Density Functional Theory Insights into Conduction Mechanisms in Perovskite-Type RCoO3 Nanofibers for Future Resistive Random-Access Memory Applications
Abstract
1. Introduction
2. Results and Discussion
3. Experimental and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shen, Z.; Zhao, C.; Qi, Y.; Xu, W.; Liu, Y.; Mitrovic, I.; Yang, L.; Zhao, C. Advances of RRAM devices: Resistive switching mechanisms, materials and bionic synaptic application. Nanomaterials 2020, 10, 1437. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.; Patel, M.; Busupalli, B.; Solanki, A. Interface engineering enables multilevel resistive switching in ultra-low-power chemobrionic copper silicate. Langmuir 2024, 40, 2311–2319. [Google Scholar] [CrossRef] [PubMed]
- Jeong, T.; Yue, I.; Ye, K.; Yoon, S.; Kim, D.; Hwang, C.; Choi, J. Study of a charge transition-driven resistive switching mechanism in TiO2-based random access memory via density functional theory. Nanoscale 2024, 16, 6949–6960. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Chen, B.; Wang, Z.; Qu, J.; Zhao, J.; Shen, R.; Yu, X.; Yu, Z.; Liu, F. A cold-electrode metal–oxide resistive random access memory. Appl. Phys. Lett. 2024, 125, 013503. [Google Scholar] [CrossRef]
- Hu, G.; Yu, Z.; Qu, H.; Yuan, Y.; Li, D.; Zhu, M.; Guo, J.; Xia, C.; Wang, X.; Wang, B.; et al. Cu/MgO-based resistive random access memory for neuromorphic applications. Appl. Phys. Lett. 2024, 124, 142109. [Google Scholar] [CrossRef]
- Hao, C.; Peng, J.; Zierold, R.; Blick, R. Atomic layer deposition films for resistive random-access memories. Adv. Mater. Technol. 2024, 23, 2301762. [Google Scholar] [CrossRef]
- Nandakumar, S.R.; Minvielle, M.; Nagar, S.; Dubourdieu, C.; Rajendran, B. A 250 mV Cu/SiO2/W memristor with half-integer quantum conductance states. Nano Lett. 2016, 16, 1602–1608. [Google Scholar] [CrossRef]
- Schmitt, R.; Kubicek, M.; Sediva, E.; Trassin, M.; Weber, M.; Rossi, A.; Hutter, H.; Kreisel, J.; Fiebig, M.; Rupp, J. Accelerated ionic motion in amorphous memristor oxides for nonvolatile memories and neuromorphic computing. Adv. Funct. Mater. 2019, 29, 1804782. [Google Scholar] [CrossRef]
- Gadani, K.; Rathod, K.; Dhruv, D.; Shrimali, V.; Rajyaguru, B.; Joseph, J.; Joshi, A.; Pandya, D.; Asokan, K.; Solanki, P.; et al. Defects induced resistive switching behavior in Ca doped YMnO3-based non-volatile memory devices through electronic excitations. Mater. Sci. Semicond. Process. 2021, 121, 105347. [Google Scholar] [CrossRef]
- Ranieri, M.G.A.; Ortega, P.P.; Moreno, H.; Ramirez, M.; Aguiar, E.C.; Simões, A.Z. Resistive switching and multiferroic behavior of La0.5Pr0.5FeO3 ferrite thin films. J. Alloy Compd. 2021, 851, 156936. [Google Scholar] [CrossRef]
- Zhang, H.; Park, T.; Islam, A.; Tran, D.; Manna, S.; Wang, Q.; Mondal, S.; Yu, H.; Banik, S.; Cheng, S.; et al. Reconfigurable perovskite nickelate electronics for artificial intelligence. Science 2022, 375, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Olsson, E.; Aparicio-Anglès, X.; de Leeuw, N.H. A DFT+U study of the structural, electronic, magnetic, and mechanical properties of cubic and orthorhombic SmCoO3. J. Chem. Phys. 2016, 145, 224704. [Google Scholar] [CrossRef]
