Recent Progress on the Catalytic Application of Bimetallic PdCu Nanoparticles
Abstract
1. Introduction
2. Synthesis and Catalytic Application of PdCu Nanoparticles
3. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gholinejad, M.; Khosravi, F.; Afrasi, M.; Sansano, J.M.; Nájera, C. Applications of bimetallic PdCu catalysts. Catal. Sci. Technol. 2021, 11, 2652–2702. [Google Scholar] [CrossRef]
- Wei, Z.; Sun, J.; Li, Y.; Datye, A.K.; Wang, Y. Bimetallic catalysts for hydrogen generation. Chem. Soc. Rev. 2012, 41, 7994–8008. [Google Scholar] [CrossRef] [PubMed]
- Sankar, M.; Dimitratos, N.; Miedziak, P.J.; Wells, P.P.; Kiely, C.J.; Hutchings, G.J. Designing bimetallic catalysts for a green and sustainable future. Chem. Soc. Rev. 2012, 41, 8099–8139. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Xu, Q. Synergistic catalysis over bimetallic alloy nanoparticles. ChemCatChem 2013, 5, 652–676. [Google Scholar] [CrossRef]
- Shi, J. On the synergetic catalytic effect in heterogeneous nanocomposite catalysts. Chem. Rev. 2012, 113, 2139–2181. [Google Scholar] [CrossRef]
- Fodor, A.; Hell, Z.; Pirault-Roy, R. Copper(II)- and palladium(II)-modified molecular sieve, a reusable catalyst for the Suzuki–Miyaura-coupling. Appl. Catal. A-Gen. 2014, 484, 39–50. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Jaleh, B.; Ehsani, A. Preparation of carbon supported CuPd nanoparticles as novel heterogeneous catalysts for the reduction of nitroarenes and the phosphine-free Suzuki-Miyaura coupling reaction. New J. Chem. 2015, 39, 1148–1153. [Google Scholar] [CrossRef]
- Dhankhar, A.; Rai, R.K.; Tyagi, D.; Yao, X.; Singh, S.K. Synergistic catalysis with MIL-101: Stabilized highly active bimetallic NiPd and CuPd alloy nanoparticle catalysts for C-C coupling reactions. ChemistrySelect 2016, 1, 3223–3227. [Google Scholar] [CrossRef]
- Alonso, D.A.; Baeza, A.; Chinchilla, R.; Gómez, C.; Guillena, G.; Pastor, I.M.; Ramón, D.J. Solid-supported palladium catalysts in Sonogashira reactions: Recent developments. Catalysts 2018, 8, 202. [Google Scholar] [CrossRef]
- Kanwal, I.; Mujahid, A.; Rasool, N.; Rizwan, K.; Malik, A.; Ahmad, G.; Shah, S.A.A.; Rashid, U.; Nasir, N.M. Palladium and copper catalyzed Sonogashira cross coupling an excellent methodology for C-C bond formation over 17 years: A review. Catalysts 2020, 10, 443. [Google Scholar] [CrossRef]
- Evano, G.; Blanchard, N.; Toumi, M. Copper-mediated coupling reactions and their applications in natural products and designed biomolecules synthesis. Chem. Rev. 2008, 108, 3054–3131. [Google Scholar] [CrossRef] [PubMed]
- Corma, A.; Garcia, H.; Primo, A. Palladium and copper supported on mixed oxides derived from hydrotalcite as reusable solid catalysts for the Sonogashira coupling. J. Catal. 2006, 241, 123–131. [Google Scholar] [CrossRef]
- Chouzier, S.; Gruber, M.; Djakovitch, L. New hetero-bimetallic Pd-Cu catalysts for the one-pot indole synthesis via the Sonogashira reaction. J. Mol. Catal. A Chem. 2004, 212, 43–52. [Google Scholar] [CrossRef]
- Gholinejad, M.; Jeddi, N.; Pullithadathil, B. Agarose functionalized phosphorous ligand for stabilization of small-sized palladium and copper nanoparticles: Efficient heterogeneous catalyst for Sonogashira reaction. Tetrahedron 2016, 72, 2491–2500. [Google Scholar] [CrossRef]
- Barrabés, N.; Sá, J. Catalytic nitrate removal from water, past, present, and future perspectives. Appl. Catal. B-Environ. 2011, 104, 1–5. [Google Scholar] [CrossRef]
