-Adergani, B.; Rashidi Nodeh, H.; Khodadadi, M. Vortex-assisted microextraction of melamine from milk samples using green short chain ionic liquid solvents coupled with high performance liquid chromatography determination. J. Chromatogr. B 2023, 1229, 123902. [Google Scholar] [CrossRef]
- Peterson, B.L.; Cummings, B.S. A review of chromatographic methods for the assessment of phospholipids in biological samples. Biomed. Chromatogr. BMC 2006, 20, 227–243. [Google Scholar] [CrossRef]
- Al-Afy, N.; Sereshti, H.; Hijazi, A.; Rashidi Nodeh, H. Determination of three tetracyclines in bovine milk using magnetic solid phase extraction in tandem with dispersive liquid-liquid microextraction coupled with HPLC. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2018, 1092, 480–488. [Google Scholar] [CrossRef]
- Vuran, B.; Ulusoy, H.I.; Sarp, G.; Yilmaz, E.; Morgül, U.; Kabir, A.; Tartaglia, A.; Locatelli, M.; Soylak, M. Determination of chloramphenicol and tetracycline residues in milk samples by means of nanofiber coated magnetic particles prior to high-performance liquid chromatography-diode array detection. Talanta 2021, 230, 122307. [Google Scholar] [CrossRef]
- Peris-Vicente, J.; Iborra-Millet, J.J.; Albiol-Chiva, J.; Carda-Broch, S.; Esteve-Romero, J. A rapid and reliable assay to determine flumequine, marbofloxacin, difloxacin, and sarafloxacin in commonly consumed meat by micellar liquid chromatography. J. Sci. Food Agric. 2019, 99, 1375–1383. [Google Scholar] [CrossRef]
- Prasad Pawar, R.; Mishra, P.; Durgbanshi, A.; Bose, D.; Albiol-Chiva, J.; Peris-Vicente, J.; García-Ferrer, D.; Esteve-Romero, J. Use of Micellar Liquid Chromatography to Determine Mebendazole in Dairy Products and Breeding Waste from Bovine Animals. Antibiotics 2020, 9, 86. [Google Scholar] [CrossRef]
- Tejada-Casado, C.; del Olmo-Iruela, M.; García-Campaña, A.M.; Lara, F.J. Green and simple analytical method to determine benzimidazoles in milk samples by using salting-out assisted liquid-liquid extraction and capillary liquid chromatography. J. Chromatogr. B 2018, 1091, 46–52. [Google Scholar] [CrossRef]
- Fan, J.C.; Ren, R.; Jin, Q.; He, H.L.; Wang, S.T. Detection of 20 phthalate esters in breast milk by GC-MS/MS using QuEChERS extraction method. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2019, 36, 1551–1558. [Google Scholar] [CrossRef]
- Zhang, J.; Dang, X.; Dai, J.; Hu, Y.; Chen, H. Simultaneous detection of eight phenols in food contact materials after electrochemical assistance solid-phase microextraction based on amino functionalized carbon nanotube/polypyrrole composite. Anal. Chim. Acta 2021, 1183, 338981. [Google Scholar] [CrossRef]
- Campos do Lago, A.; da Silva Cavalcanti, M.H.; Rosa, M.A.; Silveira, A.T.; Teixeira Tarley, C.R.; Figueiredo, E.C. Magnetic restricted-access carbon nanotubes for dispersive solid phase extraction of organophosphates pesticides from bovine milk samples. Anal. Chim. Acta 2020, 1102, 11–23. [Google Scholar] [CrossRef]
- Tang, Z.; Han, Q.; Xie, L.; Chu, L.; Wang, Y.; Sun, Y.; Kang, X. Simultaneous determination of five phthalate esters and bisphenol A in milk by packed-nanofiber solid-phase extraction coupled with gas chromatography and mass spectrometry. J. Sep. Sci. 2019, 42, 851–861. [Google Scholar] [CrossRef]
- Pan, A.; Zhang, C.; Guo, M.; Wei, D.; Wang, X. Fabrication of magnetic covalent organic framework for efficient extraction and determination of phthalate esters in milk samples. J. Sep. Sci. 2022, 45, 3014–3021. [Google Scholar] [CrossRef]
- Rahman, M.M.; Lee, H.S.; Abd El-Aty, A.M.; Kabir, M.H.; Chung, H.S.; Park, J.-H.; Kim, M.-R.; Kim, J.-h.; Shin, H.-C.; Shin, S.S.; et al. Determination of endrin and δ-keto endrin in five food products of animal origin using GC-μECD: A modified QuEChERS approach to traditional detection. Food Chem. 2018, 263, 59–66. [Google Scholar] [CrossRef]
- Dimpe, K.M.; Nomngongo, P.N. Current sample preparation methodologies for analysis of emerging pollutants in different environmental matrices. TrAC Trends Anal. Chem. 2016, 82, 199–207. [Google Scholar] [CrossRef]
- Badawy, M.E.I.; El-Nouby, M.A.M.; Kimani, P.K.; Lim, L.W.; Rabea, E.I. A review of the modern principles and applications of solid-phase extraction techniques in chromatographic analysis. Anal. Sci. 2022, 38, 1457–1487. [Google Scholar] [CrossRef]
- Sun, D.; Song, Z.; Zhang, Y.; Wang, Y.; Lv, M.; Liu, H.; Wang, L.; Lu, W.; Li, J.; Chen, L. Recent Advances in Molecular-Imprinting-Based Solid-Phase Extraction of Antibiotics Residues Coupled With Chromatographic Analysis. Front. Environ. Chem. 2021, 2, 703961. [Google Scholar] [CrossRef]
- Russo, G.; Barbato, F.; Cardone, E.; Fattore, M.; Albrizio, S.; Grumetto, L. Bisphenol A and Bisphenol S release in milk under household conditions from baby bottles marketed in Italy. J. Environ. Sci. Health Part B 2018, 53, 116–120. [Google Scholar] [CrossRef]
- Negarian, M.; Mohammadinejad, A.; Mohajeri, S.A. Preparation, evaluation and application of core–shell molecularly imprinted particles as the sorbent in solid-phase extraction and analysis of lincomycin residue in pasteurized milk. Food Chem. 2019, 288, 29–38. [Google Scholar] [CrossRef]
- Bosco, C.D.; De Cesaris, M.G.; Felli, N.; Lucci, E.; Fanali, S.; Gentili, A. Carbon nanomaterial-based membranes in solid-phase extraction. Microchim. Acta 2023, 190, 175. [Google Scholar] [CrossRef]
- Herrero-Latorre, C.; Barciela-García, J.; García-Martín, S.; Peña-Crecente, R.M.; Otárola-Jiménez, J. Magnetic solid-phase extraction using carbon nanotubes as sorbents: A review. Anal. Chim. Acta 2015, 892, 10–26. [Google Scholar] [CrossRef]
- Jiang, K.; Huang, Q.; Fan, K.; Wu, L.; Nie, D.; Guo, W.; Wu, Y.; Han, Z. Reduced graphene oxide and gold nanoparticle composite-based solid-phase extraction coupled with ultra-high-performance liquid chromatography-tandem mass spectrometry for the determination of 9 mycotoxins in milk. Food Chem. 2018, 264, 218–225. [Google Scholar] [CrossRef]
- Li, N.; Qiu, J.; Qian, Y. Polyethyleneimine-modified magnetic carbon nanotubes as solid-phase extraction adsorbent for the analysis of multi-class mycotoxins in milk via liquid chromatography-tandem mass spectrometry. J. Sep. Sci. 2021, 44, 636–644. [Google Scholar] [CrossRef]
- Guan, S.; Wu, H.; Yang, L.; Wang, Z.; Wu, J. Use of a magnetic covalent organic framework material with a large specific surface area as an effective adsorbent for the extraction and determination of six fluoroquinolone antibiotics by HPLC in milk sample. J. Sep. Sci. 2020, 43, 3775–3784. [Google Scholar] [CrossRef]
- Jeong, S.-Y.; Jang, H.W.; Debnath, T.; Lee, K.-G. Validation of analytical method for furan determination in eight food matrices and its levels in various foods. J. Sep. Sci. 2019, 42, 1012–1018. [Google Scholar] [CrossRef]
- Kabir, A.; Samanidou, V. Fabric Phase Sorptive Extraction: A Paradigm Shift Approach in Analytical and Bioanalytical Sample Preparation. Molecules 2021, 26, 865. [Google Scholar] [CrossRef]
- Abdallah, M.F.; Girgin, G.; Baydar, T. Mycotoxin Detection in Maize, Commercial Feed, and Raw Dairy Milk Samples from Assiut City, Egypt. Vet. Sci. 2019, 6, 57. [Google Scholar] [CrossRef]
- Mannani, N.; Tabarani, A.; El Adlouni, C.; Abdennebi, E.H.; Zinedine, A. Aflatoxin M1 in pasteurized and UHT milk marked in Morocco. Food Control 2021, 124, 107893. [Google Scholar] [CrossRef]
- Shuib, N.S.; Saad, B. In-syringe dispersive micro-solid phase extraction method for the HPLC-fluorescence determination of aflatoxins in milk. Food Control 2022, 132, 108510. [Google Scholar] [CrossRef]
- Khatibi, S.A.; Hamidi, S.; Siahi-Shadbad, M.R. Application of Liquid-Liquid Extraction for the Determination of Antibiotics in the Foodstuff: Recent Trends and Developments. Crit. Rev. Anal. Chem. 2022, 52, 327–342. [Google Scholar] [CrossRef]
- Murrell, K.A.; Dorman, F.L. A comparison of liquid-liquid extraction and stir bar sorptive extraction for multiclass organic contaminants in wastewater by comprehensive two-dimensional gas chromatography time of flight mass spectrometry. Talanta 2021, 221, 121481. [Google Scholar] [CrossRef]
- Choi, J.-M.; Zheng, W.; Abd El-Aty, A.M.; Kim, S.-K.; Park, D.-H.; Yoo, K.-H.; Lee, G.-H.; Baranenko, D.A.; Hacımüftüoğlu, A.; Jeong, J.H.; et al. Residue analysis of tebufenozide and indoxacarb in chicken muscle, milk, egg and aquatic animal products using liquid chromatography–tandem mass spectrometry. Biomed. Chromatogr. 2019, 33, e4522. [Google Scholar] [CrossRef]
- Altunay, N.; Elik, A.; Kaya, S. A simple and quick ionic liquid-based ultrasonic-assisted microextraction for determination of melamine residues in dairy products: Theoretical and experimental approaches. Food Chem. 2020, 326, 126988. [Google Scholar] [CrossRef]
- Sharma, N.; Thakur, P.; Chaskar, M.G. Determination of eight endocrine disruptor pesticides in bovine milk at trace levels by dispersive liquid-liquid microextraction followed by GC-MS determination. J. Sep. Sci. 2021, 44, 2982–2995. [Google Scholar] [CrossRef]
- Farajzadeh, M.A.; Mohebbi, A.; Pazhohan, A.; Nemati, M.; Afshar Mogaddam, M.R. Air–assisted liquid–liquid microextraction; principles and applications with analytical instruments. TrAC Trends Anal. Chem. 2020, 122, 115734. [Google Scholar] [CrossRef]
- Mogaddam, M.R.A.; Derakhshani, M.; Farajzadeh, M.A.; Nemati, M.; Lotfipour, F. Application of a modified lighter than water organic solvent-based air-assisted liquid–liquid microextraction method for the efficient extraction of aflatoxin M1 in unpasteurized milk samples. Int. J. Environ. Anal. Chem. 2022, 102, 4121–4133. [Google Scholar] [CrossRef]
- Kim, L.; Lee, D.; Cho, H.-K.; Choi, S.-D. Review of the QuEChERS method for the analysis of organic pollutants: Persistent organic pollutants, polycyclic aromatic hydrocarbons, and pharmaceuticals. Trends Environ. Anal. Chem. 2019, 22, e00063. [Google Scholar] [CrossRef]
- Koloka, O.; Koulama, M.; Hela, D.; Albanis, T.; Konstantinou, I. Determination of Multiclass Pharmaceutical Residues in Milk Using Modified QuEChERS and Liquid-Chromatography-Hybrid Linear Ion Trap/Orbitrap Mass Spectrometry: Comparison of Clean-Up Approaches and Validation Studies. Molecules 2023, 28, 6130. [Google Scholar] [CrossRef]
- Xiong, L.; Yan, P.; Chu, M.; Gao, Y.-Q.; Li, W.-H.; Yang, X.-L. A rapid and simple HPLC–FLD screening method with QuEChERS as the sample treatment for the simultaneous monitoring of nine bisphenols in milk. Food Chem. 2018, 244, 371–377. [Google Scholar] [CrossRef]
- Llompart, M.; Celeiro, M.; Dagnac, T. Microwave-assisted extraction of pharmaceuticals, personal care products and industrial contaminants in the environment. TrAC Trends Anal. Chem. 2019, 116, 136–150. [Google Scholar] [CrossRef]
- Sanchez-Prado, L.; Garcia-Jares, C.; Llompart, M. Microwave-assisted extraction: Application to the determination of emerging pollutants in solid samples. J. Chromatogr. A 2010, 1217, 2390–2414. [Google Scholar] [CrossRef]
- Du, L.-J.; Chu, C.; Warner, E.; Wang, Q.-Y.; Hu, Y.-H.; Chai, K.-J.; Cao, J.; Peng, L.-Q.; Chen, Y.-B.; Yang, J.; et al. Rapid microwave-assisted dispersive micro-solid phase extraction of mycotoxins in food using zirconia nanoparticles. J. Chromatogr. A 2018, 1561, 1–12. [Google Scholar] [CrossRef]
- Kalogiouri, N.P.; Papadakis, E.-N.; Maggalou, M.G.; Karaoglanidis, G.S.; Samanidou, V.F.; Menkissoglu-Spiroudi, U. Development of a Microwave-Assisted Extraction Protocol for the Simultaneous Determination of Mycotoxins and Pesticide Residues in Apples by LC-MS/MS. Appl. Sci. 2021, 11, 10931. [Google Scholar] [CrossRef]
- Kamalabadi, M.; Mohammadi, A.; Alizadeh, N. Simultaneous Determination of Seven Polycyclic Aromatic Hydrocarbons in Coffee Samples Using Effective Microwave-Assisted Extraction and Microextraction Method Followed by Gas Chromatography-Mass Spectrometry and Method Optimization Using Central Composite Design. Food Anal. Methods 2018, 11, 781–789. [Google Scholar]
- Lobato, A.; Fernandes, V.C.; Pacheco, J.G.; Delerue-Matos, C.; Gonçalves, L.M. Organochlorine pesticide analysis in milk by gas-diffusion microextraction with gas chromatography-electron capture detection and confirmation by mass spectrometry. J. Chromatogr. A 2021, 1636, 461797. [Google Scholar] [CrossRef]
- Huang, C.; Chen, Z.; Gjelstad, A.; Pedersen-Bjergaard, S.; Shen, X. Electromembrane extraction. TrAC Trends Anal. Chem. 2017, 95, 47–56. [Google Scholar] [CrossRef]
- Aghaei, A.; Erfani Jazi, M.; E Mlsna, T.; Kamyabi, M.A. A novel method for the preconcentration and determination of ampicillin using electromembrane microextraction followed by high-performance liquid chromatography. J. Sep. Sci. 2019, 42, 3002–3008. [Google Scholar] [CrossRef]
