Enhancement of Photoluminescence Properties via Polymer Infiltration in a Colloidal Photonic Glass
Abstract
:1. Introduction
2. Results and Discussion
2.1. Realization and Morphological—Optical Properties
2.2. Morphological Characterization of the F8BT/PG Structure
2.3. Spectroscopical Features of F8BT
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, S.-H.; Lee, S.Y.; Yang, S.-M.; Yi, G.-R. Self-assembled colloidal structures for photonics. NPG Asia Mater. 2011, 3, 25–33. [Google Scholar] [CrossRef]
- Kim, Y.-B.; Cho, J.-W.; Lee, Y.-J.; Bae, D.; Kim, S.-K. High-index-contrast photonic structures: A versatile platform for photon manipulation. Light. Sci. Appl. 2022, 11, 316. [Google Scholar] [CrossRef] [PubMed]
- Angelakis, D.G.; Knight, P.L.; Paspalakis, E. Photonic crystals and inhibition of spontaneous emission: An introduction. Contemp. Phys. 2004, 5, 303–318. [Google Scholar] [CrossRef]
- Liu, J.-F.; Jiang, H.-X.; Gan, Z.-S.; Jia, B.-H.; Jin, C.-J.; Wang, X.-H.; Gu, M. Lifetime distribution of spontaneous emission from emitter(s) in three-dimensional woodpile photonic crystals. Opt. Express 2011, 19, 11623–11630. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Xia, H.; Xu, J.; Sun, X.; Liu, X. Manipulating Luminescence of Light Emitters by Photonic Crystals. Adv. Mater. 2018, 30, 1803362. [Google Scholar] [CrossRef]
- Hou, J.; Li, M.; Song, Y. Recent advances in colloidal photonic crystal sensors: Materials, structures and analysis methods. Nano Today 2018, 22, 132–144. [Google Scholar] [CrossRef]
- Chiappini, A.; Tran, T.N.L.; Trejo-García, P.M.; Zur, L.; Lukowiak, A.; Ferrari, M.; Righini, G.C. Photonic Crystal Stimuli-Responsive Chromatic Sensors: A Short Review. Micromachines 2020, 11, 290. [Google Scholar] [CrossRef]
- Sun, H.; Zhong, H.; Chen, X.; Gan, Y.; Wang, W.; Zhou, C.; Lin, C. New modes of converting chemical information with colloidal photonic crystal sensing units. Talanta 2024, 267, 125154. [Google Scholar] [CrossRef]
- Wijnhoven, J.E.G.J.; Vos, W.L. Preparation of photonic crystals made of air spheres in titania. Science 1998, 281, 802–804. [Google Scholar] [CrossRef]
- Blanco, A.; Chomski, E.; Grabtchak, S.; Toader; Driel Van, H.M.L. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature 2000, 405, 437–440. [Google Scholar] [CrossRef]
- Kozlov, A.A.; Aksenov, A.S.; Bolshakov, E.S.; Ivanov, A.V.; Flid, V.R. Colloidal photonic crystals with controlled morphology. Russ. Chem. Bull. 2022, 71, 2037–2051. [Google Scholar] [CrossRef]
- Fookes, F.; Parada, L.P.; Robust, M.F.A. Method for the Elaboration of SiO2-Based Colloidal Crystals as a Template for Inverse Opal Structures. Sensors 2023, 23, 1433. [Google Scholar] [CrossRef]
- Chiappini, A.; Armellini, C.; Piccolo, V.; Zur, L.; Ristic, D.; Jovanovic, D.J.; Vaccari, A.; Zonta, D.; Righini, G.C.; Ferrari, M. Colloidal crystals based portable chromatic sensor for butanol isomers and water mixtures detection. Opt. Mater. 2019, 90, 152–158. [Google Scholar] [CrossRef]