- Yoshinaga, Y.; Akita, T.; Mikami, I.; Okuhara, T. Hydrogenation of nitrate in water to nitrogen over Pd-Cu supported on active carbon. J. Catal. 2002, 207, 37–45. [Google Scholar] [CrossRef]
- Lambert, S.; Heinrichs, B.; Brasseur, A.; Rulmont, A.; Pirard, J.P. Determination of surface composition of alloy nanoparticles and relationships with catalytic activity in Pd-Cu/SiO2 cogelled xerogel catalysts. Appl. Catal. A-Gen. 2004, 270, 201–208. [Google Scholar] [CrossRef]
- Lambert, S.; Ferauche, F.; Brasseur, A.; Pirard, J.P.; Heinrichs, B. Pd-Ag/SiO2 and Pd-Cu/SiO2 cogelled xerogel catalysts for selective hydrodechlorination of 1,2-dichloroethane into ethylene. Catal. Today 2005, 100, 283–289. [Google Scholar] [CrossRef]
- Jiang, X.; Koizumi, N.; Guo, X.; Song, C. Bimetallic Pd-Cu catalysts for selective CO2 hydrogenation to methanol. Appl. Catal. B-Environ. 2015, 170, 173–185. [Google Scholar] [CrossRef]
- Zhang, L.; Su, H.; Sun, M.; Wang, Y.; Wu, W.; Yu, T.; Zeng, J. Concave Cu-Pd bimetallic nanocrystals: Ligand-based co-reduction and mechanistic study. Nano Res. 2015, 8, 2415–2430. [Google Scholar] [CrossRef]
- Sitthisa, S.; Pham, T.; Prasomsi, T.; Sooknoi, T.; Mallinson, R.G.; Resasco, D.E. Conversion of furfural and 2-methylpentanal on Pd/SiO2 and Pd-Cu/SiO2 catalysts. J. Catal. 2011, 280, 17–27. [Google Scholar] [CrossRef]
- Martínez-Casillas, D.C.; Solorza-Feria, O. Synthesis and characterization of bimetallic PdM nanoparticles (M = Ag, Cu) oxygen reduction electrocatalysts. ECS Trans. 2009, 20, 275–280. [Google Scholar] [CrossRef]
- Li, M.; Wang, J.; Li, P.; Chang, K.; Li, C.; Wang, T.; Jiang, B.; Zhang, H.; Liu, H.; Yamauchi, Y.; et al. Mesoporous palladium copper bimetallic electrodes for selective electrocalatytic reduction of aqueous CO2 to CO. J. Mater. Chem. A 2016, 4, 4776–4782. [Google Scholar] [CrossRef]
- Qiu, Y.; Xin, L.; Li, Y.; McCrum, I.T.; Guo, F.; Ma, T.; Ren, Y.; Liu, Q.; Zhou, L.; Gu, S.; et al. BCC-phased PdCu alloy as a highly active electrocatalyst for hydrogen oxidation in alkaline electrolytes. J. Am. Chem. Soc. 2018, 140, 16580–16588. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.-W.; Feng, Y.-S.; Wang, G.-Y.; Jiang, W.-W.; Xu, H.-J. Characterization and reactivity of γ-Al2O3 supported Pd-Cu bimetallic nanocatalysts for the selective oxygenization of cyclohexene. Chin. Chem. Lett. 2016, 27, 905–909. [Google Scholar] [CrossRef]
- Oleksenko, L.P.; Telbiz, G.M.; Yatsimirsky, V.K.; Kuzmich, I.V. Metal-containing Pd and Cu and bimetallic Pd-Cu catalytic systems based on HZSM-5 zeolite. Adsorpt. Sci. Technol. 1999, 17, 545–555. [Google Scholar] [CrossRef]
- Bickford, E.S.; Velu, S.; Song, C. Nano-structured CeO2 supported Cu-Pd bimetallic catalysts for the oxygen-assisted water-gas-shift reaction. Catal. Today 2005, 99, 347–357. [Google Scholar] [CrossRef]
- Dou, L.; Zhang, H. Facile assembly of nanosheets array-like CuMgAl-layered double hydroxide/rGO nanohybrids for highly efficient reduction of 4-nitrophenol. J. Mater. Chem. A 2016, 4, 18990–19002. [Google Scholar] [CrossRef]
- Li, J.; Song, Y.; Wang, Y.; Zhang, H. Ultrafine PdCu nanoclusters by ultrasonic-assisted reduction on the LDHs/rGO hybrid with significantly enhanced Heck reactivity. ACS Appl. Mater. Interfaces 2020, 12, 50365–50376. [Google Scholar] [CrossRef]
- Dang-Bao, T.; Pradel, C.; Favier, I.; Gómez, M. Bimetallic nanocatalysts in glycerol for applications in controlled synthesis. A structure-reactivity relationship study. ACS Appl. Nano Mater. 2019, 2, 1033–1044. [Google Scholar] [CrossRef]