- Chiesa, L.M.; DeCastelli, L.; Nobile, M.; Martucci, F.; Mosconi, G.; Fontana, M.; Castrica, M.; Arioli, F.; Panseri, S. Analysis of antibiotic residues in raw bovine milk and their impact toward food safety and on milk starter cultures in cheese-making process. LWT 2020, 131, 109783. [Google Scholar] [CrossRef]
- Zhang, W.-Q.; Yu, Z.-N.; Ho, H.; Wang, J.; Wang, Y.-T.; Fan, R.-B.; Han, R.-W. Analysis of Veterinary Drug Residues in Pasteurized Milk Samples in Chinese Milk Bars. J. Food Prot. 2020, 83, 204–210. [Google Scholar] [CrossRef]
- Jeena, S.; Venkateswaramurthy, N.; Sambathkumar, R. Antibiotic Residues in Milk Products: Impacts on Human Health. Res. J. Pharmacol. Pharmacodyn. 2020, 12, 15–20. [Google Scholar] [CrossRef]
- Chopra, I.; Roberts, M. Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance. Microbiol. Mol. Biol. Rev. 2001, 65, 232–260. [Google Scholar] [CrossRef]
- Yu, H.; Tao, Y.; Chen, D.; Wang, Y.; Yuan, Z. Development of an HPLC–UV method for the simultaneous determination of tetracyclines in muscle and liver of porcine, chicken and bovine with accelerated solvent extraction. Food Chem. 2011, 124, 1131–1138. [Google Scholar]
- Zhou, Y.; Liu, H.; Li, J.; Sun, Z.; Cai, T.; Wang, X.; Zhao, S.; Gong, B. Restricted access magnetic imprinted microspheres for directly selective extraction of tetracycline veterinary drugs from complex samples. J. Chromatogr. A 2020, 1613, 460684. [Google Scholar] [CrossRef]
- Agadellis, E.; Tartaglia, A.; Locatelli, M.; Kabir, A.; Furton, K.G.; Samanidou, V. Mixed-mode fabric phase sorptive extraction of multiple tetracycline residues from milk samples prior to high performance liquid chromatography-ultraviolet analysis. Microchem. J. 2020, 159, 105437. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, J.; Li, C.; Chen, L. Analysis of tetracyclines from milk powder by molecularly imprinted solid-phase dispersion based on a metal-organic framework followed by ultra high performance liquid chromatography with tandem mass spectrometry. J. Sep. Sci. 2018, 41, 2604–2612. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, L. Fabricated ultrathin magnetic nitrogen doped graphene tube as efficient and recyclable adsorbent for highly sensitive simultaneous determination of three tetracyclines residues in milk samples. J. Chromatogr. A 2018, 1568, 1–7. [Google Scholar] [CrossRef]
- Marinou, E.; Samanidou, V.F.; Papadoyannis, I.N. Development of a High Pressure Liquid Chromatography with Diode Array Detection Method for the Determination of Four Tetracycline Residues in Milk by Using QuEChERS Dispersive Extraction. Separations 2019, 6, 21. [Google Scholar] [CrossRef]
- Chatzimitakos, T.G.; Stalikas, C.D. Melamine sponge decorated with copper sheets as a material with outstanding properties for microextraction of sulfonamides prior to their determination by high-performance liquid chromatography. J. Chromatogr. A 2018, 1554, 28–36. [Google Scholar] [CrossRef]
- Duan, X.; Liu, X.; Dong, Y.; Yang, J.; Zhang, J.; He, S.; Yang, F.; Wang, Z.; Dong, Y. A Green HPLC Method for Determination of Nine Sulfonamides in Milk and Beef, and Its Greenness Assessment with Analytical Eco-Scale and Greenness Profile. J. AOAC Int. 2020, 103, 1181–1189. [Google Scholar] [CrossRef]
- Georgiadis, D.-E.; Tsalbouris, A.; Kabir, A.; Furton, K.G.; Samanidou, V. Novel capsule phase microextraction in combination with high performance liquid chromatography with diode array detection for rapid monitoring of sulfonamide drugs in milk. J. Sep. Sci. 2019, 42, 1440–1450. [Google Scholar] [CrossRef]
- Jullakan, S.; Bunkoed, O. A nanocomposite adsorbent of metallic copper, polypyrrole, halloysite nanotubes and magnetite nanoparticles for the extraction and enrichment of sulfonamides in milk. J. Chromatogr. B 2021, 1180, 122900. [Google Scholar] [CrossRef]
- Wei, D.; Guo, M. Facile preparation of magnetic graphene oxide/nanoscale zerovalent iron adsorbent for magnetic solid-phase extraction of ultra-trace quinolones in milk samples. J. Sep. Sci. 2020, 43, 3093–3102. [Google Scholar] [CrossRef]
- Yu, H.; Jia, Y.; Wu, R.; Chen, X.; Chan, T.W.D. Determination of fluoroquinolones in food samples by magnetic solid-phase extraction based on a magnetic molecular sieve nanocomposite prior to high-performance liquid chromatography and tandem mass spectrometry. Anal. Bioanal. Chem. 2019, 411, 2817–2826. [Google Scholar] [CrossRef]
- Rodríguez-Gómez, R.; García-Córcoles, M.T.; Çipa, M.; Barrón, D.; Navalón, A.; Zafra-Gómez, A. Determination of quinolone residues in raw cow milk. Application of polar stir-bars and ultra-high performance liquid chromatography-tandem mass spectrometry. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2018, 35, 1127–1138. [Google Scholar] [CrossRef]
- Belenguer-Sapiña, C.; Pellicer-Castell, E.; El Haskouri, J.; Simó-Alfonso, E.F.; Amorós, P.; Mauri-Aucejo, A.R. A type UVM-7 mesoporous silica with γ-cyclodextrin for the isolation of three veterinary antibiotics (ofloxacin, norfloxacin, and ciprofloxacin) from different fat-rate milk samples. J. Food Compos. Anal. 2022, 109, 104463. [Google Scholar] [CrossRef]
- Wang, M.; Gao, M.; Zhang, K.; Wang, L.; Wang, W.; Fu, Q.; Xia, Z.; Gao, D. Magnetic covalent organic frameworks with core-shell structure as sorbents for solid phase extraction of fluoroquinolones, and their quantitation by HPLC. Microchim. Acta 2019, 186, 827. [Google Scholar] [CrossRef]
- Li, Y.-L.; Nie, X.-M.; Wang, X.-J.; Zhang, F.; Yang, M.-L.; Guo, W.; Chen, F.-M.; Liu, T.; He, M.-Y. Synthesis of urea-functionalized magnetic porous organic polymers Fe3O4@PDA@UPOPs for rapid extraction of fluoroquinolones in food samples. Microporous Mesoporous Mater. 2021, 324, 111269. [Google Scholar] [CrossRef]
- Sahebi, H.; Konoz, E.; Ezabadi, A.; Niazi, A.; Ahmadi, S.H. Simultaneous determination of five penicillins in milk using a new ionic liquid-modified magnetic nanoparticle based dispersive micro-solid phase extraction followed by ultra-performance liquid chromatography-tandem mass spectrometry. Microchem. J. 2020, 154, 104605. [Google Scholar] [CrossRef]
- Di Rocco, M.; Moloney, M.; Haren, D.; Gutierrez, M.; Earley, S.; Berendsen, B.; Furey, A.; Danaher, M. Improving the chromatographic selectivity of β-lactam residue analysis in milk using phenyl-column chemistry prior to detection by tandem mass spectrometry. Anal. Bioanal. Chem. 2020, 412, 4461–4475. [Google Scholar] [CrossRef]
- Ferreira, D.C.; de Toffoli, A.L.; Maciel, E.V.S.; Lanças, F.M. Online fully automated SPE-HPLC-MS/MS determination of ceftiofur in bovine milk samples employing a silica-anchored ionic liquid as sorbent. Electrophoresis 2018, 39, 2210–2217. [Google Scholar] [CrossRef]
- Wang, J.; Ling, Y.; Zhou, W.; Li, D.; Deng, Y.; Yang, X.; Zhang, F. Targeted analysis of six emerging derivatives or metabolites together with 25 common macrolides in milk using Quick, Easy, Cheap, Effective, Rugged and Safe extraction and ultra-performance liquid chromatography quadrupole/electrostaticfield orbitrap mass spectrometry. J. Sep. Sci. 2020, 43, 3719–3734. [Google Scholar]
- Du, L.-J.; Yi, L.; Ye, L.-H.; Chen, Y.-B.; Cao, J.; Peng, L.-Q.; Shi, Y.-T.; Wang, Q.-Y.; Hu, Y.-H. Miniaturized solid-phase extraction of macrolide antibiotics in honey and bovine milk using mesoporous MCM-41 silica as sorbent. J. Chromatogr. A 2018, 1537, 10–20. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, H.; Ai, L.; Kang, W.; Lian, K.; Wang, J. Determination of gamithromycin residues in eggs, milk and edible tissue of food-producing animals by solid phase extraction combined with ultrahigh-performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. B 2021, 1171, 122637. [Google Scholar] [CrossRef]
- Deng, F.; Yu, H.; Pan, X.; Hu, G.; Wang, Q.; Peng, R.; Tan, L.; Yang, Z. Ultra-high performance liquid chromatography tandem mass spectrometry for the determination of five glycopeptide antibiotics in food and biological samples using solid-phase extraction. J. Chromatogr. A 2018, 1538, 54–59. [Google Scholar] [CrossRef]
- Zhou, H.; Liu, R.; Chen, Q.; Zheng, X.; Qiu, J.; Ding, T.; He, L. Surface molecularly imprinted solid-phase extraction for the determination of vancomycin and norvancomycin in milk by liquid chromatography coupled to tandem mass spectrometry. Food Chem. 2022, 369, 130886. [Google Scholar] [CrossRef]
- Tu, C.; Guo, Y.; Dai, Y.; Wei, W.; Wang, W.; Wu, L.; Wang, A. Determination of Chloramphenicol in Honey and Milk by HPLC Coupled with Aptamer-Functionalized Fe3 O4 /Graphene Oxide Magnetic Solid-Phase Extraction. J. Food Sci. 2019, 84, 3624–3633. [Google Scholar] [CrossRef]
- Mehrabi, F.; Ghaedi, M. Magnetic nanofluid based on green deep eutectic solvent for enrichment and determination of chloramphenicol in milk and chicken samples by high-performance liquid chromatography-ultraviolet: Optimization of microextraction. J. Chromatogr. A 2023, 1689, 463705. [Google Scholar] [CrossRef]
- Yoo, K.-H.; Park, D.-H.; Abd El-Aty, A.M.; Kim, S.-K.; Jung, H.-N.; Jeong, D.-H.; Cho, H.-J.; Hacimüftüoğlu, A.; Shim, J.-H.; Jeong, J.H.; et al. Development of an analytical method for multi-residue quantification of 18 anthelmintics in various animal-based food products using liquid chromatography-tandem mass spectrometry. J. Pharm. Anal. 2021, 11, 68–76. [Google Scholar] [CrossRef]
- Qiao, L.; Sun, R.; Yu, C.; Tao, Y.; Yan, Y. Novel hydrophobic deep eutectic solvents for ultrasound-assisted dispersive liquid-liquid microextraction of trace non-steroidal anti-inflammatory drugs in water and milk samples. Microchem. J. 2021, 170, 106686. [Google Scholar] [CrossRef]
- Zhang, N.; Gao, Y.; Xu, X.; Bao, T.; Wang, S. Hydrophilic carboxyl supported immobilization of UiO-66 for novel bar sorptive extraction of non-steroidal anti-inflammatory drugs in food samples. Food Chem. 2021, 355, 129623. [Google Scholar] [CrossRef]
- Huang, L.; Shen, R.; Liu, R.; Xu, S.; Shuai, Q. Facile fabrication of magnetic covalent organic frameworks for magnetic solid-phase extraction of diclofenac sodium in milk. Food Chem. 2021, 347, 129002. [Google Scholar] [CrossRef]
- Liu, P.; Wu, Z.; Barge, A.; Boffa, L.; Martina, K.; Cravotto, G. Determination of trace antibiotics in water and milk via preconcentration and cleanup using activated carbons. Food Chem. 2022, 385, 132695. [Google Scholar] [CrossRef]
- Chen, D.; Xu, Q.; Lu, Y.; Mao, Y.; Yang, Y.; Tu, F.; Xu, J.; Chen, Y.; Jiang, X.; Lu, J.; et al. The QuEChERS method coupled with high-performance liquid chromatography-tandem mass spectrometry for the determination of diuretics in animal-derived foods. J. Food Compos. Anal. 2021, 101, 103965. [Google Scholar] [CrossRef]
- Zhang, L.; Shi, L.; He, Q.; Li, Y. A rapid multiclass method for antibiotic residues in goat dairy products by UPLC-quadrupole/electrostatic field orbitrap high-resolution mass spectrometry. J. Anal. Sci. Technol. 2021, 12, 14. [Google Scholar] [CrossRef]
- Ghasemi, R.; Mirzaei, H.; Afshar Mogaddam, M.R.; Khandaghi, J.; Javadi, A. Application of magnetic ionic liquid-based air–assisted liquid–liquid microextraction followed by back-extraction optimized with centroid composite design for the extraction of antibiotics from milk samples prior to their determination by HPLC–DAD. Microchem. J. 2022, 181, 107764. [Google Scholar] [CrossRef]
- Guo, X.; Tian, H.; Yang, F.; Fan, S.; Zhang, J.; Ma, J.; Ai, L.; Zhang, Y. Rapid determination of 103 common veterinary drug residues in milk and dairy products by ultra performance liquid chromatography tandem mass spectrometry. Front. Nutr. 2022, 9, 879518. [Google Scholar] [CrossRef]
- Li, J.; Ren, X.; Diao, Y.; Chen, Y.; Wang, Q.; Jin, W.; Zhou, P.; Fan, Q.; Zhang, Y.; Liu, H. Multiclass analysis of 25 veterinary drugs in milk by ultra-high performance liquid chromatography-tandem mass spectrometry. Food Chem. 2018, 257, 259–264. [Google Scholar] [CrossRef]
- Melekhin, A.O.; Tolmacheva, V.V.; Goncharov, N.O.; Apyari, V.V.; Dmitrienko, S.G.; Shubina, E.G.; Grudev, A.I. Multi-class, multi-residue determination of 132 veterinary drugs in milk by magnetic solid-phase extraction based on magnetic hypercrosslinked polystyrene prior to their determination by high-performance liquid chromatography–tandem mass spectrometry. Food Chem. 2022, 387, 132866. [Google Scholar] [CrossRef]
- Castilla-Fernández, D.; Moreno-González, D.; Beneito-Cambra, M.; Molina-Díaz, A. Critical assessment of two sample treatment methods for multiresidue determination of veterinary drugs in milk by UHPLC-MS/MS. Anal. Bioanal. Chem. 2019, 411, 1433–1442. [Google Scholar] [CrossRef]