- Olsson, E.; Cottom, J.; Aparicio-Anglès, X.; de Leeuw, N.H. Computational study of the mixed B-site perovskite SmBxCo1−xO3−d (B = Mn, Fe, Ni, Cu) for next generation solid oxide fuel cell cathodes. Phys. Chem. Chem. Phys. 2019, 21, 9407–9418. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Y.; Ma, C.; Xiao, Y.; Deng, R.; Qian, F.; Zhu, Y.; Zhang, L.; Yang, H.; Fan, J. High stability visible-light photoresponse of flexible heterostructures based on LaCoO3 epitaxial films. Appl. Surf. Sci. 2024, 657, 159818. [Google Scholar] [CrossRef]
- Vasudevan, S.; Manickam, M.; Sivasubramanian, R. A sol–gel derived LaCoO3 perovskite as an electrocatalyst for Al–air batteries. Dalton Trans. 2024, 53, 3713–3721. [Google Scholar] [CrossRef]
- Zhou, H.; Zhao, W.; Yan, J.; Zheng, Y. Bifunctional catalytic activity of LaCoO3 perovskite air electrode for rechargeable Zn–air batteries boosted by molybdenum doping. J. Power Sources 2024, 597, 234104. [Google Scholar] [CrossRef]
- Liu, J.; Si, L.; Zhang, Q.; Wang, X.; Freese, J.; Harris, G.; Wu, M.; Zhang, X.; Lin, T.; Sutarto, R.; et al. Realization of Fully High-Spin State and Strong Ferromagnetism in LaCoO3 Monolayer. Adv. Funct. Mater. 2024, 27, 2401859. [Google Scholar] [CrossRef]
- Kianipour, S.; Razavi, F.; Waleed, I.; Izzat, S.; Farhan, I.; Hussein, T.; Heydaryan, K.; Salavati-Niasari, M. NdCoO3 nanostructures as promising candidate photocatalysts for boosting visible-light-driven photocatalytic degradation of organic pollutants. J. Sci.-Adv. Mater. Dev. 2022, 7, 100506. [Google Scholar] [CrossRef]
- Dudnikov, V.A.; Fedorov, A.S.; Orlov, Y.S.; Solovyov, L.A.; Vereshchagin, S.N.; Gavrilkin, S.Y.; Tsvetkov, A.Y.; Gorev, M.V.; Novikov, S.V.; Ovchinnikov, S.G. Thermoelectric properties of the SmCoO3 and NdCoO3 cobalt oxides. Ceram. Int. 2020, 46, 17987–17991. [Google Scholar] [CrossRef]
- Dudnikov, V.; Orlov, Y.; Solovyov, L.; Vereshchagin, S.; Gavrilkin, S.; Tsvetkov, A.; Velikanov, D.; Gorev, M.; Novikov, S.; Ovchinnikov, S. Effect of multiplicity fluctuation in cobalt ions on crystal structure, magnetic and electrical properties of NdCoO3 and SmCoO3. Molecules 2020, 25, 1301. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, H.; Karmakar, R.; Bhowmik, T.; Halder, S.; Dutta, A.; Sinha, T. RCoO3 {R = Pr, Nd and Sm} electrode-based for efficient solid-state symmetric supercapacitor. Solid State Sci. 2022, 134, 107065. [Google Scholar] [CrossRef]
- Cheng, H.; Wang, Y.; Jin, Y.; Zhou, B.; Li, D.; Mo, S.; Liu, X.; Si, W.; Li, J. Oxygen vacancy engineering through equivalent and aliovalent doping on LaCoO3. Sep. Purif. Technol. 2024, 351, 128078. [Google Scholar] [CrossRef]
- Kim, J.; Hwang, S. Bipolar resistive switching behavior of PVP-GQD/HfOx/ITO/graphene hybrid flexible resistive random access memory. Molecules 2021, 26, 6758. [Google Scholar] [CrossRef]