- Jia, X.; Zhao, J.; Lv, Y.; Fu, X.; Jian, Y.; Zhang, W.; Wang, Y.; Sun, H.; Wang, X.; Long, J.; et al. Low-crystalline PdCu alloy on large-area ultrathin 2D carbon nitride nanosheets for efficient photocatalytic Suzuki coupling. Appl. Catal. B-Environ. 2022, 300, 120756. [Google Scholar] [CrossRef]
- Zavabeti, A.; Jannat, A.; Zhong, L.; Haidry, A.A.; Yao, Z.; Ou, J.Z. Two-dimensional materials in large areas: Synthesis, properties and applications. Nano-Micro Lett. 2020, 12, 66. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Reber, A.C.; Gilliland, S.E., III; Castano, C.E.; Gupton, B.F.; Khanna, S.N. More than just a support: Graphene as a solid-state ligand for palladium-catalyzed cross-coupling reactions. J. Catal. 2018, 360, 20–26. [Google Scholar] [CrossRef]
- Huang, Y.; Wei, Q.; Wang, Y.; Dai, L. Three-dimensional amine-terminated ionic liquid functionalized graphene/Pd composite aerogel as highly efficient and recyclable catalyst for the Suzuki cross-coupling reactions. Carbon 2018, 136, 150–159. [Google Scholar] [CrossRef]
- Ru, Y.; Huang, Y.; Wang, Y.; Dai, L. Pd-Cu alloy nanoparticle supported on amine-terminated ionic liquid functional 3D graphene and its application on Suzuki cross-coupling reaction. Appl. Organomet. Chem. 2019, 33, e5198. [Google Scholar] [CrossRef]
- Mohammadlou, S.; Pesyan, N.N. Stabilization and anchoring of palladium-copper alloy on murexide modified carbon nanotube as a superb nanocatalyst: Excellent performance in coupling and synthetic reactions. Appl. Organomet. Chem. 2023, 37, e7237. [Google Scholar] [CrossRef]
- Mohan, M.K.; Sunajadevi, K.R.; Daniel, N.K.; Gopi, S.; Sugunan, S.; Perumparakunnel, N.C. Cu/Pd bimetallic supported on mesoporous TiO2 for Suzuki coupling reaction. Bull. Chem. React. Eng. Catal. 2018, 13, 286–294. [Google Scholar] [CrossRef]
- Jeon, B.; Lee, H.; Goddeti, K.C.; Park, J.Y. Hot electron transport on three-dimensional Pt/mesoporous TiO2 Schottky nanodiodes. ACS Appl. Mater. Interfaces 2019, 11, 15152–15159. [Google Scholar] [CrossRef]
- Xie, C.; Yang, S.; Shi, J.; Niu, C. Highly crystallized mesoporous anatase TiO2 with visible light photocatalytic activity. Catalysts 2016, 6, 117. [Google Scholar] [CrossRef]
- Sytwu, K.; Vadai, M.; Dionne, J.A. Bimetallic nanostructures: Combining plasmonic and catalytic metals for photocatalysis. Adv. Phys. X 2019, 4, 1619480. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, Y.; Shi, L.; Zhu, Y.; Mideksa, M.F.; Hou, K.; Zhao, W.; Wang, D.; Zhao, M.; Zhang, X.; et al. Boosting hot electrons in hetero-superstructures for plasmon-enhanced catalysis. J. Am. Chem. Soc. 2017, 139, 17964–17972. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Swearer, D.F.; Zhang, C.; Robatjazi, H.; Zhao, H.; Henderson, L.; Dong, L.; Christopher, P.; Carter, E.A.; Nordlander, P.; et al. Quantifying hot carrier and thermal contributions in plasmonic photocatalysis. Science 2018, 362, 69–72. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Li, C.; Chen, H.; Jiang, R.; Sun, L.-D.; Li, Q.; Wang, J.; Yu, J.C.; Yan, C.-H. Plasmonic harvesting of light energy for Suzuki coupling reactions. J. Am. Chem. Soc. 2013, 135, 5588–5601. [Google Scholar] [CrossRef] [PubMed]
- Tang, T.; Jin, L.; Chai, W.; Shen, J.; Xu, Z.; Mao, H. Improving photocatalytic Stille coupling reaction by CuPd alloy-doped ordered mesoporous TiO2. Catalysts 2022, 12, 1238. [Google Scholar] [CrossRef]