- Ji, B.; Zhao, W.; Xu, X.; Han, Y.; Jie, M.; Xu, G.; Bai, Y. Development of a modified quick, easy, cheap, effective, rugged, and safe method based on melamine sponge for multi-residue analysis of veterinary drugs in milks by ultra-performance liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2021, 1651, 462333. [Google Scholar] [CrossRef]
- Davis, J.L.; Smith, G.W.; Baynes, R.E.; Tell, L.A.; Webb, A.I.; Riviere, J.E. Update on drugs prohibited from extralabel use in food animals. J. Am. Vet. Med. Assoc. 2009, 235, 528–534. [Google Scholar] [CrossRef]
- Millanao, A.R.; Mora, A.Y.; Villagra, N.A.; Bucarey, S.A.; Hidalgo, A.A. Biological Effects of Quinolones: A Family of Broad-Spectrum Antimicrobial Agents. Molecules 2021, 26, 7153. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, J.; Zhao, F.; Zeng, B. Determination of fluoroquinolones in foods using ionic liquid modified Fe3O4/MWCNTs as the adsorbent for magnetic solid phase extraction coupled with HPLC. Anal. Methods 2020, 12, 4457–4465. [Google Scholar]
- Karageorgou, E.; Christoforidou, S.; Ioannidou, M.; Psomas, E.; Samouris, G. Detection of β-Lactams and Chloramphenicol Residues in Raw Milk-Development and Application of an HPLC-DAD Method in Comparison with Microbial Inhibition Assays. Foods 2018, 7, 82. [Google Scholar] [CrossRef]
- Tumu, K.; Vorst, K.; Curtzwiler, G. Endocrine modulating chemicals in food packaging: A review of phthalates and bisphenols. Compr. Rev. Food Sci. Food Saf. 2023, 22, 1337–1359. [Google Scholar] [CrossRef]
- Kholová, A.; Lhotská, I.; Erben, J.; Chvojka, J.; Švec, F.; Solich, P.; Šatínský, D. Comparing adsorption performance of microfibers and nanofibers with commercial molecularly imprinted polymers and restricted access media for extraction of bisphenols from milk coupled with liquid chromatography. Talanta 2023, 252, 123822. [Google Scholar] [CrossRef]
- Santonicola, S.; Ferrante, M.C.; Murru, N.; Gallo, P.; Mercogliano, R. Hot topic: Bisphenol A in cow milk and dietary exposure at the farm level. J. Dairy Sci. 2019, 102, 1007–1013. [Google Scholar] [CrossRef]
- Yang, J.; Li, Y.; Wang, Y.; Ruan, J.; Zhang, J.; Sun, C. Recent advances in analysis of phthalate esters in foods. TrAC Trends Anal. Chem. 2015, 72, 10–26. [Google Scholar] [CrossRef]
- Frankowski, R.; Grześkowiak, T.; Czarczyńska-Goślińska, B.; Zgoła-Grześkowiak, A. Occurrence and dietary risk of bisphenols and parabens in raw and processed cow’s milk. Food Addit. Contam. Part A 2022, 39, 116–129. [Google Scholar] [CrossRef]
- Mitra, P.; Chatterjee, S.; Paul, N.; Ghosh, S.; Das, M. An Overview of Endocrine Disrupting Chemical Paraben and Search for An Alternative—A Review. Proc. Zool. Soc. 2021, 74, 479–493. [Google Scholar] [CrossRef]
- Seidi, S.; Sadat Karimi, E.; Rouhollahi, A.; Baharfar, M.; Shanehsaz, M.; Tajik, M. Synthesis and characterization of polyamide-graphene oxide-polypyrrole electrospun nanofibers for spin-column micro solid phase extraction of parabens in milk samples. J. Chromatogr. A 2019, 1599, 25–34. [Google Scholar] [CrossRef]
- Yang, J.; Li, Y.; Huang, C.; Jiao, Y.; Chen, J. A Phenolphthalein-Dummy Template Molecularly Imprinted Polymer for Highly Selective Extraction and Clean-Up of Bisphenol A in Complex Biological, Environmental and Food Samples. Polymers 2018, 10, 1150. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, L.; Cui, X.; Zhang, J.; Wang, Y.; Yang, X. Determination of trace bisphenols in milk based on Fe3O4@NH2-MIL-88(Fe)@TpPa magnetic solid-phase extraction coupled with HPLC. Talanta 2023, 256, 124268. [Google Scholar] [CrossRef]
- Zhang, Y.; Yuan, Z.-L.; Deng, X.-Y.; Wei, H.-D.; Wang, W.-L.; Xu, Z.; Feng, Y.; Shi, X. Metal-organic framework mixed-matrix membrane-based extraction combined HPLC for determination of bisphenol A in milk and milk packaging. Food Chem. 2022, 386, 132753. [Google Scholar] [CrossRef]
- Qiao, L.; Sun, R.; Tao, Y.; Yan, Y. New low viscous hydrophobic deep eutectic solvents for the ultrasound-assisted dispersive liquid-liquid microextraction of endocrine-disrupting phenols in water, milk and beverage. J. Chromatogr. A 2022, 1662, 462728. [Google Scholar] [CrossRef]
- Mercogliano, R.; Santonicola, S.; Albrizio, S.; Ferrante, M.C. Occurrence of bisphenol A in the milk chain: A monitoring model for risk assessment at a dairy company. J. Dairy Sci. 2021, 104, 5125–5132. [Google Scholar] [CrossRef]
- Boti, V.; Kobothekra, V.; Albanis, T.; Konstantinou, I. QuEChERS-Based Methodology for the Screening of Alkylphenols and Bisphenol A in Dairy Products Using LC-LTQ/Orbitrap MS. Appl. Sci. 2021, 11, 9358. [Google Scholar] [CrossRef]
- Santonicola, S.; Ferrante, M.C.; di Leo, G.; Murru, N.; Anastasio, A.; Mercogliano, R. Study on endocrine disruptors levels in raw milk from cow’s farms: Risk assessment. Ital. J. Food Saf. 2018, 7, 7668. [Google Scholar] [CrossRef]
- Santonicola, S.; Ferrante, M.C.; Colavita, G.; Mercogliano, R. Development of a high-performance liquid chromatography method to assess bisphenol F levels in milk. Ital. J. Food Saf. 2021, 10, 9975. [Google Scholar] [CrossRef]
- Yue, B.; Liu, J.; Li, G.; Wu, Y. Synthesis of magnetic metal organic framework/covalent organic framework hybrid materials as adsorbents for magnetic solid-phase extraction of four endocrine-disrupting chemicals from milk samples. Rapid Commun. Mass Spectrom. 2020, 34, e8909. [Google Scholar] [CrossRef]
- Palacios Colón, L.; Rascón, A.J.; Ballesteros, E. Simultaneous determination of phenolic pollutants in dairy products held in various types of packaging by gas chromatography–mass spectrometry. Food Control 2023, 146, 109564. [Google Scholar] [CrossRef]
- Palacios Colón, L.; Rascón, A.J.; Hejji, L.; Azzouz, A.; Ballesteros, E. Validation and Use of an Accurate, Sensitive Method for Sample Preparation and Gas Chromatography–Mass Spectrometry Determination of Different Endocrine-Disrupting Chemicals in Dairy Products. Foods 2021, 10, 1040. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, Y.; Yan, Y.; Tang, K.; Ding, C.-F. Self-assembly of poly(ionic liquid) functionalized mesoporous magnetic microspheres for the solid-phase extraction of preservatives from milk samples. J. Sep. Sci. 2020, 43, 766–773. [Google Scholar] [CrossRef]
- Sereshti, H.; Jazani, S.S.; Nouri, N.; AliAbadi, M.H.S. Development of a green miniaturized quick, easy, cheap, effective, rugged, and safe approach in tandem with temperature-assisted solidification of floating menthol droplet for analysis of multiclass pesticide residues in milk. J. Sep. Sci. 2022, 45, 1106–1115. [Google Scholar] [CrossRef]
- Sadat, S.A.N.; Atazadeh, R.; Afshar Mogaddam, M.R. Application of in-situ formed polymer-based dispersive solid phase extraction in combination with solidification of floating organic droplet-based dispersive liquid–liquid microextraction for the extraction of neonicotinoid pesticides from milk samples. J. Sep. Sci. 2023, 46, 2200889. [Google Scholar] [CrossRef]
- Morsi, R.; Ghoudi, K.; Ayyash, M.M.; Jiang, X.; Meetani, M.A. Detection of 11 carbamate pesticide residues in raw and pasteurized camel milk samples using UHPLC-MS/MS: Method development, method validation, and health risk assessment. J. Dairy Sci. 2023, in press. [CrossRef]
- Koloka, O.; Boti, V.; Albanis, T.; Konstantinou, I. Accurate Determination of Pesticide Residues in Milk by Sonication-QuEChERS Extraction and LC-LTQ/Orbitrap Mass Spectrometry. Separations 2023, 10, 146. [Google Scholar] [CrossRef]
- Fedrizzi, G.; Altafini, A.; Armorini, S.; Al-Qudah, K.M.; Roncada, P. LC-MS/MS Analysis of Five Neonicotinoid Pesticides in Sheep and Cow Milk Samples Collected in Jordan Valley. Bull. Environ. Contam. Toxicol. 2019, 102, 347–352. [Google Scholar] [CrossRef]
- Zeiadi, S.; Mogaddam, M.R.A.; Farajzadeh, M.A.; Khandaghi, J. Combination of dispersive solid phase extraction with lighter than water dispersive liquid–liquid microextraction for the extraction of organophosphorous pesticides from milk. Int. J. Environ. Anal. Chem. 2022, 102, 5873–5886. [Google Scholar] [CrossRef]
- Wang, X.; Meng, X.; Wu, Q.; Wang, C.; Wang, Z. Solid phase extraction of carbamate pesticides with porous organic polymer as adsorbent followed by high performance liquid chromatography-diode array detection. J. Chromatogr. A 2019, 1600, 9–16. [Google Scholar] [CrossRef]
- Zheng, W.; Choi, J.-M.; Abd El-Aty, A.M.; Yoo, K.-H.; Park, D.-H.; Kim, S.-K.; Kang, Y.-S.; Hacımüftüoğlu, A.; Wang, J.; Shim, J.-H.; et al. Simultaneous determination of spinosad, temephos, and piperonyl butoxide in animal-derived foods using LC–MS/MS. Biomed. Chromatogr. 2019, 33, e4493. [Google Scholar] [CrossRef]
- Görel-Manav, Ö.; Dinç-Zor, Ş.; Akyildiz, E.; Alpdoğan, G. Multivariate optimization of a new LC–MS/MS method for the determination of 156 pesticide residues in milk and dairy products. J. Sci. Food Agric. 2020, 100, 4808–4817. [Google Scholar] [CrossRef]
- Zhang, X.; Li, T.; Zhang, L.; Hu, T.; Fu, Y.; Guo, Z. Simultaneous determination of sulfoxaflor in 14 daily foods using LC-MS/MS. Int. J. Environ. Anal. Chem. 2019, 99, 557–567. [Google Scholar] [CrossRef]
- Lin, X.-P.; Wang, X.-Q.; Wang, J.; Yuan, Y.-W.; Di, S.-S.; Wang, Z.-W.; Xu, H.; Zhao, H.-Y.; Zhao, C.-S.; Ding, W.; et al. Magnetic covalent organic framework as a solid-phase extraction absorbent for sensitive determination of trace organophosphorus pesticides in fatty milk. J. Chromatogr. A 2020, 1627, 461387. [Google Scholar] [CrossRef]
- Shirani, M.; Akbari-adergani, B.; Jazi, M.B.; Akbari, A. Green ultrasound assisted magnetic nanofluid-based liquid phase microextraction coupled with gas chromatography-mass spectrometry for determination of permethrin, deltamethrin, and cypermethrin residues. Microchim. Acta 2019, 186, 674. [Google Scholar] [CrossRef]
- Hasan, G.M.M.A.; Das, A.K.; Satter, M.A. Multi residue analysis of organochlorine pesticides in fish, milk, egg and their feed by GC-MS/MS and their impact assessment on consumers health in Bangladesh. NFS J. 2022, 27, 28–35. [Google Scholar] [CrossRef]
- Manav, Ö.G.; Dinç-Zor, Ş.; Alpdoğan, G. Optimization of a modified QuEChERS method by means of experimental design for multiresidue determination of pesticides in milk and dairy products by GC–MS. Microchem. J. 2019, 144, 124–129. [Google Scholar] [CrossRef]
- Wanniatie, V.; Sudarwanto, M.B.; Purnawarman, T.; Jayanegara, A. Chemical compositions, contaminants, and residues of organic and conventional goat milk in Bogor District, Indonesia. Vet. World 2019, 12, 1218–1224. [Google Scholar] [CrossRef]
- Koleini, F.; Balsini, P.; Parastar, H. Evaluation of partial least-squares regression with multivariate analytical figures of merit for determination of 10 pesticides in milk. Int. J. Environ. Anal. Chem. 2022, 102, 1900–1910. [Google Scholar] [CrossRef]
- Jouyban, A.; Farajzadeh, M.A.; Afshar Mogaddam, M.R. In matrix formation of deep eutectic solvent used in liquid phase extraction coupled with solidification of organic droplets dispersive liquid-liquid microextraction; application in determination of some pesticides in milk samples. Talanta 2020, 206, 120169. [Google Scholar] [CrossRef]
- Bennett, J.W.; Klich, M. Mycotoxins. Clin. Microbiol. Rev. 2003, 16, 497–516. [Google Scholar] [CrossRef]
- Binder, E.M. Managing the risk of mycotoxins in modern feed production. Anim. Feed Sci. Technol. 2007, 133, 149–166. [Google Scholar] [CrossRef]
- Alshannaq, A.; Yu, J.-H. Occurrence, Toxicity, and Analysis of Major Mycotoxins in Food. Int. J. Environ. Res. Public Health 2017, 14, 632. [Google Scholar] [CrossRef]
- Marin, S.; Ramos, A.J.; Cano-Sancho, G.; Sanchis, V. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food Chem. Toxicol. 2013, 60, 218–237. [Google Scholar] [CrossRef]
- Pitt, J.I.; Miller, J.D. A Concise History of Mycotoxin Research. J. Agric. Food Chem. 2017, 65, 7021–7033. [Google Scholar] [CrossRef]
- Schincaglia, A.; Aspromonte, J.; Franchina, F.A.; Chenet, T.; Pasti, L.; Cavazzini, A.; Purcaro, G.; Beccaria, M. Current Developments of Analytical Methodologies for Aflatoxins’ Determination in Food during the Last Decade (2013–2022), with a Particular Focus on Nuts and Nut Products. Foods 2023, 12, 527. [Google Scholar] [CrossRef]
- Khan, R.; Ghazali, F.M.; Mahyudin, N.A.; Samsudin, N.I.P. Aflatoxin Biosynthesis, Genetic Regulation, Toxicity, and Control Strategies: A Review. J. Fungi 2021, 7, 606. [Google Scholar] [CrossRef]
- Bashiry, M.; Javanmardi, F.; Sadeghi, E.; Shokri, S.; Hossieni, H.; Oliveira, C.A.F.; Mousavi Khaneghah, A. The prevalence of aflatoxins in commercial baby food products: A global systematic review, meta-analysis, and risk assessment study. Trends Food Sci. Technol. 2021, 114, 100–115. [Google Scholar] [CrossRef]
- Flores-Flores, M.E.; González-Peñas, E. Short communication: Analysis of mycotoxins in Spanish milk. J. Dairy Sci. 2018, 101, 113–117. [Google Scholar] [CrossRef]