- Moorthi, K.; Sivakumar, B.; Chokkiah, B.; Valdes, H.; Mohan, S. Morphological Impact of Perovskite-Structured Lanthanum Cobalt Oxide (LaCoO3) Nanoflakes Toward Supercapacitor Applications. ACS Appl. Nano Mater. 2024, 7, 18511–18522. [Google Scholar] [CrossRef]
- Ran, A.; Tao, P.; Liping, M.; Quxiu, D.; Jie, Y.; Wengang, L.; Longgui, X.; Zhiying, G. Understanding the effects of A-site Ag-doping on LaCoO3 perovskite for NO oxidation: Structural and magnetic properties. J. Environ. Manag. 2024, 353, 120160. [Google Scholar]
- Weng, S.; Wang, Y.; Lee, C. Autothermal steam reforming of ethanol over La2Ce2-xRuxO7 (x = 0–0.35) catalyst for hydrogen production. Appl. Catal. B Environ. 2013, 134, 359–366. [Google Scholar] [CrossRef]
- Han, Y.; Brugman, B.L.; Leinbach, L.J.; Guo, X.; Leinenweber, K.; Navrotsky, A. Thermochemical properties of high pressure neodymium monoxide. Inorg. Chem. 2024, 63, 13468–13473. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, W.; Zhang, X.; Guo, X. NO2 sensing properties of SmFeO3 porous hollow microspheres. Sens. Actuators B-Chem. 2018, 265, 443–451. [Google Scholar] [CrossRef]
- Zhang, W.; Han, P.; Li, J.; Niu, Z.; Wang, G.; Wang, N.; Li, X.; Ye, L.; Li, X. Modulating the active phase in perovskite LaCoO3 with B-site doping of Cu for efficient methanol reforming to produce hydrogen. Cryst. Eng. Comm. 2024, 26, 2306–2313. [Google Scholar] [CrossRef]
- Zhuo, V.Y.Q.; Jiang, Y.; Li, M.H.; Chua, E.K.; Zhang, Z.; Pan, J.S.; Zhao, R.; Shi, L.P.; Chong, T.C.; Robertson, J. Band alignment between Ta2O5 and metals for resistive random access memory electrodes engineering. Appl. Phys. Lett. 2013, 102, 062106. [Google Scholar] [CrossRef]
- Rasheed, U.; Ryu, H.; Mahata, C.; Khalil, R.; Imran, M.; Rana, A.; Kousar, F.; Kim, B.; Kim, Y.; Cho, S.; et al. Resistive switching characteristics and theoretical simulation of a Pt/a-Ta2O5/TiN synaptic device for neuromorphic applications. J. Alloy Compd. 2021, 877, 160204. [Google Scholar] [CrossRef]
- Rasheed, U.; Imran, M.; Niaz, N.; Hussain, F.; Tighezza, A.; Khalil, R. ab initio study of quantized conduction mechanism in trilayered heterostructure for scaled down memory device applications. Mater. Today Commun. 2024, 38, 108499. [Google Scholar] [CrossRef]
- Lee, T.S.; Lee, N.J.; Abbas, H.; Lee, H.H.; Yoon, T.S.; Kang, C.J. Compliance current-controlled conducting filament formation in tantalum oxide-based RRAM devices with different top electrodes. ACS Appl. Electron. Mater. 2020, 2, 1154–1161. [Google Scholar] [CrossRef]
- Rasheed, U.; Imran, M.; Hussain, F.; Mumtaz, U.; Tighezza, A.; Khalil, R.; Ehsan, M. Role of oxygen vacancy in controlling the resistive switching mechanism for the development of conducting filaments in response of homo and hetero electrodes: Using DFT approach. J. Phys. Chem. Solids 2024, 193, 112214. [Google Scholar] [CrossRef]
- Hu, Q.; Yue, B.; Shao, H.; Yang, F.; Wang, J.; Wang, Y.; Liu, J. Facile syntheses of perovskite type LaMO3 (M = Fe, Co, Ni) nanofibers for high performance supercapacitor electrodes and lithium-ion battery anodes. J. Alloy Compd. 2021, 852, 157002. [Google Scholar] [CrossRef]