- Wang, B.; Wang, Y.; Li, J.; Guo, X.; Bai, G.; Tong, X.; Jin, G.; Guo, X. Photocatalytic Sonogashira reaction over silicon carbide supported Pd-Cu alloy nanoparticles under visible light irradiation. Catal. Sci. Technol. 2018, 8, 3357–3362. [Google Scholar] [CrossRef]
- Jin, G.-Q.; Guo, X.-Y. Synthesis and characterization of mesoporous silicon carbide. Microporous Mesoporous Mater. 2003, 60, 207–212. [Google Scholar] [CrossRef]
- Paul, R.; Shit, S.C.; Singh, A.; Wong, R.J.; Dao, D.Q.; Joseph, B.; Liu, W.; Bhattacharya, S.; Mondal, J. Organogel-assisted porous organic polymer embedding Cu NPs for selectivity control in the semi hydrogenation of alkynes. Nanoscale 2022, 14, 1505–1519. [Google Scholar] [CrossRef]
- Rizzo, C.; Marullo, S.; Billeci, F.; D’Anna, F. Catalysis in supramolecular systems: The case of gel phases. Eur. J. Org. Chem. 2021, 2021, 3148–3169. [Google Scholar] [CrossRef]
- Li, Y.; Cao, H.; Liu, W.; Liu, P. Effective degradation of tetracycline via recyclable cellulose nanofibrils/polyvinyl alcohol/Fe3O4 hybrid hydrogel as a photo-Fenton catalyst. Chemosphere 2022, 307, 135665. [Google Scholar] [CrossRef]
- Dadashi, J.; Ghasemzadeh, M.A.; Salavati-Niasari, M. Recent developments in hydrogels containing copper and palladium for the catalytic reduction/degradation of organic pollutants. RSC Adv. 2022, 12, 23481–23502. [Google Scholar] [CrossRef]
- Wu, J.; Cui, J.; Ma, S.; Zhang, J. A triazole-based covalent gel loaded with Cu/Pd bimetallic nanoparticles for efficient catalytic cross-coupling reactions. ChemistrySelect 2023, 8, e20231771. [Google Scholar] [CrossRef]
- Diyarbakir, S.; Can, H.; Metin, Ö. Reduced graphene oxide-supported CuPd alloy nanoparticles as efficient catalysts for the Sonogashira cross-coupling reactions. ACS Appl. Mater. Interfaces 2015, 7, 3199–3206. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Xu, C.; Chen, Y.; Zhao, H.; Sun, J.; He, Z.; Shan, W.; Li, G.; Shi, Q.; Fang, L.; et al. Existence of a heterogeneous pathway in palladium-catalyzed carbon–carbon coupling reaction: Evidence from Ag@Pd3Cu intermetallic nanoplates. CCS Chem. 2022, 4, 671–682. [Google Scholar] [CrossRef]
- Raut, P.K.; Meroliya, H.K.; Dumbre, S.R.; Patil, V.N.; Solanki, B.S.; Waghmode, S.A.; Iyer, S. Bimetallic quantum dots (Cu-Pd, Ni-Pd) catalyzed reaction of bromo arenes with alkenes and aryl boronic acids. Indian J. Chem. 2023, 62, 843–848. [Google Scholar]
- Ringleb, F.; Sterrer, M.; Freund, H.J. Preparation of Pd-MgO model catalysts by deposition of Pd from aqueous presursor solutions onto Ag(001)-supported MgO(001) thin films. Appl. Catal. A-Gen. 2014, 474, 186–193. [Google Scholar] [CrossRef]
- Barth, C.; Henry, C.R. Kelvin probe force microscopy on MgO(001) surfaces and supported Pd nanoclusters. J. Phys. Chem. C 2009, 113, 247–253. [Google Scholar] [CrossRef]
- Gholinejad, M.; Bahrami, M.; Nájera, C.; Pullithadathil, B. Magnesium oxide supported bimetallic Pd/Cu nanoparticles as an efficient catalyst for Sonogashira reaction. J. Catal. 2018, 363, 81–91. [Google Scholar] [CrossRef]
- Ferrando, R.; Jellinek, J.; Johnston, R.L. Nanoalloys: From theory to applications of alloy clusters and nanoparticles. Chem. Rev. 2008, 108, 845–910. [Google Scholar] [CrossRef]
- Kim, Y.H.; Lee, D.K.; Cha, H.G.; Kim, C.W.; Kang, Y.C.; Kang, Y.S. Preparation and characterization of the antibacterial Cu nanoparticle formed on the surface of SiO2 nanoparticles. J. Phys. Chem. B 2006, 110, 24923–24928. [Google Scholar] [CrossRef]