- IARC. Some Traditional Herbal Medicines, Some Mycotoxins, Naphthalene and Styrene; IARC: Lyon, France, 2002. [Google Scholar]
- Min, L.; Li, D.; Tong, X.; Sun, H.; Chen, W.; Wang, G.; Zheng, N.; Wang, J. The challenges of global occurrence of aflatoxin M1 contamination and the reduction of aflatoxin M1 in milk over the past decade. Food Control 2020, 117, 107352. [Google Scholar] [CrossRef]
- Turna, N.S.; Wu, F. Aflatoxin M1 in milk: A global occurrence, intake, & exposure assessment. Trends Food Sci. Technol. 2021, 110, 183–192. [Google Scholar]
- Flores-Flores, M.E.; González-Peñas, E. Analysis of Mycotoxins in Peruvian Evaporated Cow Milk. Beverages 2018, 4, 34. [Google Scholar] [CrossRef]
- Flores-Flores, M.E.; Lizarraga, E.; López de Cerain, A.; González-Peñas, E. Presence of mycotoxins in animal milk: A review. Food Control 2015, 53, 163–176. [Google Scholar] [CrossRef]
- González-Jartín, J.M.; Rodríguez-Cañás, I.; Alfonso, A.; Sainz, M.J.; Vieytes, M.R.; Gomes, A.; Ramos, I.; Botana, L.M. Multianalyte method for the determination of regulated, emerging and modified mycotoxins in milk: QuEChERS extraction followed by UHPLC–MS/MS analysis. Food Chem. 2021, 356, 129647. [Google Scholar] [CrossRef]
- Sun, F.; Wu, P.; Abdallah, M.F.; Tan, H.; Li, Y.; Yang, S. One sample multi-point calibration curve as a novel approach for quantitative LC-MS analysis: The quantitation of six aflatoxins in milk and oat-based milk as an example. Food Chem. 2023, 420, 135593. [Google Scholar] [CrossRef]
- Ansari, M.Z.; Kumar, A.; Ahari, D.; Priyadarshi, A.; Lolla, P.; Bhandari, R.; Swaminathan, R. Protein charge transfer absorption spectra: An intrinsic probe to monitor structural and oligomeric transitions in proteins. Faraday Discuss. 2018, 207, 91–113. [Google Scholar] [CrossRef]
- Zheng, B.; Yu, Y.; Wang, M.; Wang, J.; Xu, H. Qualitative-quantitative analysis of multi-mycotoxin in milk using the high-performance liquid chromatography-tandem mass spectrometry coupled with the quick, easy, cheap, effective, rugged and safe method. J. Sep. Sci. 2022, 45, 432–440. [Google Scholar] [CrossRef]
- Rodríguez-Carrasco, Y.; Izzo, L.; Gaspari, A.; Graziani, G.; Mañes, J.; Ritieni, A. Simultaneous Determination of AFB1 and AFM1 in Milk Samples by Ultra High Performance Liquid Chromatography Coupled to Quadrupole Orbitrap Mass Spectrometry. Beverages 2018, 4, 43. [Google Scholar] [CrossRef]
- Panara, A.; Katsa, M.; Kostakis, M.; Bizani, E.; Thomaidis, N.S. Monitoring of Aflatoxin M1 in Various Origins Greek Milk Samples Using Liquid Chromatography Tandem Mass Spectrometry. Separations 2022, 9, 58. [Google Scholar] [CrossRef]
- Zhao, Y.; Yuan, Y.C.; Bai, X.L.; Liu, Y.M.; Wu, G.F.; Yang, F.S.; Liao, X. Multi-mycotoxins analysis in liquid milk by UHPLC-Q-Exactive HRMS after magnetic solid-phase extraction based on PEGylated multi-walled carbon nanotubes. Food Chem. 2020, 305, 125429. [Google Scholar] [CrossRef]
- Leite, M.; Freitas, A.; Barbosa, J.; Ramos, F. Mycotoxins in Raw Bovine Milk: UHPLC-QTrap-MS/MS Method as a Biosafety Control Tool. Toxins 2023, 15, 173. [Google Scholar] [CrossRef]
- Pandey, A.K.; Shakya, S.; Patyal, A.; Ali, S.L.; Bhonsle, D.; Chandrakar, C.; Kumar, A.; Khan, R.; Hattimare, D. Detection of aflatoxin M1 in bovine milk from different agro-climatic zones of Chhattisgarh, India, using HPLC-FLD and assessment of human health risks. Mycotoxin Res. 2021, 37, 265–273. [Google Scholar] [CrossRef]
- Maggira, M.; Ioannidou, M.; Sakaridis, I.; Samouris, G. Determination of Aflatoxin M1 in Raw Milk Using an HPLC-FL Method in Comparison with Commercial ELISA Kits—Application in Raw Milk Samples from Various Regions of Greece. Vet. Sci. 2021, 8, 46. [Google Scholar] [CrossRef]
- Pietruszka, K.; Panasiuk, Ł.; Jedziniak, P. Survey of the enniatins and beauvericin in raw and UHT cow’s milk in Poland. J. Vet. Res. 2023, 67, 259–266. [Google Scholar] [CrossRef]
- Marimón Sibaja, K.V.; Gonçalves, K.D.M.; Garcia, S.D.O.; Feltrin, A.C.P.; Nogueira, W.V.; Badiale-Furlong, E.; Garda-Buffon, J. Aflatoxin M1 and B1 in Colombian milk powder and estimated risk exposure. Food Addit. Contam. Part B 2019, 12, 97–104. [Google Scholar] [CrossRef]
- Khaneghahi Abyaneh, H.; Bahonar, A.; Noori, N.; Yazdanpanah, H.; Shojaee AliAbadi, M.H. Exposure to Aflatoxin M1 through Milk Consumption in Tehran Population, Iran. Iran. J. Pharm. Res. 2019, 18, 1332–1340. [Google Scholar]
- Pape-Zambito, D.A.; Roberts, R.F.; Kensinger, R.S. Estrone and 17β-estradiol concentrations in pasteurized-homogenized milk and commercial dairy products. J. Dairy Sci. 2010, 93, 2533–2540. [Google Scholar] [CrossRef]
- Bártíková, H.; Podlipná, R.; Skálová, L. Veterinary drugs in the environment and their toxicity to plants. Chemosphere 2016, 144, 2290–2301. [Google Scholar] [CrossRef]
- Liao, X.; Chen, C.; Shi, P.; Yue, L. Determination of melamine in milk based on β-cyclodextrin modified carbon nanoparticles via host–guest recognition. Food Chem. 2021, 338, 127769. [Google Scholar] [CrossRef]
- Öztürk, S.; Demir, N. Development of a novel IMAC sorbent for the identification of melamine in dairy products by HPLC. J. Food Compos. Anal. 2021, 100, 103931. [Google Scholar] [CrossRef]
- Hau, A.K.-c.; Kwan, T.H.; Li, P.K.-t. Melamine Toxicity and the Kidney. J. Am. Soc. Nephrol. 2009, 20, 245. [Google Scholar] [CrossRef]
- Ogasawara, H.; Imaida, K.; Ishiwata, H.; Toyoda, K.; Kawanishi, T.; Uneyama, C.; Hayashi, S.; Takahashi, M.; Hayashi, Y. Urinary bladder carcinogenesis induced by melamine in F344 male rats: Correlation between carcinogenicity and urolith formation. Carcinogenesis 1995, 16, 2773–2777. [Google Scholar] [CrossRef]
- Ceniti, C.; Spina, A.A.; Piras, C.; Oppedisano, F.; Tilocca, B.; Roncada, P.; Britti, D.; Morittu, V.M. Recent Advances in the Determination of Milk Adulterants and Contaminants by Mid-Infrared Spectroscopy. Foods 2023, 12, 2917. [Google Scholar] [CrossRef]
- Rajpoot, M.; Bhattacharya, R.; Sharma, S.; Gupta, S.; Sharma, V.; Sharma, A.K. Melamine contamination and associated health risks: Gut microbiota does make a difference. Biotechnol. Appl. Biochem. 2021, 68, 1271–1280. [Google Scholar] [CrossRef]
- Strashnov, I.; Karunarathna, N.B.; Fernando, B.R.; Dissanayake, C.; Binduhewa, K.M. An isotope dilution liquid chromatography-mass spectrometry method for detection of melamine in milk powder. Food Addit. Contam. Part A 2021, 38, 1805–1816. [Google Scholar] [CrossRef]
- Baan, R.; Grosse, Y.; Straif, K.; Secretan, B.; Ghissassi, F.E.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Freeman, C.; Galichet, L.; et al. A review of human carcinogens—Part F: Chemical agents and related occupations. Lancet Oncol. 2009, 10, 1143–1144. [Google Scholar] [CrossRef]
- Shetty, S.A.; Rangiah, K. Simple click chemistry-based derivatization to quantify endogenous formaldehyde in milk using ultra-high-performance liquid chromatography/tandem mass spectrometry in selected reaction monitoring mode. Rapid Commun. Mass Spectrom. 2020, 34, e8865. [Google Scholar] [CrossRef]
- Carpenter, D.O. Exposure to and health effects of volatile PCBs. Rev. Environ. Health 2015, 30, 81–92. [Google Scholar] [CrossRef]
- Amirdivani, S.; Khorshidian, N.; Ghobadi Dana, M.; Mohammadi, R.; Mortazavian, A.M.; Quiterio de Souza, S.L.; Barbosa Rocha, H.; Raices, R. Polycyclic aromatic hydrocarbons in milk and dairy products. Int. J. Dairy Technol. 2019, 72, 120–131. [Google Scholar] [CrossRef]
- Nisbet, I.C.T.; LaGoy, P.K. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul. Toxicol. Pharmacol. 1992, 16, 290–300. [Google Scholar] [CrossRef]
- Rengarajan, T.; Rajendran, P.; Nandakumar, N.; Lokeshkumar, B.; Rajendran, P.; Nishigaki, I. Exposure to polycyclic aromatic hydrocarbons with special focus on cancer. Asian Pac. J. Trop. Biomed. 2015, 5, 182–189. [Google Scholar] [CrossRef]
- Hill, N.I.; Becanova, J.; Lohmann, R. A sensitive method for the detection of legacy and emerging per- and polyfluorinated alkyl substances (PFAS) in dairy milk. Anal. Bioanal. Chem. 2022, 414, 1235–1243. [Google Scholar] [CrossRef]
- Abafe, O.A.; Macheka, L.R.; Olowoyo, J.O. Confirmatory Analysis of Per and Polyfluoroalkyl Substances in Milk and Infant Formula Using UHPLC–MS/MS. Molecules 2021, 26, 3664. [Google Scholar] [CrossRef]
- Sun, X.; Ji, W.; Hou, S.; Wang, X. Facile synthesis of trifluoromethyl covalent organic framework for the efficient microextraction of per-and polyfluorinated alkyl substances from milk products. J. Chromatogr. A 2020, 1623, 461197. [Google Scholar] [CrossRef]
- Gallocchio, F.; Moressa, A.; Zonta, G.; Angeletti, R.; Lega, F. Fast and Sensitive Analysis of Short- and Long-Chain Perfluoroalkyl Substances in Foods of Animal Origin. Molecules 2022, 27, 7899. [Google Scholar] [CrossRef]
- Ren, J.; Lu, Y.; Han, Y.; Qiao, F.; Yan, H. Novel molecularly imprinted phenolic resin–dispersive filter extraction for rapid determination of perfluorooctanoic acid and perfluorooctane sulfonate in milk. Food Chem. 2023, 400, 134062. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, L.; Li, B. Magnetic molecular imprinting polymers based on three-dimensional (3D) graphene-carbon nanotube hybrid composites for analysis of melamine in milk powder. Food Chem. 2018, 255, 226–234. [Google Scholar] [CrossRef]
- García Londoño, V.A.; Puñales, M.; Reynoso, M.; Resnik, S. Melamine contamination in milk powder in Uruguay. Food Addit. Contam. Part B 2018, 11, 15–19. [Google Scholar] [CrossRef]
- Li, N.; Zhao, T.; Du, L.; Zhang, Z.; Nian, Q.; Wang, M. Fast and simple determination of estrogens in milk powders by magnetic solid-phase extraction using carbon nitride composites prior to HPLC. Anal. Bioanal. Chem. 2021, 413, 215–223. [Google Scholar] [CrossRef]
- Liu, K.; Kang, K.; Li, N.; An, J.; Lian, K.; Kang, W. Simultaneous Determination of Five Hormones in Milk by Automated Online Solid-Phase Extraction Coupled to High-Performance Liquid Chromatography. J. AOAC Int. 2020, 103, 265–271. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, C.; Lian, J.; Liang, N.; Zhao, L. Development of extraction separation technology based on deep eutectic solvent and magnetic nanoparticles for determination of three sex hormones in milk. J. Chromatogr. B 2021, 1166, 122558. [Google Scholar] [CrossRef]
- Lu, Y.; Shen, Q.; Zhai, C.; Yan, H.; Shen, S. Ant nest-like hierarchical porous imprinted resin-dispersive solid-phase extraction for selective extraction and determination of polychlorinated biphenyls in milk. Food Chem. 2023, 406, 135076. [Google Scholar] [CrossRef]
- Shariatifar, N.; Dadgar, M.; Fakhri, Y.; Shahsavari, S.; Moazzen, M.; Ahmadloo, M.; Kiani, A.; Aeenehvand, S.; Nazmara, S.; Mousavi Khanegah, A. Levels of polycyclic aromatic hydrocarbons in milk and milk powder samples and their likely risk assessment in Iranian population. J. Food Compos. Anal. 2020, 85, 103331. [Google Scholar] [CrossRef]
- Faria, I.D.L.; Gouvêa, M.M.; Pereira Netto, A.D.; de Carvalho Marques, F.F. Determination of formaldehyde in bovine milk by micellar electrokinetic chromatography with diode array detection. LWT 2022, 163, 113473. [Google Scholar] [CrossRef]
- Hajrulai-Musliu, Z.; Uzunov, R.; Jovanov, S.; Kerluku, M.; Jankuloski, D.; Stojkovski, V.; Pendovski, L.; Sasanya, J.J. Determination of Veterinary Drug Residues, Mycotoxins, and Pesticide Residues in Bovine Milk by Liquid Chromatography Electrospray Ionisation -tandem Mass Spectrometry. J. Vet. Res. 2022, 66, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-A.; Abd El-Aty, A.M.; Zheng, W.; Kim, S.-K.; Cho, S.-H.; Choi, J.-m.; Hacımüftüo, A.; Jeong, J.H.; Wang, J.; Shim, J.-H.; et al. Simultaneous determination of clanobutin, dichlorvos, and naftazone in pork, beef, chicken, milk, and egg using liquid chromatography-tandem mass spectrometry. Food Chem. 2018, 252, 40–48. [Google Scholar] [CrossRef]
- Liu, X.-L.; Wang, Y.-H.; Ren, S.-Y.; Li, S.; Wang, Y.; Han, D.-P.; Qin, K.; Peng, Y.; Han, T.; Gao, Z.-X.; et al. Fabrication of Magnetic Al-Based Fe3O4@MIL-53 Metal Organic Framework for Capture of Multi-Pollutants Residue in Milk Followed by HPLC-UV. Molecules 2022, 27, 2088. [Google Scholar] [CrossRef]
Target EPs | Category | Extraction Method | Analysis Technique | Matrix | Analytical Parameters | Conc. in Real Samples | Country | Ref. |
---|---|---|---|---|---|---|---|---|
Tetracycline (TC), oxytetracycline (OTC), chlortetracycline (CTC), doxycycline (DC) | TC antibiotics | FPSE | HPLC-UV | Milk | LOD: 15 μg/kg | ND | Greece | [101] |
LOQ: 50 μg/kg | ||||||||
CCα: 103.2–108.1 μg/kg | ||||||||
CCβ: 108.6–114.3 μg/kg | ||||||||
R: 88.9–122.4% | ||||||||
RSD: ≤14.5% | ||||||||
TC, OTC, CTC | TC antibiotics | MSPD | UHPLC–MS/MS | Milk powder | LOD: 0.217–0.318 ng/g | ND | China | [102] |