- Wang, W.; Song, H.; Bai, X.; Liu, Q.; Zhu, Y. Modified spontaneous emissions of europium complex in weak PMMA opals. Phys. Chem. Chem. Phys. 2011, 13, 18023–18030. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Yang, Z.; Sun, J.; Lai, S.; Shao, B.; Li, J.; Qiu, J.; Song, Z.; Yang, Y. Preparation and Upconversion Emission Modification of Crystalline Colloidal Arrays and Rare Earth Fluoride Microcrystal Composites. Sci. Rep. 2015, 5, 7636. [Google Scholar] [CrossRef] [PubMed]
- Furumi, S. Active lasing from organic colloidal photonic crystals. J. Mater. Chem. C 2013, 1, 6003–6012. [Google Scholar] [CrossRef]
- Mikosch, A.; Ciftci, S.; Tainter, G.; Shivanna, R.; Haehnle, B.; Deschler, F.; Kuehne, A.J.C. Laser Emission from Self-Assembled Colloidal Crystals of Conjugated Polymer Particles in a Metal-Halide Perovskite Matrix. Chem. Mater. 2019, 31, 2590–2596. [Google Scholar] [CrossRef]
- Glushko, O.; Meisels, R.; Kuchar, F. Simulations of wave propagation and disorder in 3D non-close-packed colloidal photonic crystals with low refractive index contrast. Opt. Express 2010, 18, 7101–7107. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Fang, Z.; Ma, C.; Inoue, H.; Yang, G.; Zheng, S.; Chen, D.; Yang, Z.; Masuno, A.; Orava, J.; et al. Mesoscale engineering of photonic glass for tunable luminescence. NPG Asia Mater. 2016, 8, e318. [Google Scholar] [CrossRef]
- Romanov, S.G.; Orlov, S.; Ploss, D.; Weiss, C.K.; Vogel, N.; Peschel, U. Engineered disorder and light propagation in a planar photonic glass. Sci. Rep. 2016, 6, 27264. [Google Scholar] [CrossRef]
- Shang, G.; Maiwald, L.; Renner, H.; Jalas, D.; Dosta, M.; Heinrich, S.; Petrov, A.; Eich, M. Photonic glass for high contrast structural color. Sci. Rep. 2018, 8, 7804. [Google Scholar] [CrossRef] [PubMed]
- Shang, G.; Eich, M.; Petrov, A. Photonic glass based structural color. APL Photonics 2020, 5, 060901. [Google Scholar] [CrossRef]
- Tikhonov, A.; Coalson, R.D.; Asher, S.A. Light diffraction from colloidal crystals with low dielectric constant modulation: Simulations using single-scattering theory. Phys. Rev. B 2008, 77, 235404. [Google Scholar] [CrossRef]
- Li, Z.; Li, S.; Ma, T. Using Photonic Glasses as Colored Covers for Solar Energy Harvesting. Adv. Opt. Mater. 2023, 11, 2202370. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, S.; Tang, B. Environmentally friendly optical multi-color rewritable paper based on inverse photonic glass. Dyes Pigm. 2022, 206, 110589. [Google Scholar] [CrossRef]
- Wang, J.; Chen, W.; Yang, D.; Fang, Z.; Liu, W.; Xiang, T.; Qiu, X. Photonic Lignin with Tunable and Stimuli-Responsive Structural Color. ACS Nano 2022, 16, 20705–20713. [Google Scholar] [CrossRef] [PubMed]
- García, P.D.; Sapienza, R.; Blanco, Á.; López, C. Photonic Glass: A Novel Random Material for Light. Adv. Mater. 2007, 19, 2597–2602. [Google Scholar] [CrossRef]
- García, P.D.; Ibisate, M.; Sapienza, R.; Wiersma, D.S.; López, C. Mie resonances to tailor random lasers. Phys. Rev. A 2009, 80, 013833. [Google Scholar] [CrossRef]