- Park, J.-Y.; Jung, Y.-S.; Cho, J.; Choi, W.-K. Chemical reaction of sputtered Cu film with PI modified by low energy reactive atomic beam. Appl. Surf. Sci. 2006, 252, 5877–5891. [Google Scholar] [CrossRef]
- Patil, V.P.; Kashid, A.A.; Solanki, B.S.; Kharul, U.K.; Iyer, S. Bimetallic nano alloy architecture on a special polymer: Ni or Cu merged with Pd for the promotion of the Mizoroki–Heck reaction and the Suzuki–Miyaura coupling. J. Chem. Sci. 2021, 133, 8. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, X.; Song, Y. Palladium nanoparticle supported on mesoporous benzimidazole as a heterogeneous catalyst for Suzuki cross-coupling reaction in aqueous media. Ferroelectrics 2016, 494, 200–207. [Google Scholar]
- Abdolmaleki, A.; Molavian, M.R. Synthesis and characterization of poly(benzimidazole-amide)/Ni nanocomposite based on 2.6-bis-(2-benzimidazol-2-yl)pyridine moiety. Comp. Inter. 2015, 22, 203–219. [Google Scholar]
- Yang, S.; Pattengale, B.; Kovrigin, E.L.; Huang, J. Photoactive zeolitic imidazolate framework as intrinsic heterogeneous catalysts for light-driven hydrogen generation. ACS Energy Lett. 2017, 2, 75–80. [Google Scholar] [CrossRef]
- Zhang, F.; Wei, Y.; Wu, X.; Jiang, H.; Wang, W.; Li, H. Hollow zeolitic imidazolate framework nanospheres as highly efficient cooperative catalysts for [3+3] cycloaddition reactions. J. Am. Chem. Soc. 2014, 136, 13963–13966. [Google Scholar] [CrossRef]
- Chen, B.; Yang, Z.; Zhu, Y.; Xia, Y. Zeolitic imidazolate framework materials: Recent progress in synthesis and applications. J. Mater. Chem. A 2014, 2, 16811–16831. [Google Scholar] [CrossRef]
- Zhou, A.; Guo, R.-M.; Zhou, J.; Dou, Y.; Chen, Y.; Li, J.-R. Pd@ZIF-67 derived recyclable Pd-based catalysts with hierarchical pores for high-performance Heck reaction. ACS Sustain. Chem. Eng. 2018, 6, 2103–2111. [Google Scholar] [CrossRef]
- Wang, Y.; Zeng, Y.; Wu, X.; Mu, M.; Chen, L. A novel Pd-Ni bimetallic synergistic catalyst on ZIF-8 for Sonogashira coupling reaction. Mater. Lett. 2018, 220, 321–324. [Google Scholar] [CrossRef]
- Gholinejad, M.; Naghshbandi, Z.; Sansano, J.M. Zeolitic imidazolate frameworks-67 (ZIF-67) supported PdCu nanoparticles for enhanced catalytic activity in Sonogashira-Hagihara and nitro group reduction under mild conditions. Mol. Catal. 2022, 518, 112093. [Google Scholar] [CrossRef]
- Wang, L.; Zhai, J.-J.; Jiang, K.; Wang, J.-Q.; Cai, W.-B. Pd-Cu/C electrocatalysts synthesized by one-pot polyol reduction toward formic acid oxidation: Structural characterization and electrocatalytic performance. Int. J. Hydrogen Energy 2015, 40, 1726–1734. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mastalir, A. Recent Progress on the Catalytic Application of Bimetallic PdCu Nanoparticles. Molecules 2024, 29, 5857. https://doi.org/10.3390/molecules29245857
Mastalir A. Recent Progress on the Catalytic Application of Bimetallic PdCu Nanoparticles. Molecules. 2024; 29(24):5857. https://doi.org/10.3390/molecules29245857
Chicago/Turabian StyleMastalir, Agnes. 2024. "Recent Progress on the Catalytic Application of Bimetallic PdCu Nanoparticles" Molecules 29, no. 24: 5857. https://doi.org/10.3390/molecules29245857
APA StyleMastalir, A. (2024). Recent Progress on the Catalytic Application of Bimetallic PdCu Nanoparticles. Molecules, 29(24), 5857. https://doi.org/10.3390/molecules29245857