LOQ: 0.723–1.060 ng/g | ||||||||
LR: 1–100 ng/g R2: 0.998–0.999 | ||||||||
R: 84.7–93.9% | ||||||||
RSD: <7.5% | ||||||||
TC, OTC, DC | TC antibiotics | MSPE-DLLME | HPLC-UV | Bovine milk | LOD: 1.8–2.9 μg/L | Spiked | Iran | [51] |
LOQ: 6.1–9.7 μg/L | ||||||||
LR: 10.0–200.0 μg/L | ||||||||
R2: >0.9929 | ||||||||
RSD: 2.5–8.8% | ||||||||
R: 70.6–121.5% | ||||||||
OTC, CTC, TC | TC antibiotics | MSPE | HPLC-UV | Milk | LOD: 1.29–2.31 ng/mL | ND | China | [103] |
LOQ: 4.26–7.62 ng/mL | ||||||||
LR: 5–250 ng/mL | ||||||||
R: 79–109% | ||||||||
RSD: <7.25% | ||||||||
TC, OTC, CTC, DC | TC antibiotics | MSPE | HPLC-UV | Milk | LOD: 1.03–1.31 μg/L | ND | China | [100] |
LOQ: 3.46–4.41 μg/L | ||||||||
LR: 5.0–700 μg/L R2: 0.9991–0.9996 | ||||||||
R: 86.7–98.6% | ||||||||
RSD: 1.4–5.7% | ||||||||
OTC, TC, CTC, DC | TC antibiotics | QuEChERS | HPLC-DAD | Milk | LOD: 15 μg/kg | ND | Greece | [104] |
LOQ: 50 μg/kg | ||||||||
CCα: 100.3–105.6 μg/kg | ||||||||
CCβ: 100.6–109.7 μg/kg | ||||||||
R: 83.07–106.3% | ||||||||
RSD: <15.5% | ||||||||
Sulfadiazine (SD), sulfapyridine (SP), sulfathiazole (SZ), sulfamethazine (SMZ), sulfamethoxypyridazine (SMP), sulfachloropyridazine (SCP), sulfamethoxazole (SMX), sulfisoxazole (SIX), sulfadimethoxine (SDM), sulfaquinoxaline (SQX) | SA antibiotics | SPME | HPLC-DAD | Milk | LOD: 0.077–0.350 μg/L | NS | Greece | [105] |
LOQ: 0.23–1.05 μg/L | ||||||||
LR: 0.5–150 μg/L R2: >0.9964 | ||||||||
R: 88–97% | ||||||||
RSD: <10% | ||||||||
CCα: 111.2–113.6 μg/L | ||||||||
CCβ: 122.6–127.4 μg/L | ||||||||
Sulfanilamide (SN), SD, SMZ, sulfamerazine (SM), SP, SZ, SMP, SMX, SDM | SA antibiotics | SPE | HPLC-UV | Milk | LOD: 3.0–12.3 μg/kg | ND | China | [106] |
LOQ: 10–43 μg/kg | ||||||||
LR: 20–1000 μg/kg | ||||||||
R: 80.7–101.3% | ||||||||
RSD: <8.5% | ||||||||
SN, SD, SZ, and sulfamethizole (SMT) | SA antibiotics | CPME | HPLC-DAD | Milk | LOD: 16.7 μg/kg | ND | Greece | [107] |
LOQ: 50 μg/kg | ||||||||
LR: 50–2000 μg/L | ||||||||
CCα: 104.5–111.4 μg/kg | ||||||||
CCβ: 109.4–118.1 μg/kg | ||||||||
Absolute R: 12.1–18.1% | ||||||||
RSD: <11.2% | ||||||||
SZ, SME, SDM, Sulfamonomethoxine (SMM) | SA antibiotics | d-MSPE | HPLC-DAD | Milk | LOD: 2.5, 5.0 μg/kg | SME: 15.1 μg/kg | Thailand | [108] |
LOQ: 7.5–10.0 μg/kg | ||||||||
LR: 2.5–150.0 μg/kg R2: >0.997 | ||||||||
R: 83.0–99.2% | ||||||||
RSD: <6% | ||||||||
Ciprofloxacin (CIP), fleroxacin (FLE), and oxolinic acid (OXO), danofloxacin (DAN), difloxacin (DIF), flumequine (FLU), lomefloxacin (LOM) marbofloxacin (MAR), nalidixic acid (NAL), norfloxacin (NOR), pefloxacin (PEF), pipemidic acid (PIP), sarafloxacin (SAR), enrofloxacin (ENR), levofloxacin (LEV), trovafloxacin (TRFX), orbifloxacin (ORB), ofloxacin (OFl), and cinoxacin (CIN) | Q antibiotics | QuEChERS | UPLC–MS/MS | Goat’s milk | LOQ: 5 ppb | ND | Taiwan | [32] |
R2: >0.9853 | ||||||||
R: 73.4–114.2% | ||||||||
CV: <15% | ||||||||
DIF, ORB, Sparfloxacin (SPA), SAR, FLE, MAR, OFL, ENR, DAN, LOM, PEF, CIP, ENO, NOR, PIP, CIN, OXO, NAL | Q antibiotics | MSPE | HPLC-MS/MS | Milk | LOD: 3.1–13.3 ng/L | CIP (2 μg/L), DAN (0.66 μg/L), (One sample) | China | [109] |
LOQ: 10.4–44.2 ng/L | ||||||||
LR: 0.05–10 μg/L R2: 0.9975–0.9996 | ||||||||
R: 82.4–103.9% | ||||||||
RSD: 2.9–15.1% | ||||||||
OFL, NOR, CIP, ENR, DIF, PEF, DAN | Q antibiotics | MSPE | HPLC–MS/MS | Milk | LOD: 0.35–1.5 μg/L | ND | China | [110] |
LOQ: 1.2–4 μg/L | ||||||||
LR: 1.5–200 μg/L R2: >0.99 | ||||||||
R: 75–88.3% | ||||||||
RSD: 5.3–9.1% | ||||||||
CIN, CIP, DAN, DIF, enoxacin (ENO), ENR, FLU LOM, MAR, moxifloxacin (MOX), NAL, NOR, OFL, OXO, PIP, piromidic acid (PIRO), SAR | Q antibiotics | SBSE | UHPLC–MS/MS | Raw cow milk | LOD: 0.1–1.0 μg/kg | CIP, ENR and MAR 2.7–35.3 μg/kg | Spain | [111] |
LOQ: 0.5–4.0 μg/kg | ||||||||
LR: 0.5–150 μg/kg R2: 0.99–0.999 | ||||||||
R: 88.0–114.0% | ||||||||
RSD: 2.0–14.0% | ||||||||
CCα: 30.7–106.1 μg/kg | ||||||||
CCβ: 31.3–122.0 μg/kg | ||||||||
OFL, NOR, CIP | Q antibiotics | SPE | HPLC-FLD | Cow milk | LOD: 39, 30, 33 ng/L | ND | Spain | [112] |
LOQ: 120, 92, 100 ng/L | ||||||||
LR: 1.8–250 μg/L | ||||||||
R: 60–70% | ||||||||
RSD: 4–13% | ||||||||
CIP, ENR, NOR, LOM, ENO, SPA | Q antibiotics | SPE | HPLC-UV | Milk | LOD: 2.8–5.1 ng/g | ND | China | [47] |
LOQ: 9.5–17 ng/g | ||||||||
LR: 10–2000 ng/g R2: 0.9972–0.9997 | ||||||||
R: 85.8–117.9% | ||||||||
RSD: ≤9.4% | ||||||||
CCα: 102.1–105.1 ng/g | ||||||||
CCβ: 108.3–116.0 ng/g | ||||||||
CIP, ENR, LOM, PEF, LEV gatifloxacin (GAT) | Q antibiotics | MSPE | HPLC-DAD | Milk | LOD: 0.25–0.5 ng/g | ND | China | [113] |
LR: 2.5–1500 ng/g R2: >0.9996 | ||||||||
R: 81.05–98.75 | ||||||||
RSD: 1.5–4.3% | ||||||||
PEF, CIP, ENR, LOM, SAR | Q antibiotics | MSPE | HPLC-MS/MS | Milk | LOD: 0.04–0.10 ng/g | Spiked | China | [114] |
LOQ: 0.1–0.2 ng/g | ||||||||
LR: 0.1–200 ng/g r: 0.9991–0.9997 | ||||||||
R: 78.1–95.2% | ||||||||
RSD: 1.2–7.9% | ||||||||
ENO, FLE, OFL, NOR, PEF, LOM | Q antibiotics | MSPE | HPLC-UV | Milk | LOD: 0.05–0.20 μg/L | ND | China | [71] |
LOQ: 0.19–0.71 μg/L | ||||||||
LR: 0.5–200 μg/L r: 0.9982–0.9996 | ||||||||
R: 90.4–101.2% | ||||||||
RSD: 3.5–4.7% | ||||||||
Ampicillin, benzylpenicillin, amoxicillin, oxacillin, and cloxacillin | β-lactam antibiotics | D-m-SPE | UPLC–MS/MS | Cow, goat, and sheep milk | LOD: 0.03–0.20 μg/kg | ND | Iran | [115] |
LOQ: 0.17–0.68 μg/kg | ||||||||
LR: 0.1–300 μg/kg R2: 0.9978–0.9995 | ||||||||
R: 87–107% | ||||||||
RSD: ≤5.8% | ||||||||
CCα: 4.1–31.0 μg/kg | ||||||||
CCβ: 4.3–32.1 μg/kg | ||||||||
Ampicillin | β-lactam antibiotics | EME | HPLC-UV | Cow milk | LOD: 0.6 μg/L | ND | Iran | [94] |
LR: 2–100 μg/L | ||||||||
R2: 0.995 | ||||||||
R: 37–45% | ||||||||
RSD: <7.1% | ||||||||
Thirty-two antibiotics | β-lactam antibiotics | d-SPE | UHPLC-MS/MS | Bovine milk | LOD: 0.0090–1.5 μg/kg | NS | Ireland | [116] |
LOQ: 0.030–5.0 μg/kg | ||||||||
R2 ≥ 0.98 | ||||||||
R: 91–130% | ||||||||
RSD: 1.4–38.6% | ||||||||
CCα: 2.1–133 μg/kg | ||||||||
CCβ: 2.4–182 μg/kg | ||||||||
Ceftiofur | β-lactam antibiotics | Online SPE | HPLC-MS/MS | Bovine milk | LOD: 0.1 μg /L | ND | Brazil | [117] |
LOQ: 0.7 μg /L | ||||||||
R2: >0.98 | ||||||||
R: 73.4–111.3% | ||||||||
RSD: <15% | ||||||||
Thirty-one compounds | Macrolide antibiotics | QuEChERS | UPLC–MS/MS | Milk | LOD: 0.1–0.5 μg/L | LOD < C < LOQ | China | [118] |
LOQ: 0.5–2.0 μg/L | ||||||||
LR: 1–200 μg/L R2: >0.990 | ||||||||
R: 81.07–110.1% | ||||||||
RSD: <5.1% | ||||||||
Azithromycin (AZI), clarithromycin (CLA), erythromycin (ERY), lincomycin (LIN), roxithromycin (ROX) | Macrolide antibiotics | mini-SPE | UHPLC-Q-TOF/MS | Bovine milk | LOD: 0.017–0.76 μg/kg | LIN: 2.16 μg/kg AZI: 174.94 μg/kg ERY: 7.91 μg/kg CLA: 24.04 μg/kg ROX: 13.87 μg/kg | China | [119] |
LOQ: 0.054–2.52 μg/kg | ||||||||
MDL: 0.027–1.01 μg/kg | ||||||||
MQL: 0.026–0.96 μg/kg | ||||||||
R2: >0.99 | ||||||||
R: 77.91–105.34% | ||||||||
Gamithromycin | Semisynthetic macrolide antibiotics | SPE | UHPLC-MS/MS | Milk | LOD: 0.30–0.40 μg/kg | ND | China | [120] |
LOQ: 0.80–1.0 μg/kg | ||||||||
LR: 1.0–200 μg/kg R2: >0.99 | ||||||||
R: 109.8–114.8% | ||||||||
RSD: 1.4–6.8% | ||||||||
Lincomycin (LIN) | Lincosamide antibiotics | CSMISPE | HPLC-UV | Pasteurized milk | LOD: 0.02 μg/mL | 0.10–0.61 μg/mL | Iran | [66] |
LOQ: 0.08 μg/mL | ||||||||
LR: 0.08–2 μg/mL R2: 0.999 | ||||||||
R: 80–89% | ||||||||
RSD: ≤4.03% | ||||||||
Vancomycin, teicoplanin, telavancin, oritavancin, dalbavancin | Glycopeptide antibiotics | SPE | UHPLC–MS/MS | Milk | LOD: 0.33 μg/kg | Spiked | China | [121] |
LOQ: 1.00 μg/kg | ||||||||
R2: 0.9987–0.9999 | ||||||||
R: 83–102% | ||||||||
RSD: 1–6.8% | ||||||||
Vancomycin and norvancomycin | Glycopeptide antibiotics | Online SPE | LC-HRMS | Milk | LOD: 0.15 μg/kg | Spiked | China | [44] |
LOQ: 0.5 μg/kg | ||||||||
LR: 0–200 ng/mL R2: >0.9983 | ||||||||
R: 80.00–92.96%, 80.68–91.31% | ||||||||
RSD: 4.90–9.35% | ||||||||
Vancomycin and norvancomycin | Glycopeptide antibiotics | SMISPE | LC–MS/MS | Milk | LOD: 0.5 μg/kg | ND | China | [122] |
LOQ: 1.0 μg/kg | ||||||||
LR: 0.5–50 μg/kg | ||||||||
R: 83.3–92.1% | ||||||||
RSD: <16.8% | ||||||||
Chloramphenicol (CAP) | Amphenicol antibiotics | MSPE | HPLC-UV | Milk | LOD: 0.24 μg/L | ND | China | [123] |
LOQ: 0.79 μg/L | ||||||||
LR: 7–1.0 × 103 μg/L R2: 0.9994 | ||||||||
R: 80.5–105.0% | ||||||||
RSD: 5.3–8.9% | ||||||||
Chloramphenicol (CAP) | Amphenicol antibiotics | SS-DMNF-ME | HPLC-UV | Milk | LOD: 0.22–0.25 ng/mL | ND | Iran | [124] |
LOQ: 0.73–0.85 ng/mL | ||||||||
LR: 0.9–250 ng/mL R2: ≥0.982 | ||||||||
R: 91.4–95.1% | ||||||||
RSD: ≤4.16 | ||||||||
Closantel, nitroxynil, niclosamide, rafoxanide, eprinomectin, emamectin, levamisole, cymiazole, praziquantel, tetramisole, thiophanate, morantel, pyrantel, fluazuron, guaifenesin, carbendazim, cambendazole, trichlorfon | Anthelmintics | LLE | LC-MS/MS | Milk | LOD: 0.1–5 μg/kg | ND | Korea | [125] |
LOQ: 0.4–10 μg/kg | ||||||||
R2: ≥0.9752 | ||||||||
R: 64.6–112.6% | ||||||||
RSD: ≤13.4 | ||||||||
Albendazole (ABZ), albendazole sulfoxide (ABZ-SO), benomyl (BEN), carbendazim (CBZ), fenbendazole (FBZ), fenbendazole sulfone (FBZ-SO2), fenbendazole sulfoxide (FBZ-SO), mebendazole (MBZ), mebendazole-amine (MBZ-NH2), thiabendazole (TBZ), 5-hydroxy-thiabendazole (5-OH-TBZ), triclabenda-zole (TCB), triclabendazole sulfone (TCB-SO2), triclabendazole sulfoxide (TCB-SO), Albendazole-2-aminosulfone (ABZ-NH2-SO2) | Anthelmintics | SALLE | CLC-UV | Cow, sheep and goat milk | LOD: 1.0–2.8 μg/kg | ND | Spain | [55] |
LOQ: 3.2–9.5 μg/kg | ||||||||
LR: 3.2–200 μg/kg R2: >0.9985 | ||||||||
R: 79.1–99.6% | ||||||||
RSD: 1.6–14.2% | ||||||||
Mebendazole | Anthelmintics | BSASLE + BUASLE | MLC-DAD | Milk | LOD: 0.2 ppm | 1–7.4 ppm | India | [54] |
LOQ: 0.6 ppm | ||||||||
r2 = 0.9996 | ||||||||
R: 98.5–99.8% | ||||||||
RSD: <5% | ||||||||
Salicylic acid (SA), oxaprozin (OXP), diclofenac (DCF) and ibuprofen (IBF) | NSAIDs | UA-HDES-DLLME | HPLC-UV | Milk | LOD: 0.5–1 μg/L | ND | China | [126] |
LOQ: 1–5 μg/L | ||||||||
LR: 5–2000 μg/L R2: 0.994–0.999 | ||||||||
R: 65.88–110.80% | ||||||||
RSD: 1.11–16.9% | ||||||||
Ketoprofen (Ket), flurbiprofen (Flu), ibuprofen (Ibu), naproxen (Nap), and diclofenac sodium (DS) | NSAIDs | BSE | UPLC-DAD | Milk | LOD: 1.14–4.50 ng/mL | ND | China | [127] |
LOQ: 3.76–14.85 ng/mL | ||||||||
LR: 10–1000 ng/mL R2: 0.9988–0.9998 | ||||||||
R: 80.8% to 110.2% | ||||||||
RSD: 2.3–3.5% | ||||||||
Diclofenac sodium (DS) | NSAIDs | MSPE | HPLC-MS/UV | Milk | LOD: 10 ng/kg | 28–68 ng/kg | China | [128] |
LOQ: 25 ng/kg | ||||||||
LR: 50–2000 ng/kg R2: 0.9996 | ||||||||
R: 87–103% | ||||||||
RSD: 2.4–11.3% | ||||||||
Spironolactone (SPRL), canrenone (CR), chlorothiazide (CTZ), hydrochlorothiazide (HCTZ), acetazolamide (AZ), furosemide (FSM), 4-amino-6-chlorobenzene-1,3-disulfonamide (ACB) | Diuretics | modified QuEChERS | HPLC–MS/MS | Milk | LOQ: 0.5–1.0 μg/kg | ND | China [129] | [130] |
R2: 0.9954–0.9999 | ||||||||
R: 73–113.9% | ||||||||
RSD: 2.45–10% | ||||||||
Chloramphenicol (CAP) Tetracycline (TC) | Multiclass antibiotics | MSPE | HPLC-DAD | Milk | LOD: 3.02, 3.52 ng/mL | CAP: (one sample): 53.3 ng/mL TC: (one sample): 75.8 ng/mL | Turkey | [52] |
LOQ: 9.63, 9.83 ng/mL | ||||||||
LR: 10.0–600.0 ng/mL R2: 0.9954, 0.9973 | ||||||||
R: 94.6–105.4% | ||||||||
RSD: <4.0% | ||||||||
SMM, OTC, CEF, MAR | Multiclass antibiotics | SPE | HPLC-DAD | Milk | LOD: 0.02 μg/mL | NS | Italy | [129] |
LOQ: 0.02 μg/mL | ||||||||
LR: 0.02–2.00 μg/mL R2: 0.993–0.998 | ||||||||
R: 61.4–99.3% | ||||||||
Sixty-two analytes | Multiclass antibiotics | SPE | UPLC-quadrupole/electrostatic field Orbitrap-HRMS | Goat milk | LOD: 0.5–1.0 μg/kg | Metronidazole: 2.45 & 5.02 μg/kg Enrofloxacin: 112.4 μg/kg | China | [131] |
LOQ: 5.0–10.0 μg/kg | ||||||||
LR: 0.5–100 μg/L R2: 0.9901–0.9998 | ||||||||
R: 60.1–110.0% | ||||||||
RSD: <15% | ||||||||
DC, TC, OTC, PNG, CAP, CIP, ENR | Multiclass antibiotics | MIL-based AALLME | HPLC–DAD | Milk | LOD: 0.09–0.21 ng/mL | TC:56–112 ng/mL OTC: 89–149 ng/mL CAP: 41 ng/mL (one sample) | Iran | [132] |
LOQ: 0.29–0.71 ng/mL | ||||||||
LR: 0.71–500 ng/mL R2: ≥0.994 | ||||||||
R: 79–91% | ||||||||
RSD: 3.6–5.2% | ||||||||
Twenty-two compounds | Multiclass antibiotics | MSPE | UPLC-MS/MS | Bovine milk | LOD: 0.04–0.19 μg/kg | 0.54–97.18 μg/kg | Iran | [40] |
LOQ: 0.13–0.64 μg/kg | ||||||||
LR: 0.2–800 μg/kg | ||||||||
R2: 0.9958–0.9992 | ||||||||
R: 85.9–107.5% | ||||||||
RSD: <9.2% | ||||||||
CCα: 0.10–111.3 μg/kg | ||||||||
CCβ: 0.13–125.8 μg/kg | ||||||||
One hundred and three analytes | Veterinary drugs | Modified QuEChERS | UPLC-MS/MS | Cow milk and milk powder | LOD: 0.1–25 μg/kg |
LIN: 10.2 ± 1.5 μg/kg (one sample) | China | [133] |
LOQ: 0.5–50 μg/kg | ||||||||