- Xia, R.; Heliotis, G.; Bradley, D.D.C. Fluorene-based Polymer Gain Media for Solid-state Laser Emission Across the Full Visible Spectrum. Appl. Phys. Lett. 2003, 82, 3599–3601. [Google Scholar] [CrossRef]
- Kuehne, A.J.C.; Gather, M.C. Organic Lasers: Recent Developments on Materials, Device Geometries, and Fabrication Techniques. Chem. Rev. 2016, 116, 12823–12864. [Google Scholar] [CrossRef]
- Mamada, M.; Komatsu, R.; Adachi, C. F8BT Oligomers for Organic Solid-State Lasers. ACS Appl. Mater. Interfaces 2020, 12, 28383–28391. [Google Scholar] [CrossRef]
- Chua, L.-L.; Zaumseil, J.; Chang, J.F.; Ou, E.C.-W.; Ho, P.K.-H.; Sirringhaus, H.; Friend, R.H. General Observation of n-Type Field-Effect Behaviour in Organic Semiconductors. Nature 2005, 434, 194–1999. [Google Scholar] [CrossRef]
- García, P.D.; Sapienza, R.; Bertolotti, J.; Martín, M.D.; Blanco, Á.; Altube, A.; Viña, L.; Wiersma, D.S.; López, C. Resonant light transport through Mie modes in photonic glasses. Phys. Rev. A 2008, 78, 023823. [Google Scholar] [CrossRef]
- Chiappini, A.; Armellini, C.; Chiasera, A.; Ferrari, M.; Fortes, L.; Gonçalves, M.C.; Guider, R.; Jestin, Y.; Retoux, R.; Conti, G.N.; et al. An alternative method to obtain direct opal photonic crystal structures. J. Non-Cryst. Solids 2009, 355, 1167–1170. [Google Scholar] [CrossRef]
- Moreau, J.; Giovanella, U.; Bombenger, J.-P.; Porzio, W.; Vohra, V.; Spadacini, L.; Di Silvestro, G.; Barba, L.; Arrighetti, G.; Destri, S.; et al. Highly emissive nanostructured thin films of organic host-guests for energy conversion. Chem. Phys. Chem. 2009, 10, 647–653. [Google Scholar] [CrossRef] [PubMed]
Label | PL Max (nm) | FWHM (cm−1) | τav (ns) | QY (%) |
---|---|---|---|---|
F8BT/PG | 543 | 2545 | 1.46 | 37 |
F8BT film | 543 | 2711 | 1.02 | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiappini, A.; Faccialà, D.; Novikova, N.I.; Sardar, S.; D’Andrea, C.; Scavia, G.; Botta, C.; Virgili, T. Enhancement of Photoluminescence Properties via Polymer Infiltration in a Colloidal Photonic Glass. Molecules 2024, 29, 654. https://doi.org/10.3390/molecules29030654
Chiappini A, Faccialà D, Novikova NI, Sardar S, D’Andrea C, Scavia G, Botta C, Virgili T. Enhancement of Photoluminescence Properties via Polymer Infiltration in a Colloidal Photonic Glass. Molecules. 2024; 29(3):654. https://doi.org/10.3390/molecules29030654
Chicago/Turabian StyleChiappini, Andrea, Davide Faccialà, Nina I. Novikova, Samim Sardar, Cosimo D’Andrea, Guido Scavia, Chiara Botta, and Tersilla Virgili. 2024. "Enhancement of Photoluminescence Properties via Polymer Infiltration in a Colloidal Photonic Glass" Molecules 29, no. 3: 654. https://doi.org/10.3390/molecules29030654
APA StyleChiappini, A., Faccialà, D., Novikova, N. I., Sardar, S., D’Andrea, C., Scavia, G., Botta, C., & Virgili, T. (2024). Enhancement of Photoluminescence Properties via Polymer Infiltration in a Colloidal Photonic Glass. Molecules, 29(3), 654. https://doi.org/10.3390/molecules29030654