Development and Validation of an ADA-Tolerant Assay for Quantification of an Exatecan-Based ADC in Monkey Plasma
Abstract
:1. Introduction
2. Results
2.1. Method Development
2.1.1. DAR-Insensitive Assay Development
2.1.2. Lactone-Insensitive Assay Development
2.1.3. ADA-Tolerant Assay Development
2.2. Method Validation
2.2.1. Calibration Curve
2.2.2. Accuracy and Precision
2.2.3. Assay Selectivity
2.2.4. Hook Effect and Dilution Linearity
2.2.5. Stability
3. Materials and Methods
3.1. Reagents and Disposables
3.2. Assay Procedure
3.3. ADA Interference
3.4. Method Validation
3.4.1. Calibration Curve
3.4.2. Accuracy and Precision
3.4.3. Selectivity
3.4.4. Hook Effect and Dilution Linearity
3.4.5. Stability
3.5. Software for Data Acquisition and Processing
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dumontet, C.; Reichert, J.M.; Senter, P.D.; Lambert, J.M.; Beck, A. Antibody-drug conjugates come of age in oncology. Nat. Rev. Drug Discov. 2023, 22, 641–661. [Google Scholar] [CrossRef] [PubMed]
- Gorovits, B.; Alley, S.C.; Bilic, S.; Booth, B.; Kaur, S.; Oldfield, P.; Purushothama, S.; Rao, C.; Shord, S.; Siguenza, P. Bioanalysis of antibody–drug conjugates: American Association of Pharmaceutical Scientists Antibody-Drug Conjugate Working Group position paper. Bioanalysis 2013, 5, 997–1006. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Xu, K.; Saad, O.M.; Dere, R.C.; Carrasco-Triguero, M. Bioanalytical assay strategies for the development of antibody–drug conjugate biotherapeutics. Bioanalysis 2013, 5, 201–226. [Google Scholar] [CrossRef]
- Stephan, J.P.; Kozak, K.R.; Wong, W.L. Challenges in developing bioanalytical assays for characterization of antibody–drug conjugates. Bioanalysis 2011, 3, 677–700. [Google Scholar] [CrossRef]
- Kumar, S.; King, L.E.; Clark, T.H.; Gorovits, B. Antibody–drug conjugates nonclinical support: From early to late nonclinical bioanalysis using ligand-binding assays. Bioanalysis 2015, 7, 1605–1617. [Google Scholar] [CrossRef]
- Qin, Q.; Gong, L. Current Analytical Strategies for Antibody-Drug Conjugates in Biomatrices. Molecules 2022, 27, 6299. [Google Scholar] [CrossRef] [PubMed]
- Faria, M.; Peay, M.; Lam, B.; Ma, E.; Yuan, M.; Waldron, M.; Mylott, W.R., Jr.; Liang, M.; Rosenbaum, A.I. Multiplex LC-MS/MS Assays for Clinical Bioanalysis of MEDI4276, an Antibody-Drug Conjugate of Tubulysin Analogue Attached via Cleavable Linker to a Biparatopic Humanized Antibody against HER-2. Antibodies 2019, 8, 11. [Google Scholar] [CrossRef] [PubMed]
- Lau, U.Y.; Benoit, L.T.; Stevens, N.S.; Emmerton, K.K.; Zaval, M.; Cochran, J.H.; Senter, P.D. Lactone stabilization is not a necessary feature for antibody conjugates of camptothecins. Mol. Pharm. 2018, 15, 4063–4072. [Google Scholar] [CrossRef]
- Thway, T.M.; Magana, I.; Bautista, A.; Jawa, V.; Gu, W.; Ma, M. Impact of anti-drug antibodies in preclinical pharmacokinetic assessment. AAPS J. 2013, 15, 856–863. [Google Scholar] [CrossRef]
- Wang, S.J.; Wu, S.T.; Gokemeijer, J.; Fura, A.; Krishna, M.; Morin, P.; Chen, G.; Price, K.; Wang-Iverson, D.; Olah, T.; et al. Attribution of the discrepancy between ELISA and LC-MS/MS assay results of a PEGylated scaffold protein in post-dose monkey plasma samples due to the presence of anti-drug antibodies. Anal. Bioanal. Chem. 2012, 402, 1229–1239. [Google Scholar] [CrossRef]
- Sailstad, J.M.; Amaravadi, L.; Clements-Egan, A.; Gorovits, B.; Myler, H.A.; Pillutla, R.C.; Pursuhothama, S.; Putman, M.; Rose, M.K.; Sonehara, K.; et al. Global Bioanalysis Consortium. A white paper-consensus and recommendations of a global harmonization team on assessing the impact of immunogenicity on pharmacokinetic. AAPS J. 2014, 16, 488–498. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Y. Establishment of Analytical Methods for Antibody Conjugates of Camptothecins Based on an Acid treatment Strategy. Master’s Thesis, Nanjing University of Chinese Medicine, Nanjing, China, 2003. [Google Scholar]
- European Medicines Agency; Committee for Medicinal Products for Human Use (CHMP). Guideline on Bioanalytical Method Validation; European Medicines Agency: London, UK, 2011. [Google Scholar]
- US Department of Health and Human Services; FDA; Center for Drug Evaluation and Research; Center for Veterinary Medicine. Guidance for Industry: Bioanalytical Method Validation; FDA: Rockville, MD, USA, 2018. [Google Scholar]
- EMA/CHMP/ICH/172948/2019; ICH Guideline M10 on Bioanalytical Method Validation and Study Sample Analysis. European Medicines Agency: Amsterdam, The Netherlands, 2022.