R2: 0.9902–0.9998 | ||||||||
R: 31.1–120.7% | ||||||||
RSD: 2.34 to 19.2% | ||||||||
Twenty-five analytes | Multiclass veterinary drugs | LLE | UHPLC–MS/MS | Commercial milk samples | LOQ: 0.1–4 ng/g | Clorprenaline: 0.5 ng/g and 0.47 ng/g hydrocortisone 0.78 ng/g (one sample) | China | [134] |
CCα: 0.008–113.68 ng/g | ||||||||
CCβ: 0.01–125.75 ng/g | ||||||||
LR: 0.1–384 ng/mL R2: 0.9901–0.9990 | ||||||||
R: 65.9–123.5% | ||||||||
RSD: ≤11.1% | ||||||||
One hundred and thirty-two analytes | Multiclass veterinary drugs | MSPE | HPLC-MS/MS | Milk | LOD: 0.015–0.3 μg/kg | OCT: 1.5 μg/kg, CAP: 4.1 μg/kg, SMZ, LIN: 5.6 μg/kg CIP: 12.2 μg/kg | Russia | [135] |
LOQ: 0.05–1 μg/kg | ||||||||
R2: <0.990 | ||||||||
R: 72–120% | ||||||||
RSD: <20% | ||||||||
Sixty-six analytes | Multiclass veterinary drugs | d-SPE and SPE | UHPLC-MS/MS | Cow milk | LOQ: 0.02–18.25 μg/kg | Danofloxacin 0.7–1.5 μg/kg | Spain | [136] |
CCα: 0.01–150.07 μg/kg | ||||||||
CCβ: 0.04–150.14 μg/kg | ||||||||
R2: >0.998 | ||||||||
R: 70–120% | ||||||||
RSD: ≤19.4% | ||||||||
Fifty-seven analytes | Multiclass veterinary drugs | Modified QuEChERS | UPLC-MS/MS | Milk | LOD: 0.1~3.8 μg/kg | Flumequine and pipemidic | China | [137] |
LOQ: 0.2~6.3 μg/kg | ||||||||
LR: 2~500 μg/kg R2: ≥0.999 | ||||||||
R: 60.7–116.0% | ||||||||
Sixteen analytes | Multiclass veterinary drugs | d-SPE & LLE | LC–MS/MS | Bovine and caprine milk | CCα: 0.023–<5.0 μg/kg | Blank samples are spiked | Netherlands | [26] |
CCβ: 0.045–5.0 μg/kg | ||||||||
LR: 5–250 μg/L R2: ≥0.990 | ||||||||
Eighteen analytes | Multiclass veterinary drugs | Modified QuEChERS | UHPLC-HR-Orbitrap-MS | Milk | LOD: 0.09–15.1 μg/kg | Imidocarb: 18 μg/kg (one sample) | Greece | [85] |
LOQ: 0.28–10 μg/kg | ||||||||
R2: >0.9903 | ||||||||
R: 65.1–120.1% |
Target EDCs | Extraction Method | Analysis Technique | Matrix | Analytical Parameters | Conc. in Real Samples | Country | Ref. |
---|---|---|---|---|---|---|---|
Bisphenol A (BPA), bisphenol BP (BPBP), bisphenol C (BPC), bisphenol F (BPF), bisphenol FL (BPFL), bisphenol G (BPG), bisphenol M (BPM), bisphenol S (BPS), bisphenol Z (PBZ), bisphenol A diglycidyl ether (BADGE), bisohenol A (2,3-dihydrox-ypropyl) glycidyl ether (BADGE⋅H2O), bisphenol A bis (2,3-dihydrox-ypropyl) ether (BADGE⋅2 H2O), bisphenol A (3-chloro-2-hydroxypropyl) glycidyl ether (BADGE⋅HCl), bisphenol A (3-chloro-2hydroxypropyl) (2,3-dihydroxypropyl) ether (BADGE⋅H2O⋅HCl), bisphenol A bis(3-chloro-2-hydroxypropyl) ether (BADGE⋅2HCl), bisphenol F diglycidyl ether (BFDGE), bisphenol F bis(2,3-dihydroxypropyl) ether (BFDGE⋅2 H2O), bisphenol F bis (3-chloro-2-hydroxypropyl) ether (BFDGE⋅2HCl) | UA–solvent extraction of porous membrane-packed samples | HPLC–MS/MS | Infants’ and toddlers’ ready-to-feed milk and powdered milk | LOD: 0.24–0.40 ng/g | 0.53–18.5 ng/g | Poland | [36] |
LOQ: 0.72–1.2 ng/g | |||||||
LR: 1–50 ng/mL R2: >0.9962 | |||||||
R: 31–120% | |||||||
RSD: 0.3–10% | |||||||
BPA, BPAF, BPC, BADGE, BFDGE | Online SPE | HPLC-FLD | Cow and goat milk | LOD: 1.5–2.25 μg/kg | NS | Czech Republic | [143] |
LOQ: 5–7.5 μg/kg | |||||||
LR: 2.5–100 μg/kg | |||||||
R: 93.0–139.2% | |||||||
RSD: <10% | |||||||
BPA | SPE | HPLC-DAD | Bovine milk | LOD: 1.3 ng/mL | Spiked | China | [149] |
LR: 0.02–2 mg/mL R2: 0.9998 | |||||||
R: 96.4–102.8% | |||||||
RSD: 1.5–6.3% | |||||||
BBA | SPE | LC-FLD | Cow-milk-filled plastic baby bottles from different brands | LOD: 3.75 ng/mL LOQ: 12.51 ng/mL LR: 40.0–120.0 ng/mL R2: 0.9970 R: 83–88% RSD%: 2.21%, 9.55% | BPA: <LOQ–102.18 ng/mL | Italy | [65] |
BPS | LC-UV | LOD: 80.00 ng/L LOQ: 260.00 ng/mL LR: 1.0–3.0 μg/mL R2: 0.9989 R: 95–108% RSD: 1.81%, 5.03% | ND | ||||
BPA, BADGE, BPAF, BPAP, BPB, BPBP, BPC, BPE, BPF, BFDGE, BPM, BPP, BPZ, 4-octylphenol (4-OP) 4-tert-octylphenol (4-t-OP) 4-nonylphenol (4-NP) | d-SPE + QuEChERS | HPLC–FLD | Raw buffalo milk and retail bovine milk | LOD: 0.2, 0.6 ng/g | Raw buffalo milk: 4-t-OP: 1.41 ng/g BFDGE: 1.10 and 1.33 ng/g BPF, BPC, and 4-NP: between LODs and LOQs Retail bovine milk: BPA: 1.11–3.05 ng/g BPP, BPM, 4-t-OP, 4-OP: >LOD detected but not quantified | Italy | [33] |
LOQ: 1.0, 3.0 ng/g | |||||||
BPA, BADGE, BPAF, BPAP, BPB, BPBP, BPC, BPE, BPF, BFDGE, BPG, BPM, BPP, BPS, BPZ, bisphenol PH (BPPH), bisphenol TMC (BPTMC) | SPE | UHPLC–MS/MS | Raw Buffalo milk and retail bovine milk | LOD: 0.03–1.5 ng/mL | Raw buffalo milk: BPA: 0.5–5.6 ng/mL BPF: 0.5–8.7 ng/mL BPAF: 3.0 ng/mL Retail bovine milk: BPA: ND–2.8 ng/mL BPF: ND–10.6 ng/mL | Italy | [33] |
LOQ: 0.1–5.0 ng /mL | |||||||
BPA, BPB, BPAF, BPC | MSPE | HPLC-UV | Milk | LOD: 0.011–0.36 ng/mL | BPA: 0.79–4.56 ng/mL | China | [150] |
LOQ: 0.035–0.120 ng/mL | |||||||
LR: 0.05–100 ng/mL R2: 0.9980–0.9998 | |||||||
R: 85.70–119.7% | |||||||
RSD: 0.12–5.02% | |||||||
BPA, BADGE, BPAF, BPAP, BPB, BPBP, BPC, BPE, BPF, BFDGE, BPG, BPM, BPP, BPPH, BPS, BPTMC, and BPZ | SPE | UHPLC-MS/MS | Bovine and buffalo milk | LOD: 0.03–0.6 ng/mL | 0.1–2.0 ng/mL | Italy | [33] |
LOQ: 0.1–5.0 ng/mL | |||||||
R2: >0.95 | |||||||
BPA | SPE | HPLC-FLD | Raw cow milk | LOD: 0.01 μg/kg | 0.035–2.776 μg/L | Italy | [144] |
LOQ: 0.03 μg/kg | |||||||
LR: 0.03–100 μg/L R2: 0.9969 | |||||||
R: 70–100% | |||||||
RSD: ≤10% | |||||||
BPA | DME | HPLC-FLD | Skimmed milk samples | LOD: 0.016 μg/L | ND | China | [151] |
LOQ: 0.050 μg/L | |||||||
LR: 0.1–50 μg/L R2: 0.9964 | |||||||
R: 80.7–102.4% | |||||||
RSD: <4.2% | |||||||
BPA, BPF, BPAF, 4-CP | UA-DLLME | HPLC-UV | Commercial boxed milk | LOD: 0.25–1 μg/L | ND | China | [152] |
LOQ: 0.5–1 μg/L | |||||||
LR: 0.5–400 μg/L R2: 0.9976–0.9988 | |||||||
R: 82.77–118.92% | |||||||
RSD: <14% | |||||||
BPA | SPE | HPLC-FLD | Milk | LOD: 0.03 μg/L | <LOQ–2.833 μg/L | Italy | [153] |
LOQ: 0.1 μg/L | |||||||
LR: 0.1–100 μg/L R2: 0.999 | |||||||
R: 78.4–107.2% | |||||||
RSD%: 1.9–11.3% | |||||||
Nonylphenol (NP), BPA, hexestrol (HEX) | MSPE | HPLC-UV | Milk | LOD: 0.1–0.3 μg/L | ND | China | [35] |
LR: 0.04~50 mg/L R2: 0.9978–0.9992 | |||||||
R: 89.9–98.7% | |||||||
RSD: <3% | |||||||
BPA, NP, octylphenol (OP), 4-n-nonylphenol (4NP) | QuEChERS | LC-LTQ/Orbitrap MS | Milk | LOD: 0.05–5 ng/g | BPA: MDL-10.4 μg/Kg OP: <4.5 μg/Kg NP & 4NP: <428.7 μg/Kg | Greece | [154] |
LOQ: 0.1–20 ng/g | |||||||
LR: 0.1–200 ng/g R2: 0.9966–0.9999 | |||||||
R: 91–108% | |||||||
RSD: 0.9–11.7% | |||||||
BPA, α-estradiol (α-E2), genic EDCs; 17α-ethinyl estradiol (17α-EE2), estrone (E1), diethylstilboe-strol (DES), and hexestrol (HEX) | FPSE | HPLC-UV & LC-MS/MS for confirmation | Milk | LOD: 7.5–15 ng/mL | All spiked | USA | [14] |
LOQ: 25.0–50.0 ng/mL | |||||||
LR: 25–20,000 ng/mL | |||||||
R: 13.7–69.2% | |||||||
RSD: 3.6–13.9 | |||||||
BPA | SPE | HPLC-FLD | Raw cow milk | LOD: 0.01 μg/kg | ND–2.340 μg/L | Italy | [155] |
LOQ: 0.03 μg/kg | |||||||
LR: 0.03–100 μg/L | |||||||
BPF | SPE | HPLC-FLD | Milk | LOD: 0.03 μg/L | <LOQ–2.956 μg/L | Italy | [156] |
LOQ: 0.1 μg/L | |||||||
LR: 0.1–100 μg/L R2: 0.999 | |||||||
R: 97.60–107.16% | |||||||
RSD: <15% | |||||||
BFDGE·2H2O, BADGE·2H2O, BFGDGE·H2O, BPE, BPA, BPB, BPC, para-para-BFDGE, BADGE | QuEChERS | HPLC–FLD | Milk | LOD: 1.0–3.1 μg/kg | BPA: 13.74 μg/ kg (one sample) BADGE·2H2O: 15.80 μg/kg (one sample) BFDGE·2H2O: 16.23 and 17.82 μg/kg | China | [86] |
LOQ: 3.5–9.8 μg/kg | |||||||
LR: 5–100 μg/kg R2: 0.9942–0.9997 | |||||||
R: 75.82–93.86% | |||||||
RSD: 2.6–11.1% | |||||||
BPF | SPE | HPLC-FLD | Milk | LOD: 0.03 μg/L | <LOQ–2.686 μg/L | Italy | [153] |
LOQ: 0.1 μg/L | |||||||
LR: 0.1–100 μg/L R2: 0.999 | |||||||
R: 97.60–107.16% | |||||||
RSD: <15% | |||||||
Methylparaben (Me-P), ethylparaben (Et-P), propyl-paraben (Pr-P), butylparaben (BP), benzylparaben (BzP), BPA, BPS, BPF, BPB, BPE, BPAF | QuEChERS +d-SPE | HPLC-MS/MS | Raw and processed cow milk | LOD: 0.01–0.2 ng/mL | Bisphenols: <LOD–1.71 ng/mL Parabens: <LOD–1.40 ng/mL | Poland | [146] |
LOQ: 0.03–0.73 ng/mL | |||||||
LR: 0.5–2000 ng/mL R2: 0.9988–0.9997 | |||||||
R: 80.1–115.5% | |||||||
RSD: 1.8–9.4% | |||||||
Me-P, Et-P, Pr-P | SC-μSPE | HPLC-UV | Milk | LOD: 3.0–7.0 ng/mL | <LOQ–130.3 ng /mL | Iran | [148] |
LOQ: 10–20 ng/mL | |||||||
LR: 10–1000 ng/mL R2: 0.9960–0.9971 | |||||||
R: 81.7–97.8% | |||||||
RSD: 2.7–8.6% | |||||||
Estrone E1, 17β-estradiol (E2), estriol E3, and BPA | MSPE | HPLC-MS/MS | Cow milk | LOD: 0.37–0.85 μg/L | ND | China | [157] |
LOQ: 1.31–2.94 μg/L | |||||||
LR: 0.25–100 μg/L R2: ≥0.9983 | |||||||
R: 92.1–118.3% | |||||||
RSD: ≤7.2% | |||||||
BBP, benzyl butyl phthalate; DEHP, bis (2-ethylhexyl) phthalate; DIDP, diisodecyl phthalate; DIHP, diisoheptyl phthalate; DNOP, di-n-octyl phthalate; DPP, dipentyl phthalate. | MSPE | GC-MS/MS | Milk | LOD: 0.8–2.1 μg/L | ND | China | [60] |
LOQ: 2.7–7.0 μg/L | |||||||
LR: 3.0–100 μg/L | |||||||
R: 76.8–99.2% | |||||||
RSD: ≤7.3% | |||||||
BBP, butyl benzyl phthalate; BPA, bisphenol A; DBP, dibutyl-o-phthalate, DEHP, di(2-ethylhexyl) phathalate; DEP, diethyl-o-phthalate; DNOP, di-n-octyl phthalate | PFSPE | GC-MS | Milk | LOD: 0.01–0.06 μg/L | DEP: ND–2.18 μg/L DBP: ND–1.5 μg/L BPA: 0.28–2 μg/L BBP: 10.98–16.0 μg/L DEHP: ND–16.20 μg/L DNOP: 0.27–0.50 μg/L | China | [59] |
LOQ: 0.05–0.53 μg/L | |||||||
LR: 0.1–50 μg/L R2: 0.9925–0.9987 | |||||||
R: 89.6–118.0% | |||||||
RSD: 0.6–10.9% | |||||||
Phenol, 2,5-dimethylphenol, 4-chlorophenol, 3,4-dimethylphenol, 4-chloro-3-methylphenol, 4-tert-butylphenol, 2-tert-butyl-4-methylphenol, 4-pentylphenol, 2-phenylphenol, 4-hexylphenol, 4-tert-octylphenol, 4-heptylphenol, nonylphenol, 4-phenylphenol, pentachlorophenol, triclosan, bisphenol F, bisphenol A, bisphenol B, bisphenol Z, bisphenol S | SPE | GC-MS | Cow, goat, and sheep milk | LOD: 6–35 ng/kg | BPA: 30–940 ng/kg BPZ: 96–1100 ng/kg BPF: 270–950 ng/kg NP: 58–390 ng/kg 4-t-BP: 310–2100 ng/kg 3,4-DMP: 130–1800 ng/kg | Spain | [158] |
LR: 20−10 000 ng/kg R2: 0.994–0.999 | |||||||
R: 86–106% | |||||||
2-chlorophenol, o-cresol m-cresol, 2,4-dichlorophenol, 4-tert-butylphenol, 4-chlorophenol, 4-tertoctylphenol, alpha-naphthol | EA–SPME | GC–FID | Milk | LOD: 0.001–0.1 μg/L | ND–31.07 μg/L | China | [57] |
LOQ: 0.1 μg/L | |||||||
LR: 0.005–50 μg/L R2: >0.99 | |||||||
R: 87.3–118.9% | |||||||
RSD: 1.9–12.3% | |||||||
Metylparaben, ethyl-paraben, propylparaben, isopropylparaben, butylparaben, isobutylparaben, benzyl-paraben, dichlovos, dimethoate, diazinon, bromophos methyl, chloropyrifos, fenthion, fenthion sulphoxide, parathion methyl, malathion, methidathion, nonylphenol, 4-tert-ocylphenol, 2-phenylphenol, 4-phenylphenol, BPA and triclosan (TCS) | SPE | GC-MS | Cow, sheep and goat milk | LOD: 6–40 ng/kg | ethylparaben 120–3100 ng/kg 2-phenylphenol: 130–2000 ng/kg BPA: 980–4600 ng/kg 4-Phenylphenol: 130–230 ng/kg Butylparaben: 620 ng/kg | Spain | [159] |
LR: 20–10,000 ng/kg | |||||||
R: 80–107% | |||||||
RSD: 2.6–7.1% | |||||||
Mep, EtP, n-Prp, propyl 4-hydroxybenzoate; n-Bup, butylparaben; i-Prp, isopropyl 4-hydroxybenzoate; i-BuP, isobutylparaben | MSPE | GC–MS | Milk | LOD: 0.1 ng/mL | NS | China | [160] |
LOQ: 0.5 ng/mL | |||||||
LR: 0.1–600 ng/mL R2: 0.9991–0.9997 | |||||||
R: 95–105% | |||||||
RSD: 2.7–5.0% |
Target Pesticides | Extraction Method | Analysis Technique | Matrix | Analytical Parameters | Conc. in Real Samples | Country | Ref. |
---|---|---|---|---|---|---|---|
Lindane, alachlor, aldrin, bromophos methyl, heptachlor epoxide, α-endosulfan, hexaconazole, dieldrin, endrin, β-endosulfan, diazinon, endosulfan-sulfate, bromopropylate, fenpropathrin, tetradifon, fenvalerate | QuEChERS-TA-SFOD | GC-μECD | Pasteurized bovine milk | LOD: 0.01–0.11 μg/kg | 1.24–4.68 μg/kg | Iran | [161] |
LOQ: 0.03–0.38 μg/kg | |||||||
LR: 0.03–250 μg/kg | |||||||
R: 61–119% | |||||||
RSD: 2.1–18.2% | |||||||
Acetamiprid, azinphos-methyl, azoxystrobin, benalaxyl, boscalid, bupirimate, carbaryl, carbendazim, cymoxanil, cyprodinil, dichlorvos, dimethoate, fenthion sulfoxide, imidacloprid, iprovalicarb, metalaxyl, myclobutanil, tebuconazole, thiacloprid, thiamethoxam | Modified QuEChERS | UHPLC-LTQ/Orbitrap MS | Full-fat cow and goat milk | LOD: 0.2–8.1 μg/kg | Carbendazim < LOQ one sample | Greece | [164] |
LOQ: 0.61–24.8 μg/kg | |||||||
LR: 1–250 μg/kg R2: ≥0.9918 | |||||||
R: 79.5–119.5% | |||||||
RSD: ≤11.7% | |||||||
Imidacloprid, acetamiprid, nitenpyram, thiacloprid | DSPE–SFOD–DLLME | HPLC–DAD | Pasteurized semi-skimmed cow milk | LOD: 0.13–0.21 ng/mL | All samples are spiked | Iran | [162] |
LOQ: 0.43–0.70 ng/mL | |||||||
LR: 0.70–500 ng/mL | |||||||
R: 73–85% | |||||||
RSD: 1.4–5.1 | |||||||
One hundred and ninety-five pesticides | Modified QuEChERS | LC-Q-TOF/MS | Raw milk | Screening detection limits (SDL): 0.1–20 μg/kg | ND | China | [31] |
LOQ: 0.1–50 μg/kg | |||||||
LR: 1–200 μg/kg R2: >0.99 | |||||||