- Hu, Q.; Yue, B.; Yang, D.; Zhang, Z.; Wang, Y.; Liu, J. Electrochemical and magnetic properties of electrospun SmFeO3 and SmCoO3 nanofibers. J. Am. Ceram. Soc. 2022, 105, 1149–1158. [Google Scholar] [CrossRef]
- Hu, Q.; Yue, B.; Wang, S.; Yang, D.; Wang, Y.; Dong, X.; Liu, J. Syntheses, characterization, magnetic, and electrochemical properties of perovskite-type NdFeO3 and NdCoO3 nanofibers. J. Am. Ceram. Soc. 2022, 105, 6732–6743. [Google Scholar] [CrossRef]
- Kresse, G.; Jürgen, F. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Perdew, J.P.; Kieron, B.; Matthias, E. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Blöchl, P. Projector augmented-wave method. Phys. Rev. B Condens. Matter 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef] [PubMed]
LaCoO3 | NdCoO3 | SmCoO3 | |
---|---|---|---|
Crystal structure | rhombohedral | orthorhombic | orthorhombic |
Space group | R | Pbnm | Pbnm |
a | 5.44159 Å | 5.34849 Å | 5.28927 Å |
b | 5.44159 Å | 5.33651 Å | 5.35376 Å |
c | 13.10618 Å | 7.55291 Å | 7.50440 Å |
α | 90° | 90° | 90° |
β | 90° | 90° | 90° |
γ | 120° | 90° | 90° |
V | 336.09 Å3 | 215.57 Å3 | 212.51 Å3 |
Rwp * | 2.623% | 2.006% | 1.647% |
χ2 | 0.74 | 0.45 | 0.41 |
Name of Structure | Orbital Contribution | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Valence Band Region | Conduction Band Region | ||||||||||||||
Lower (3~4.5 eV) | Upper (0~3 eV) | ||||||||||||||
La | Nd | Sm | Co | O | La | Nd | Sm | Co | O | La | Nd | Sm | Co | O | |
Pt/LaCoO3/Pt | − | − | − | 3d | 2p | 5d | − | − | − | − | − | − | − | 3d | 2p |
Pt/NdCoO3/Pt | − | − | − | 3d | 2p | − | 4f | − | − | − | − | − | − | 3d | 2p |
Pt/SmCoO3/Pt | − | − | − | 3d | 2p | − | − | 4f | − | − | − | − | − | 3d | 2p |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Q.; Luo, H.; Song, C.; Wang, Y.; Yue, B.; Liu, J. Density Functional Theory Insights into Conduction Mechanisms in Perovskite-Type RCoO3 Nanofibers for Future Resistive Random-Access Memory Applications. Molecules 2024, 29, 6056. https://doi.org/10.3390/molecules29246056
Hu Q, Luo H, Song C, Wang Y, Yue B, Liu J. Density Functional Theory Insights into Conduction Mechanisms in Perovskite-Type RCoO3 Nanofibers for Future Resistive Random-Access Memory Applications. Molecules. 2024; 29(24):6056. https://doi.org/10.3390/molecules29246056
Chicago/Turabian StyleHu, Quanli, Hanqiong Luo, Chao Song, Yin Wang, Bin Yue, and Jinghai Liu. 2024. "Density Functional Theory Insights into Conduction Mechanisms in Perovskite-Type RCoO3 Nanofibers for Future Resistive Random-Access Memory Applications" Molecules 29, no. 24: 6056. https://doi.org/10.3390/molecules29246056
APA StyleHu, Q., Luo, H., Song, C., Wang, Y., Yue, B., & Liu, J. (2024). Density Functional Theory Insights into Conduction Mechanisms in Perovskite-Type RCoO3 Nanofibers for Future Resistive Random-Access Memory Applications. Molecules, 29(24), 6056. https://doi.org/10.3390/molecules29246056