- Hertzberg, R.P.; Caranfa, M.J.; Holden, K.G.; Jakas, D.R.; Gallagher, G.; Mattern, M.R.; Mong, S.M.; Bartus, J.O.; Johnson, R.K.; Kingsbury, W.D. Modification of the hydroxy lactone ring of camptothecin: Inhibition of mammalian topoisomerase I and biological activity. J. Med. Chem. 1989, 32, 715–720. [Google Scholar] [CrossRef]
- Giovanella, B.C.; Harris, N.; Mendoza, J.; Cao, Z.; Liehr, J.; Stehlin, J.S. Dependence of anticancer activity of camptothecins on maintaining their lactone function. Ann. N. Y Acad. Sci. 2000, 922, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Burke, T.G.; Mi, Z. The structural basis of camptothecin interactions with human serum albumin: Impact on drug stability. J. Med. Chem. 1994, 37, 40–46. [Google Scholar] [CrossRef]
- Fassberg, J.; Stella, V.J. A kinetic and mechanistic study of the hydrolysis of camptothecin and some analogues. J. Pharm. Sci. 1992, 81, 676–684. [Google Scholar] [CrossRef] [PubMed]
- Sriram, D.; Yogeeswari, P.; Thirumurugan, R.; Bal, T.R. Camptothecin and its analogues: A review on their chemotherapeutic potential. Nat. Prod. Res. 2005, 19, 393–412. [Google Scholar] [CrossRef] [PubMed]
- Sharkey, R.M.; McBride, W.J.; Cardillo, T.M.; Govindan, S.V.; Wang, Y.; Rossi, E.A.; Chang, C.; Goldenberg, D.M. Enhanced Delivery of SN-38 to Human Tumor Xenografts with an Anti-Trop-2-SN-38 Antibody Conjugate (Sacituzumab Govitecan). Clin. Cancer Res. 2015, 21, 5131–5138. [Google Scholar] [CrossRef]
- Masako, S.; Hiroshi, K.; Takeshi, M.; Junko, K.; Hiromi, I.; Satoru, Y. Protein Recognizing Drug Moiety of Antibody-Drug Conjugate. Patent AU2019311596A1, 28 January 2021. [Google Scholar]
- Okamoto, H.; Oitate, M.; Hagihara, K.; Shiozawa, H.; Furuta, Y.; Ogitani, Y.; Kuga, H. Pharmacokinetics of trastuzumab deruxtecan (T-DXd), a novel anti-HER2 antibody-drug conjugate, in HER2-positive tumour-bearing mice. Xenobiotica 2020, 50, 1242–1250. [Google Scholar] [CrossRef]
ADA Conc. (µg/mL) | SM22-64-02 Nominal Conc. (µg/mL) | ADA Interference | After ADA Removal | ||||
---|---|---|---|---|---|---|---|
Measured Conc. (µg/mL) | CV % | Bias % | Measured Conc. (µg/mL) | CV % | Bias % | ||
5.00 | 30.0 | 21.6 | 6.1 | −28.0 | 24.7 | 1.8 | −17.7 |
22.5 | 17.0 | 4.6 | −24.4 | 18.8 | 0.0 | −16.4 | |
12.0 | 8.66 | 9.7 | −27.8 | 9.91 | 1.3 | −17.4 | |
3.00 | 1.28 | 35.8 | −57.3 | 2.08 | 3.2 | −30.2 | |
1.25 | BQL | NA | NA | BQL | NA | NA | |
1.00 | 30.0 | 29.5 | 6.9 | −1.7 | 27.6 | 2.5 | −8.0 |
22.5 | 19.9 | 2.5 | −11.6 | 20.8 | 0.8 | −7.6 | |
12.0 | 10.7 | 0.2 | −10.8 | 11.1 | 3.4 | −7.5 | |
3.00 | 2.56 | 14.2 | −14.7 | 2.86 | 2.3 | −4.6 | |
1.25 | BQL | NA | NA | 1.05 | 5.7 | −15.8 | |
0.250 | 30.0 | 26.4 | 0.8 | −12.0 | 28.3 | 0.0 | −5.7 |
22.5 | 19.6 | 6.4 | −12.9 | 24.2 | 0.9 | 7.6 | |
12.0 | 10.4 | 1.3 | −13.3 | 12.3 | 1.9 | 2.5 | |