R: 70.0–120.0% | |||||||
RSD: <20 | |||||||
Dimethoate, imidacloprid, pirimicarb, carbaryl, fenitrothion, hexythiazox, phosalone | OPD-SPME-DES | HPLC-MS/MS | Pasteurized cow milk | LOD: 0.09–0.27 ng/mL | ND | Iran | [41] |
LOQ: 0.31–0.93 ng/mL | |||||||
LR: 0.93–500 ng/mL | |||||||
R: 81–94% | |||||||
RSD: <9% | |||||||
Imidacloprid, thiamethoxam, thiacloprid, clothianidin, acetamiprid | SPE | LC–MS/MS | Sheep and cow milk | LOD: 0.5 μg/kg | ND | Jordan | [165] |
LOQ: 1 μg/kg | |||||||
LR: 1–100 μg/kg R2: >0.999 | |||||||
R: 75.1–88.3% | |||||||
RSD: 4.3–31.2% | |||||||
Azinphos-methyl, parathion-methyl, phosalone, diazinon, chloropyrifos | DSPE–DLLME | HPLC–DAD | Milk | LOD: 0.17–0.36 ng/mL | Chloropyrifos in one sample: 19 ± 0.8 ng/mL | Iran | [166] |
LOQ: 0.57–1.34 ng/mL | |||||||
LR: 1.34–1000 ng/mL R2: 0.992–0.996 | |||||||
R: 79–92% | |||||||
RSD: ≤7.2% | |||||||
Metolcarb, carbaryl, isoprocarb, bassa, diethofencarb | SPE | HPLC-DAD | Milk | LOD: 0.12–0.40 ng/mL | ND | China | [167] |
LOQ: 0.36–1.20 ng/mL | |||||||
LR: 1.0–320.0 ng/mL | |||||||
R: 86.0 to 110.0% | |||||||
RSD: 4.9–6.3 | |||||||
Spinosyn A and D, temephos, piperonyl butoxide | LLE followed by QuEChERS | LC-MS/MS | Milk | LOD: 0.1–1.4 μg/kg | ND | Korea | [168] |
LOQ: 0.3–4.1 μg/L | |||||||
LR: 1.5–50 μg/kg R2: 0.983–0.996 | |||||||
R: 78–99% | |||||||
RSD: <8% | |||||||
Tebufenozide (TEB) and indoxacarb (IND) | LLE | LC-MS/MS | Milk | LOD: 5, 1 μg/kg | ND | Korea | [79] |
LOQ: 10, 3 μg/kg | |||||||
LR: 5–50 μg/kg R2: 0.998–0.9993 | |||||||
R: 87.79–114.93% | |||||||
RSD: <6.4% | |||||||
α-HCH, HCB, β-HCH, lindane, δ-HCH, chlorthalonil, heptachlor, aldrin, chlorpyrifos, bromophos, α-endosulfan, dieldrin, p,p′-DDE, p,p′-DDD, p,p′-DDT | Modified QuEChERS | GC-ECD | Cow milk | LOD: 0.00015–0.0009 mg/kg | - | Iran | [37] |
LOQ: 0.0005–0.003 mg/kg | |||||||
LR: 0.0005–0.5 mg/kg R2: 0.9943–0.9995 | |||||||
R: 65–118% | |||||||
RSD: 1–15% | |||||||
Carbendazim, thiabendazole, dichlorvos, carbofuran, dimethoate, carboxin, pirimicarb, terbutryn, thiacloprid, imidacloprid, trichlorfon, fenitrothion, fenthion, cyproconazole, thiamethoxam, tridemorph, fenamiphos, diazinon, pirimiphos-methyl, tebuconazole, butachlor, fenamidone, kresoxim-methyl, sulfotep, diniconazole, malathion, bitertanol, propiconazole, thiophanate-methyl, clodinafop-propargyl, flamprop-isopropyl, phosalone, ethion, dimethomorph, nicosulfuron | Modified QuEChERS | UHPLC-MS/MS | Cow milk | LOD: 0.0003–0.03 mg/kg | Dimethoate in raw milk: 0.045 mg/kg | Iran | [37] |
LOQ: 0.001–0.05 mg/kg | |||||||
LR: 0.001–0.5 mg/kg R2: 0.9830–0.9993 | |||||||
R: 74–121% | |||||||
RSD: 1–17% | |||||||
One hundred and fifty-six pesticide residues | Modified QuEChERS | LC–MS/MS | Milk | LOD: 0.11–2.70 μg/kg | ND | Turkey | [169] |
LOQ: 0.38–8.10 μg/kg | |||||||
LR: 5–100 μg/kg R2: ≥0.99 | |||||||
R: 70.38–116.40% | |||||||
RSD: <19% | |||||||
Sulfoxaflor | Modified QuEChERS | LC-MS/MS | Milk | LOD: 1.8 μg/kg | <LOQ | China | [170] |
LOQ: 5.0 μg/kg | |||||||
R2: 0.9990 | |||||||
R: 81.1–95.0% | |||||||
RSD: 2.3–11.2% | |||||||
Coumaphos, phosmet, fonofos, parathion, pyridaphenthion, phosalone, temephos, profenofos, terbufos, phenthoate, ethion, tetrachlorvinphos, isazophos, pirimiphos-ethyl, fenthion, phoxim, methidathion, triazophos, pirimiphos-methyl, dichlofenthion | MSPE | LC-MS/MS | Fatty whole milk | LOD: 0.001–0.01 μg/L | Pirimiphos-methyl: 0.23 μg/L) (One sample) | China | [171] |
LOQ: 0.2–0.5 μg/L | |||||||
LR: 0.2–250 μg/L R2: 0.9978–0.9999 | |||||||
R: 0.0–105% | |||||||
RSD: <12.3% | |||||||
Carbofuran, carbaryl, propoxur, aminocarb, phenmedipham, ethiofencarb, desmedipham, fenoxycarb, pirimicarb, bendiocarb, methiocarb | LLE | UHPLC-MS/MS | Camel milk | LOD: 0.01 μg/kg | 0.345–9.509 μg/kg | UAE | [163] |
LOQ: 0.03–0.04 μg/kg | |||||||
LR: 0.00001–0.5 mg/kg R2: 0.9982–1.0000 | |||||||
R: 88–103% | |||||||
RSD: ≤5% | |||||||
Lindane, diazinon, fenitrothion, malathion, aldrin, α-endosulfan, β-endosulfan, methoxychlor | DLLME | GC-MS | Bovine milk | LOD: 0.90–5.00 ng/mL | ND | India | [81] |
LOQ: 2.5–15 ng/mL | |||||||
LR: 2–1000 ng/mL R2: 0.995–0.999 | |||||||
R: 86.15–112.45% | |||||||
RSD: 1.06–2.20% | |||||||
Endrin and δ-keto endrin | Modified QuEChERS | GC-μECD | Milk | LOD: 0.003 mg/kg | ND | Korea | [61] |
LOQ: 0.01 mg/kg | |||||||
R2: 0.9979, 0.9966 | |||||||
R: 84.27–105.29% | |||||||
RSD: 2.12–7.59% | |||||||
Forty-one multiclass pesticides | QuEChERS | GC-ECD followed by GC-MS | Commercial liquid milk | LOD: 0.001–0.02 μg/mL | Below the LOQ | India | [16] |
LOQ: 0.002–0.05 μg/mL | |||||||
LR: 0.002–1 μg/mL R2: >0.98 | |||||||
R: 91.38–117.56% | |||||||
RSD: <2.79% | |||||||
Permethrin (Perm), deltamethrin (Del), and cypermethrin (Cyp) | USA-MNF-LPME | GC-MS | Cow milk | LOD: 2.8, 2.7 and 2.0 ng/mL | Per: 18.0 ng/L Del: 25.0 ng/L Cyp: 48.0 ng/L | Iran | [172] |
LOQ: 9.43, 8.95, and 6.47 ng/L | |||||||
LR: 0.01–250 μg/L R2: 0.9991, 0.9995 | |||||||
R: 91.0–105% | |||||||
RSD: 3.5, 3.2, 2.8% | |||||||
Chlorpyriphos, malathion, disulfoton, pirimiphos | d-SPE | GC-MS | Commercial bovine milk | LOD: 0.36–0.95 μg/L | ND | Brazil | [58] |
LOQ: 5.0 μg/L | |||||||
LR: 5.0–40.0 μg/L R2: 0.9902–0.9963 | |||||||
RSD: <19.9% | |||||||
α-HCH; β-HCH; γ-HCH; δ-HCH; heptachlor; aldrin; heptachlor epoxide; trans-chlordane; α-endosulfan; cis-chlordane; p.p’-DDE; endrin; β-endosulfan; endosulfan sulfate; p.p’-DDT; endrin ketone; methoxychlor; phthalic acid and p,p’-DDD. | QuEChERS | GC-MS/MS | Cow milk | LOD: 0.011–0.034 μg/kg | p,p-DDE: 0.09 μg/kg p,p-DDT: 0.07 μg/kg | Bangladesh | [173] |
LOQ: 0.049–0.087 μg/kg | |||||||
LR: 5–200 ppb R2: 0.92–0.99 | |||||||
R: 79.23–98.65% | |||||||
α- and β-hexachlorocyclohexane, lindane, hexachlorobenzene, p,p′-DDE, aldrin, dieldrin, and α-endosulfan | GDME | GC-ECD & GC-MS | Milk | LOD: 3.7 to 4.8 μg/L | Aldrin was found in one sample below the LOD | Brazil | [92] |
LOQ: 12–16 μg/L | |||||||
R2: 0.991–0.995 | |||||||
R: 71–99% | |||||||
RSD: <10% | |||||||
Alpha-cypermethrin,beta-cyfluthrin, bifenthrin, bromopropylate, chlorothalonil, chlorpropham, deltamethrin, dicofol, endosulfan alpha, endosulfan beta, endosulfan sulfate, fenitrothion, fenthion, fenvalerate, formothion, kresoxim methyl, lambda cyhalothrin, oxyfluorfen, permethrin, procymidone, prothiofos, tau-fluvalinate, tetradifon, trifluralin, vinclozolin | QuEChERS | GC–MS | Milk | LOD: 0.31–1.91 μg/kg | ND | Turkey | [174] |
LOQ: 1.05–6.62 μg/kg | |||||||
LR: 5–100 μg/kg R2: >0.99 | |||||||
R: 72.50–119.54% | |||||||
RSD: 1.17–14.62% | |||||||
Linden, heptachlor, aldrin, dieldrin, endrin, endosulfan, dichlorodiphenyltrichloroethane (DDT) | QuECheRS | GC-ECD | Organic and conventional goat milk | LOD: 0.3 ppb | ND | Indonesia | [175] |
Dichlorvos, carbaryl, atrazine, ametryne, diazinon, pirimiphos-methyl, carbofuran, chlorpyrifos, prothioconazole, tebuconazole | QuChERS-DLLME | GC-FID | Milk | LOD: 4.2–27.4 ng/mL | Dichlorvos, atrazine, diazinon, chlorpyrifos and tebuconazole 2.49–10.48 ng/mL | Iran | [176] |
LOQ: 11.89–82.23 ng/mL | |||||||
LR: 0.5–100 ng/mL | |||||||
R: 77.69–147.69% | |||||||
RSD: 1.6–9.7% | |||||||
Carbaryl, hexythiazox, pretilachlor, iprodione, famoxadone, sethoxydim, fenazaquin | In matrix-DES-SFO-DLLME | GC-FID | Cow milk | LOD: 0.90–3.9 ng/mL | ND | Iran | [177] |
LOQ: 3.1–13 ng/mL | |||||||
LR: 4.5–5000 ng/mL | |||||||
R: 64–89% | |||||||
RSD: 3.8–5.3% |
Target Mycotoxins | Extraction Method | Analysis Technique | Matrix | Analytical Parameters | Conc. in Real Samples | Country | Ref. |
---|---|---|---|---|---|---|---|
Aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), aflatoxin G2 (AFG2), aflatoxin M1 (AFM1), alternariol methyl ether (AME), alternariol (AOH), beauvericin (BEA), cyclopiazonic Acid (CTA), citrinin (CTN), diacetoxyscirpenol (DAS), deepoxy-deoxynivalenol (DOM-1), deoxynivalenol (DON), 15 acetyl-deoxynivalenol (15 AC-DON), 3 acetyl-deoxynivalenol (3 AC-DON), enniatin A (ENNA), enniatin A1 (ENNA1), enniatin B (ENNB), enniatin B1 (ENNB1), fusaric acid (FA), fumonisin B1 (FB1), fumonisin B2 (FB2), HT-2 toxin (HT-2), hydrolyzed fumonisin B1 (Hydro-FB1), mycophenolic acid (MPA), neosolaniol (NEO), ochratoxin A (OTA), roquefortine C (RC), sterigmatocystin (STC), T-2 toxin (T-2), zearalenone (ZEN), zearalanone (ZOL), α-zearalenol (α-ZEN), α-zearalanol (α-ZOL), β-zearalenol (β-ZEN), β-zearalanol (β-ZOL), deoxynivalenol-3-glucoside (DON-3-Gluc), fusarenon X (FX), patulin (PAT), T-2 triol | QuEChERS | UHPLC-MS/MS | Raw milk | LOD: 0.001–3.26 μg/L | T-2, RC, ENNA, ENNA1, ENNB, ENNB1 and BEA: <LOD–4.76 µg/L | Portugal | [192] |
LOQ: 0.002–10.76 μg/L | |||||||
LR: 0.002–200 μg/L | |||||||
R: 61.22–120.63% | |||||||
RSD: <16% | |||||||
AFB1, AFB2, AFG1, AFG2, AFM1, AFM2 | IAC | HPLC-MS/MS | Milk | LOD: 0.005–0.010 μg/L | AFM1: 0.072 μg/L (one sample) | China | [193] |
LOQ: 0.010–0.026 μg/L | |||||||
LR: 0.010–10.0 μg/L R2: 0.988–0.997 | |||||||
R: 85.5–106.2% | |||||||
RSD: <12.5% | |||||||
AFM1 | IAC | HPLC-FLD | Pasteurized cow milk gathered during different seasons | LOD: 0.0001 μg/L | 0.002–0.09 μg/L | Iran | [194] |
LOQ: 0.0005 μg/L | |||||||
R2: >0.999 | |||||||
AFM1 | AALLME | HPLC–FLD | Unpasteurized milk | LOD: 0.9 ng/L | 46–96 ng/L | Iran | [83] |
LOQ: 3 ng/L | |||||||
LR: 3–3000 3 ng/L R2: 0.9976 | |||||||
R: 87 ± 4% | |||||||
RSD: ≤9% | |||||||
OTA, AFM1 | DSPE-DLLME-SFO | HPLC-FLD | Raw cow milk | LOD: 0.25, 0.37 ng/L | OCT A: 35–43 ng/L AFM1: 15–182 ng/L | Iran | [45] |
LOQ: 0.83, 1.23 ng/L | |||||||
LR: 0.83–105, 1.23–105 R2: 0.998, 0.997 | |||||||
R: 87, 75% | |||||||
RSD: ≤5.1 | |||||||
OTC, AFB1, AFB2, AFG1, AFG2, AFM1, AFM2, HT-2 Toxin, T-2 Toxin, OTA, DON, OCT α, OCT B, ZEN, α-ZEN, α-ZOL, β-ZEN, β-ZOL, stachybotrylactam, and (S)-zearalanone | QuEChERS | HPLC-MS/MS | cow milk | LOD: 0.007–1.300 μg/kg | <LOD | China | [195] |
LOQ: 0.02–4.00 μg/kg | |||||||
LR: 0.01–10 μg/L R2: ≥0.9933 | |||||||
R: 80.00–112.50% | |||||||
RSD: 2.67–14.97% | |||||||
AFB1, AFB2, AFM1, AFM2 | ISDμSPE | HPLC-FLD | Cow milk | LOD: 0.003–0.005 ng/mL | AFM1: 0.038 ng/mL (One sample) | Malaysia | [76] |
LOQ: 0.01–0.02 ng/mL | |||||||
LR: 0.01–1.0 ng/mL R2: 0.992–0.999 | |||||||
R: 73.0–109.6% | |||||||
RSD: <17.3% | |||||||
AFB1, AFM1 | QuEChERS | UHPLC-Q-Orbitrap HRMS | Milk | LOD: 0.001 μg/L | ND | Italy | [196] |
LOQ: 0.002 μg/L | |||||||
LR: 0.002–20 μg/L R2: >0.9990 | |||||||
R: 75–96% | |||||||
RSD: <16 | |||||||
AFM1 | IAC | LC-FLD | Milk | LOD: 0.01 ng/mL | 10–77 ng/L | Morocco | [75] |
LOQ: 0.03 ng/mL | |||||||
R: 87–95% | |||||||
CV: <15% | |||||||
AFM1, AFB1, AFB2, AFG1, AFG2, OTA, OTB, FB1, FB2, FB3, HT-2 and T-2 toxins, nivalenol (NIV), DON, DOM-1, 3 AC-DON, 15 AC-DON, DAS, FX, NEO, STC, and ZEN | LLE | LC–MS/MS | Cow Milk | LOD: 0.010–5.07 ng/mL | OCT A: <LOQ (0.2 ng/mL) | Peru | [186] |
LR: 0.04–101.4 ng/mL R2: 0.9935–0.9997 | |||||||
R: 61.2–83.9% | |||||||
RSD: 3.8–11.8% | |||||||
AFM1 | IAC | HPLC-FLD | Liquid and powder milk | LOD: 0.002 μg/L | 0.021–2.89 μg/L | Yemen | [46] |
R2: 0.99995 | |||||||
R: 102.94–108.31% | |||||||
RSD: <10% | |||||||
AFM1 | IAC | UPLC-MS/MS | Cow, goat, and sheep milk | LOD: 0.0027 μg/kg | <LOD–0.0370 μg/kg | Greece | [197] |
LOQ: 0.0089 μg/kg | |||||||
LR: 0.75–22.5 μg/L R2: 0.997 | |||||||
R: 77.9–81.0% | |||||||
RSD: 6.1–12% | |||||||
AFB1, AFB2, AFG1, AFG2, AFM1, AFM2, OTA, ZEN, ZOL, α-ZEN, β-ZEN, α-ZOL, β-ZOL | MSPE | UHPLC-Q-Exactive HRMS | Commercial liquid milk | LOD: 0.005–0.050 μg/kg | 0.026–0.039 μg/kg | China | [198] |
LOQ: 0.015–0.150 μg/kg | |||||||
LR: 0.15–100 ng/mL R2: 0.9963–0.9999 | |||||||
R: 81.8–106.4% | |||||||
RSD: 2.1–11.7% | |||||||
AFB1, AFB2, AFG1, AFG2, OTA, ZEA | IAC | HPLC-FLD | Raw cow milk | LOD: 0.02–0.92 μg/kg | AFM1: <LOQ–0.19 μg/kg | Egypt | [74] |
LOQ: 0.06–2.8 μg/kg | |||||||
AFB1, AFB2, AFG1, AFG2, AFM1, BEA, CTN, DON, ENNA, ENNB, FB1, FB2; moniliformin (MON); MPA, NIV, OTA, penicillic Acid (PA), PAT, tenuazonic acid (TEA),tentoxin TTX, ZEN. | Modified QuEChERS | UHPLC-MS/MS | Raw cow milk | LOD: 0.001–9.88 ng/mL | NS | Portugal | [199] |
LOQ: 0.005–13.54 ng/mL | |||||||
LR: 0.025–200 ng/mL R2: 0.9519–0.9996 | |||||||
R: 67.5–119.8% | |||||||
RSD: <25% | |||||||
AFM1 | DLLME | HPLC-FLD | Cow and buffalo milk | LOD: 0.002 μg/L | 0.01–9.18 μg/L | India | [200] |
LOQ: 0.007 μg/L | |||||||
LR: 0.01–1.0 μg/L R2: 0.999 | |||||||
R: 80.9–89.2% | |||||||
RSD: <14% | |||||||
AFM1, AFM2 | IAC | HPLC-FLD | Cow, goat, and sheep milk | LOD: 11.99, 16.95 ng/kg | AFM1: 47.1–73.4 ng/kg AFM2: <LOQ | Greece | [201] |
CCα: 56.52, 57.27 ng/kg | |||||||
CCβ: 63.97, 65.57 ng/kg | |||||||
R2: 0.999, 0.996 | |||||||
R: 74–120% | |||||||
RSD: <17% | |||||||
AFB1, AFM1, OTA, ZEN, α-ZEN, β-ZEN, ZOL, α-ZOL, β-ZOL | SPE | UHPLC-MS/MS | Milk | LOD: 0.01–0.07 ng/mL | AFM1: 0.03–0.30 ng/mL ZEA: 0.3, 1.46 and 2.99 ng/mL | China | [69] |
LOQ: 0.02–0.18 ng/mL | |||||||
LR: 0.02–200 ng/mL R2: ≥0.992 | |||||||
R: 70.2–111.2% | |||||||
RSD: 2.0–14.9% | |||||||
ENNA, ENNA1, ENNB, ENNB1, BEA. | LLE | LC-MS/MS | Cow milk | LOD: 0.088–0.099 μg/kg | ENNB: 0.157–0.587 μg/kg BEA: 0.101–6.17 μg/kg | Poland | [202] |
LOQ: 0.099–0.130 μg/kg | |||||||
LR: 0.15–50 μg/kg | |||||||
R: 72–99% | |||||||
RSD: 3.4–17.5% | |||||||
AFM1, AFB1 | QuEChERS | HPLC-FLD | Milk powder | LOD: 0.038, 0.027 μg/kg | AFM1: 0.20–1.19 μg/kg | Colombia | [203] |
LOQ: 0.125, 0.083 μg/kg | |||||||
R: 65–110% | |||||||
RSD: <20% | |||||||
AFM1 | IAC | HPLC-FLD | Milk | LOD: 0.01 μg/L | 0.016–0.030 μg/kg | Iran | [204] |
LOQ: 0.03 μg/L | |||||||
R2: >0.98 | |||||||
R: 90.6% (mean) | |||||||
RSD: 5.7% | |||||||
AFB1, AFB2, AFG1, AFG2, AFM1, AFM2, FB1, FB2, STE, ZEN. | MSPE | HPLC–MS/MS | Milk | LOD: 0.003–0.442 μg/kg | NS | China | [70] |
LOQ: 0.008–1.219 μg/kg | |||||||
LR: 0.02–200 μg/kg | |||||||
R: 88.3–103.5% | |||||||
RSD: 2.4–6.5% |
Target EPs | Category | Extraction Method | Analysis Technique | Matrix | Analytical Parameters | Conc. in Real Samples | Country | Ref. |
---|---|---|---|---|---|---|---|---|
Perfluorobutanoic acid (PFBA), perfluoropeptanoic acid (PFPeA), perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA), perfluorododecanoic acid (PFDoDA), perfluorotridecanoic acid (PFTriDA), perfluorotetradecanoic acid (PFTeDA), perfluorobutane sulfonate (PFBS) perfluoropentane sulfonate (PFPeS), perfluorohexane sulfonate (PFHxS, perfluoroheptane sulfonate (PFHpS), perfluorooctane sulfonate (PFOS), perfluoro-4-ethylcyclohexanesulfonate (PFECHS), perfluorononane sulfonate (PFNS), perfluorodecane sulfonate (PFDS), perfluorobutane sulfonamide (FBSA), perfluorooctane sulfonamide (FOSA), N-methylperfluoro-1-octanesulfonamid (N-MeFOSA), N-ethylperfluoro-1-octanesulfonamide (N-EtFOSA), 4:2 fluorotelomer sulfonate (4:2 FtS), 6:2 fluorotelomer sulfonate (6:2 FtS), 8:2 fluorotelomer sulfonate (8:2 FtS) | PFAS | SLE | HPLC-MS/MS | Cow milk |
LOD: 0.8–22 ng/L (PFBA: 144 ng/L) | PFCA, PFSA, PASF: <MDL FTS < MDL–6.59 ng/L | USA | [220] |
R: 70–141% | ||||||||
PFBA, PFPeA, PFBS, PFHxA, PFHpA, PFOA, PFHxS, PFNA, PFOS, PFDA, PFUdA, PFDS, PFDoA, PFTrDA, and PFTeDA | PFAS | QuEChERS | UHPLC-MS/MS | Dairy milk and infant formulas | LOD: 0.005–0.05 ng/mL | The Σ15 PFAS in dairy milk: 0.08–15.51 ng/mL The Σ15 PFAS in infant formula: 0.01–5.24 ng/mL | South Africa | [42] |
LOQ: 0.005–0.05 ng/mL | ||||||||
R2: 0.987–0.999 | ||||||||
R: 93–120% | ||||||||
RSD: 3–18% | ||||||||
PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUdA, PFDoA, PFTrDA PFTeDA, PFBS, PFHxS, PFOS, PFDS | PFAS | QuEChERS | UHPLC–MS/MS | Dairy milk and infant formula | CCα: 30–50 ng/kg | Infant formulae: <LOQ–259 ng/kg dairy milk: <LOQ–294 ng/kg | South Africa | [221] |
CCβ: 40–100 ng/kg | ||||||||
LOQ: 5–50 ng/kg | ||||||||
LR: 5–1200 ng/kg R2: 0.9843–0.9998 | ||||||||
R: 60–121% | ||||||||
RSD: 5–28% | ||||||||
PFPA, PFBS, PFHpA, PFOA, PFHpS, PFNA, PFOS, PFDA | PFAS | SPME | UHPLC-MS/MS | Milk and milk powder | LOD: 0.1–0.8 pg/g | ND–4.12 pg/g | China | [222] |
LOQ: 0.4–2.5 pg/g | ||||||||
R2: ≥0.992 | ||||||||
R: 89.8–111% | ||||||||
RSD: ≤10% | ||||||||
PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnA, PFDoA, PFBS, PFHxS, PFOS, | PFAS | QuEChERS | LC-MS/MS | Cow milk | LOD: 7.78–16.35 ng/kg | NS | Italy | [223] |
LOQ: ALL: 50 ng/kg GenX and C6O4: 100 ng/kg | ||||||||
R: 91.3–121.8% | ||||||||
RSD: ≤10.9% | ||||||||
PFOA, PFOS | PFAS | DFE | LC-MS/MS | Milk | LOD: 0.006–0.022 ng/mL | 0.08–2.19 ng/mL | China | [224] |
LOQ: 0.020–0.072 ng/mL | ||||||||
LR: 0.05–100 ng/mL R2: ≥0.9998 | ||||||||
R: 94.7–109% | ||||||||
RSD: ≤9.5% | ||||||||
Melamine | Non-protein nitrogen supplement | DLLME | HPLC-UV | Milk | LOD: 63.64 μg/kg | ND | Iran | [49] |
LOQ: 210.03 μg/kg | ||||||||
LR: 210.03–1000 μg/kg | ||||||||
R2: 0.9898 | ||||||||
R: 72.5–104.0% | ||||||||
RSD: <10.2 | ||||||||
Melamine | Non-protein nitrogen supplement | MSPE | UPLC-MS/MS | Milk powder | LOD: 0.00045 mg/kg | 0.023 mg/kg (One sample) | China | [225] |
R: 90.3–95.7% | ||||||||
RSD: 0.3–4.7% | ||||||||
Melamine | Non-protein nitrogen supplement | SPE | HPLC-DAD | Milk powder | LOD: 0.006 mg/kg | 0.017–0.082 mg/kg | Uruguay | [226] |
LOQ: 0.019 mg/kg | ||||||||
R2: >0.999 | ||||||||
R: ≥83.8% | ||||||||
RSD: 0.5–9.9% | ||||||||
Melamine | Non-protein nitrogen supplement | LPME | HPLC-UV | Milk | LOD: 0.03 mg/L | <LOD | Russia | [48] |
LOQ: 0.1 mg/L | ||||||||
LR: 0.1–30 mg/L R2: 0.994 | ||||||||
R: 95% | ||||||||
RSD: <7% | ||||||||
Melamine | Non-protein nitrogen supplement | SPE | HPLC-FLD | Milk and infant formula | LOD: 0.005–0.042 μg/mL | 0.18–2.90 μg/mL | Turkey | [208] |
LOQ: 0.015–0.126 μg/mL | ||||||||
R: 78–103% | ||||||||
RSD: ≤1.21% | ||||||||
Prednisone (PRD), hydrocortisone (HCOR), methylprednisolone (MPRD), dexamethasone (DXM), betamethasone (BEM), prednisone acetate (PRDA), beclomethasone (BCM), fludrocortisone acetate (FCORA), dexamethasone acetate (DXMA), fluocinolone acetonide (FCA), halcinonide (HAL), triamcinolone acetonide acetate (TCAA), fluocinonide (FLC), nandrolone (NAN), methyltestosterone (MTES), testosterone propionate (TESPR), chlormadinone acetate (CHMA), megestrol acetate (MGA), medroxyprogesterone acetate (MXPROA), estrone (E1), 17 α-oestradiol (17α-E2), estriol (E3) | Hormones | SPE | HPLC-MS/MS | Bovine milk | LOD: 0.10–1.20 μg/kg | NAN, MTES, MXPROA TESPR, HCOR, E1, 17α-E2, E3: 0.11–5.79 μg/kg | China | [30] |
LOQ: 0.33–3.96 μg/kg | ||||||||
LR: 2.5–500 μg/kg R2: 0.9943–0.9998 | ||||||||
R: 82.6–95.3% | ||||||||
Estrone (E1), 17β-estradiol (β-E2), 17α-ethynylestradiol (EE), estriol (E3), diethylstilbestrol (DES), levonorgestrel (NOR), norethisterone (NORET), megestrol actetate (MGA), progesterone (PRO), testosterone (TES), boldenone (BOL), nandrolone (NAN), cortisone (COR), prednisone (PRD), prednisolone (PRDNL) | Hormones | FPSE | UHPLC-MS/MS | Cow and goat milk | LOD: 0.012–1.242 ng/mL | ND | Spain | [27] |
LOQ: 0.04–4.14 ng/mL | ||||||||
R: 17.91–59.01% | ||||||||
β -E2, EE, E1, hexestrol (HEX) | Hormones | MSPE | HPLC-VWD-FLD | Milk powder | LOD: 0.5–0.9 μg/kg | ND | China | [227] |
LOQ: 1.5–3 μg/kg | ||||||||
R: 75.1–97.2% | ||||||||
RSD: ≤14.2 | ||||||||
E3, PRDA, HCOR, DES, E1 | Hormones | Online-SPE | HPLC-UV | Cow Milk | LOD: 0.004–0.054 μg/mL | ND | China | [228] |
LOQ: 0.015–0.180 μg/mL | ||||||||
R: 70.82–112.90% | ||||||||
E2, TES, PRO | Hormones | VALLME-MSPE | HPLC-DAD | Milk | LOD: 1.0–1.3 ng/mL | 0.2–4.6 ng/mL | China | [229] |
LOQ: 2.5–4.5 ng/mL | ||||||||
R 80.1–116.4% | ||||||||
RSD: ≤13.9% | ||||||||
Progesterone (PRO), trenbolone (TRB), norethisterone (NORET), gestodene (GSD), altrenogest (ALT), dienogestrel (DNG), norgestrel (NOG), demegestone (DMG), 17α-hydoxy progesterone (17 α-HPRO), 21α-hydoxy progesterone (21 α-HPRO), megestrol (MEG), medroxyprogesterone (MXPRO), melengestrol (MLG), chlormadinone (ChMD), drospirenone (DROS), cyproterone (CYP), norethindrone acetate (NORA), megestrol acetate (MGA), medroxyprogesterone acetate (MXPROA), melengestrol acetate (MLGA), chlormadinone acetate (ChMDA) and cyproterone acetate (CYPA) | Hormones | SPE | UHPLC-QE HF HRMS | Cow and ewe milk | LOD: 0.05–0.3 μg /kg | PRO: 0.48–54.2 μg/kg NOG: 1.45 ± 0.21 μg/kg GSD: 3.1 μg/kg MXPROA: 8.05, 152 μg/kg MXPRO: 13.5 μg/kg CYP: 61.2 ± 2.7 μg/kg | China | [29] |
LOQ: 0.2–1 μg /kg | ||||||||
R2: >0.99 | ||||||||
R: 80.7–108.3% | ||||||||
RSD: <15% | ||||||||
PCB81, PCB153, PCB105, PCB126, PCB157 | PCBs | DSPE | GC–MS/MS | Milk | LOD: 0.14–0.57 pg/g | <lOQ–5.27 pg/g | China | [230] |
LOQ: 0.47–1.90 pg/g | ||||||||
LR: 0.002–1.000 ng/g R2: 0.9995–0.9998 | ||||||||
R: 82.8–106% | ||||||||
RSD: ≤6.6% | ||||||||
PCB28, PCB52, PCB101, PCB138, PCB153, PCB180, PCB209, napthalene (NA), 2-methylnapthalene (2-MNA), 1-methylnapthalene (1-MNA), acenapthylene (AcNy), acenapthalene (AcNA), fluorene (FLN), phenanthrene (PhN), anthracene (ANT), fluranthene (FLT), pyrene (PY), benzo (A) anthacene (B-A-ANT), chrysene (Chr), benzo (B) fluoranthene (B-B-FLT), benzo (K) fluranthene (B-K-FLT), benzo (A) pyrene (B-A-PY), indeno (1, 2, 3-CD) pyrene (IPY), dibenz (A, H) anthracene (DANT) | PCBs & PAHs | QuEChERS | GC-MS/MS | Cow milk | LOD: PCBs: 0.016–0.031 ng/g PAHs: 0.3, 1.0 ng/g | PCBs: ND–3.35 ± 0.87 ng/g B-A-ANT: 0.5497 ± 0.30 ng/g Chr: 1.077 ± 0.88 ng/g | Bangladesh | [34] |
LOQ: PCBs: 0.059–0.08 ng/g PAHs: 1.0, 4.0 ng/g | ||||||||
R: PCBs: 77.53–92.49% PAHs: 67.90–99.76% | ||||||||
NA, AcNy, AcNA, FLN, PhN, ANT, FlT, PY, B-A-ANT, Chr, B-B-FLT, B-K-FLT, B-A-PY, IPY, DANT, benzo[g,h,i] perylene (BPer) | PAHs | MSPE | GC–MS | Milk and powder milk | LOD: 0.040–0.075 μg/kg | 0.48–1.98 μg/kg | Iran | [231] |
LOQ: 0.121–0.227 μg/kg | ||||||||
R: 86.1–100.3% | ||||||||
RSD: ≤10.1% | ||||||||
Furan | Toxic heterocyclic compounds | Automated HS-SPME | GC-MS | Milk | LOD: 0.01 ng/g | ND | Korea | [72] |
LOQ: 0.04 ng/g | ||||||||
R2: 0.9928–0.9990 | ||||||||
R: 88.93–95.22% | ||||||||
RSD%: 0.91–12.81% | ||||||||
RSD: ≤4.9 | ||||||||
Formaldehyde | Adulterants and preservatives | Derivatization, protein precipitation, and solvent extraction | MEKC-UV/DAD | Bovine milk | LOD: 15.0 μg/L | <LOD–0.13 ± 0.02 mg/kg | Brazil | [232] |
LOQ: 50.0 μg/L | ||||||||
LR: 50.0–1000 μg/L R2: >0.99 | ||||||||
R: 94.2 ± 0.7% | ||||||||
RSD: <3.9% | ||||||||
Formaldehyde | Adulterants and preservatives | Defatting, protein precipitation, and derivatization | UHPLC-MS/MS | Cow, goat and buffalo milk | LOD: 1 ng/mL | 134–255 ng/mL | India | [215] |
LOQ: 6.25 ng/mL | ||||||||
LR: 3.12–200 ng/mL R2: 0.997–0.999 | ||||||||
R: >95% | ||||||||
RSD: 2.84–8.02% | ||||||||
Fifty-four analytes | Veterinary drugs and mycotoxins | QuEChERS | UHPLC-Q-Orbitrap HRMS | Milk | LOD: 0.001–0.010 ng/g | 0.007–4.530 ng/mL | Italy | [28] |
LOQ: 0.005–0.030 ng/mL | ||||||||
R: 60–97% | ||||||||
RSD: <14% | ||||||||
Three hundred and sixty-one analytes | Veterinary drugs and pesticides | LLE + dSPE | LC-MS/MS and GC–MS/MS | Bovine milk | LOQ: 0.02–25 ng/g | Vet drugs: 1.2–18.2 ng/g | India | [39] |
R2: ≥0.99 | ||||||||
R: 70–120% for most of the compounds | ||||||||
Two hundred and nine analytes | Veterinary drugs, mycotoxins and pesticides | QuEChERS | UHPLC-Qtrap-MS | Raw and commercial milk | LOD: 0.01–1 μg/kg | Sulfamethazine: 1.79 μg/kg cloxacillin: 7.12–69.70 μg/kg aflatoxin M1: 0.17, 0.24 μg/kg fipronil sulfone: 0.08 μg/kg imidacloprid: 6.24 μg/kg acetamiprid: 2.36–12.24 μg/kg | China | [13] |
LOQ: 0.05–5 μg/kg | ||||||||
R2: ≥0.99 | ||||||||
R: 51.20–129.76% | ||||||||
RSD: 0.82–19.76% | ||||||||
Sixty-nine analytes | Veterinary drugs, mycotoxins and pesticides | Solvent extraction and SPE | LC–MS/MS | Bovine milk | LOD: 0.0036–47.94 μg/L | Sulfadimethoxine: 27.4, 18.2 μg/L enrofloxacin: 25.7 μg/L tetracycline: 30.1 μg/L oxytetracycline: 41.3 μg/L | North Macedonia | [233] |
LOQ: 0.053–59.43 μg/L | ||||||||
CCα: 0.062–211.32 μg/L | ||||||||
CCβ: 0.080–233.71 μg/L | ||||||||
R2: >0.99 | ||||||||
R: 70.83–109% | ||||||||
CV: <24% | ||||||||
Clanobutin, dichlorvos, and naftazone | Pharmaceuticals and pesticides | LPE | LC–MS/MS | Milk | LOD: 0.04, 0.4,0.1 ng/g | ND | Korea | [234] |
LOQ: 0.1,1,0.4 ng/g | ||||||||
LR: 5–50 ng/g R2: 0.9916, 0.9807, 0.9833 | ||||||||
R: 77.5–108.2% | ||||||||
RSD: 0.9–12.9% | ||||||||
BPA, E2, DES, CAP | Hormones, EDCs & antibiotics | MSPE | HPLC-UV | Whole milk and skimmed milk | LOD: 0.004–0.106 μg/mL | ND | China | [235] |
LOQ: 0.008–0.209 μg/mL | ||||||||
LR: 0.05–5.00 μg/mL | ||||||||
R: 88.17–113.46% | ||||||||
RSD: 0.002–1.951% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashraf, D.; Morsi, R.; Usman, M.; Meetani, M.A. Recent Advances in the Chromatographic Analysis of Emerging Pollutants in Dairy Milk: A Review (2018–2023). Molecules 2024, 29, 1296. https://doi.org/10.3390/molecules29061296
Ashraf D, Morsi R, Usman M, Meetani MA. Recent Advances in the Chromatographic Analysis of Emerging Pollutants in Dairy Milk: A Review (2018–2023). Molecules. 2024; 29(6):1296. https://doi.org/10.3390/molecules29061296
Chicago/Turabian StyleAshraf, Dina, Rana Morsi, Muhammad Usman, and Mohammed A. Meetani. 2024. "Recent Advances in the Chromatographic Analysis of Emerging Pollutants in Dairy Milk: A Review (2018–2023)" Molecules 29, no. 6: 1296. https://doi.org/10.3390/molecules29061296
APA StyleAshraf, D., Morsi, R., Usman, M., & Meetani, M. A. (2024). Recent Advances in the Chromatographic Analysis of Emerging Pollutants in Dairy Milk: A Review (2018–2023). Molecules, 29(6), 1296. https://doi.org/10.3390/molecules29061296