3.00 | 2.58 | 5.4 | −14.0 | 3.00 | 11.2 | −0.1 | |
1.25 | BQL | NA | NA | 1.09 | 13.0 | −12.9 | |
0.00 | 30.0 | 28.1 | 7.2 | −6.3 | 27.8 | 0.5 | −7.3 |
22.5 | 20.8 | 9.9 | −7.6 | 22.1 | 2.6 | −1.8 | |
12.0 | 11.5 | 2.5 | −4.2 | 12.8 | 7.7 | 6.7 | |
3.00 | 2.76 | 8.5 | −8.0 | 3.39 | 3.9 | 13.1 | |
1.25 | 1.16 | 17.8 | −7.2 | 1.16 | 5.0 | −7.4 |
Item | LLOQ (1.25 µg/mL) | LQC (3.00 µg/mL) | MQC (12.0 µg/mL) | HQC (22.5 µg/mL) | ULOQ (30.0 µg/mL) |
---|---|---|---|---|---|
Inter-run Mean | 1.09 | 2.88 | 11.9 | 22.2 | 28.3 |
Inter-run % CV | 7.6 | 6.5 | 7.3 | 4.0 | 3.0 |
Inter-run % Bias | −12.8 | −4.0 | −0.8 | −1.3 | −5.7 |
Inter-run % Total Error | 20.4 | 10.5 | 8.1 | 5.3 | 8.7 |
n | 6 | 6 | 6 | 6 | 6 |
Nominal Conc. (μg/mL) | Dilution Factor | Measured Conc. (μg/mL) | Dilution Factor | Measured Conc. (μg/mL) | Mean Conc. (μg/mL) | CV % | Bias % |
---|---|---|---|---|---|---|---|
1000 | 1 | AQL | 200 | 924 | 914 | 4.7 | −8.6 |
AQL | 888 | ||||||
AQL | 936 | ||||||
AQL | 965 | ||||||
AQL | 855 | ||||||
800 | 1 | AQL | 100 | 656 | 658 | 5.8 | −17.8 |
AQL | 657 | ||||||
AQL | 681 | ||||||
AQL | 598 | ||||||
AQL | 698 | ||||||
500 | 1 | AQL | 50 | 503 | 470 | 7.1 | −6.0 |
AQL | 510 | ||||||
AQL | 442 | ||||||
AQL | 442 | ||||||
AQL | 455 | ||||||
250 | 1 | AQL | 20 | 214 | 222 | 2.8 | −11.2 |
AQL | 218 | ||||||
AQL | 223 | ||||||
AQL | 225 | ||||||
AQL | 230 | ||||||
125 | 1 | AQL | 10 | 92.3 | 100 | 8.9 | −20.0 |
AQL | 91.2 | ||||||
AQL | 99.9 | ||||||
AQL | 106 | ||||||
AQL | 112 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, Y.; Lu, W.; Gao, J.; Yang, S.; Ruan, C.; Hou, Y.; Lu, J.; Xu, J.; Zhang, J.; Pasas-Farmer, S.; et al. Development and Validation of an ADA-Tolerant Assay for Quantification of an Exatecan-Based ADC in Monkey Plasma. Molecules 2024, 29, 572. https://doi.org/10.3390/molecules29030572
Tao Y, Lu W, Gao J, Yang S, Ruan C, Hou Y, Lu J, Xu J, Zhang J, Pasas-Farmer S, et al. Development and Validation of an ADA-Tolerant Assay for Quantification of an Exatecan-Based ADC in Monkey Plasma. Molecules. 2024; 29(3):572. https://doi.org/10.3390/molecules29030572
Chicago/Turabian StyleTao, Yimin, Wei Lu, Jinli Gao, Shuangshuang Yang, Chaoyi Ruan, Yingying Hou, Jing Lu, Junjiu Xu, Jianjian Zhang, Stephanie Pasas-Farmer, and et al. 2024. "Development and Validation of an ADA-Tolerant Assay for Quantification of an Exatecan-Based ADC in Monkey Plasma" Molecules 29, no. 3: 572. https://doi.org/10.3390/molecules29030572
APA StyleTao, Y., Lu, W., Gao, J., Yang, S., Ruan, C., Hou, Y., Lu, J., Xu, J., Zhang, J., Pasas-Farmer, S., Qin, Q., & Gong, L. (2024). Development and Validation of an ADA-Tolerant Assay for Quantification of an Exatecan-Based ADC in Monkey Plasma. Molecules, 29(3), 572. https://doi.org/10.3390/molecules29030572