Optimizing the Ratio of Metallic and Single-Atom Co in CoNC via Annealing Temperature Modulation for Enhanced Bifunctional Oxygen Evolution Reaction/Oxygen Reduction Reaction Activity
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental
3.1. Synthesis of CoNC
3.2. Materials Characterization
3.3. Electrochemical Measurements
3.4. Zinc–Air Battery
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bashir, T.; Zhou, S.; Yang, S.; Ismail, S.A.; Ali, T.; Wang, H.; Zhao, J.; Gao, L. Progress in 3D-MXene Electrodes for Lithium/Sodium/Potassium/Magnesium/Zinc/Aluminum-Ion Batteries. Electro. Energy Rev. 2023, 6, 5. [Google Scholar] [CrossRef]
- Zou, X.; Lu, Q.; Tang, M.; Wu, J.; Zhang, K.; Li, W.; Hu, Y.; Xu, X.; Zhang, X.; Shao, Z.; et al. Catalyst-Support Interaction in Polyaniline-Supported Ni3Fe Oxide to Boost Oxygen Evolution Activities for Rechargeable Zn-Air Batteries. Nano-Micro Lett. 2025, 17, 6. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.P.; Dai, M.Z.; Liu, H.Q.; Xiao, L.; Wu, X.; Xia, H. Constructing high performance hybrid battery and electrocatalyst by heterostructured NiCo2O4@NiWS nanosheets. Cryst. Growth Des. 2019, 19, 1921–1929. [Google Scholar] [CrossRef]
- Xu, H.; She, X.; Li, H.; Wang, C.; Chen, S.; Diao, L.; Lu, P.; Li, L.; Tan, L.; Sun, J.; et al. Electronic Structure Regulated Nickel-Cobalt Bimetal Phosphide Nanoneedles for Efficient Overall Water Splitting. Molecules 2024, 29, 657. [Google Scholar] [CrossRef]
- Li, R.-Y.; Xu, S.-L.; Ai, Z.-Q.; Qi, J.-G.; Wu, F.-F.; Zhao, R.-D.; Zhao, D.-P. Interface engineering accelerated surface reconstruction for electrocatalytic water splitting and energy storage device through hybrid structured ZnCo2O4@NiCo-LDH nanocomposite. Int. J. Hydrogen Energy 2024, 91, 867–876. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Z.; Zhu, Y.; Sun, D.; Liu, X.; Xu, L.; Tang, Y. Atomic Fe Dispersed on N-Doped Carbon Hollow Nanospheres for High-Efficiency Electrocatalytic Oxygen Reduction. Adv. Mater. 2019, 31, e1806312. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.-L.; Zhao, R.-D.; Li, R.-Y.; Li, J.; Xiang, J.; Guo, F.-Y.; Qi, J.; Liu, L.; Wu, F.-F. Constructing high-performance supercapacitors and electrochemical water splitting electrode materials through core–shell structured Co9S8@Ni(OH)2 nanosheets. J. Mater. Chem. A 2024, 12, 15950–15965. [Google Scholar] [CrossRef]
- Huang, Q.; Zhong, X.; Zhang, Q.; Wu, X.; Jiao, M.; Chen, B.; Sheng, J.; Zhou, G. Co3O4/Mn3O4 hybrid catalysts with heterointerfaces as bifunctional catalysts for Zn-air batteries. J. Energy Chem. 2022, 68, 679–687. [Google Scholar] [CrossRef]
- Lee, J.S.; Tai Kim, S.; Cao, R.; Choi, N.S.; Liu, M.; Lee, K.T.; Cho, J. Metal–Air Batteries with High Energy Density: Li–Air versus Zn–Air. Adv. Energy Mater. 2010, 1, 34–50. [Google Scholar] [CrossRef]
- Li, Z.; Ji, S.; Xu, C.; Leng, L.; Liu, H.; Horton, J.H.; Du, L.; Gao, J.; He, C.; Qi, X.; et al. Engineering the Electronic Structure of Single-Atom Iron Sites with Boosted Oxygen Bifunctional Activity for Zinc–Air Batteries. Adv. Mater. 2022, 35, 2209644. [Google Scholar] [CrossRef]
- Liang, Y.; Zhao, C.Z.; Yuan, H.; Chen, Y.; Zhang, W.; Huang, J.Q.; Yu, D.; Liu, Y.; Titirici, M.M.; Chueh, Y.L.; et al. A review of rechargeable batteries for portable electronic devices. InfoMat 2019, 1, 6–32. [Google Scholar] [CrossRef]
- Liu, S.; Li, C.; Zachman, M.J.; Zeng, Y.; Yu, H.; Li, B.; Wang, M.; Braaten, J.; Liu, J.; Meyer, H.M.; et al. Atomically dispersed iron sites with a nitrogen–carbon coating as highly active and durable oxygen reduction catalysts for fuel cells. Nat. Energy 2022, 7, 652–663. [Google Scholar] [CrossRef]
- Lu, S.; Jiang, J.; Yang, H.; Zhang, Y.-J.; Pei, D.-N.; Chen, J.-J.; Yu, Y. Phase Engineering of Iron–Cobalt Sulfides for Zn–Air and Na–Ion Batteries. ACS Nano 2020, 14, 10438–10451. [Google Scholar] [CrossRef] [PubMed]
- Mistry, H.; Varela, A.S.; Kühl, S.; Strasser, P.; Cuenya, B.R. Nanostructured electrocatalysts with tunable activity and selectivity. Nat. Rev. Mater. 2016, 1, 16009. [Google Scholar] [CrossRef]
- Patniboon, T.; Hansen, H.A. Acid-Stable and Active M–N–C Catalysts for the Oxygen Reduction Reaction: The Role of Local Structure. ACS Catal. 2021, 11, 13102–13118. [Google Scholar] [CrossRef]
- Li, X.; Lv, X.; Sun, P.; Sun, X. Synergistic Pore Structure and Active Site Modulation in Co–N–C Catalysts Enabling Stable Zinc–Air Batteries. ACS Appl. Mater. Interfaces 2024, 16, 29979–29990. [Google Scholar] [CrossRef]
- Dai, M.Z.; Liu, H.Q.; Zhao, D.P.; Zhu, X.F.; Umar, A.; Algarni, H.; Wu, X. Ni Foam Substrates Modified with a ZnCo2O4 Nan owire-Coated Ni(OH)2 Nanosheet Electrode for Hybrid Capacitors and Electrocatalysts. ACS Appl. Nano Mater 2021, 4, 5461–5468. [Google Scholar] [CrossRef]
- Tang, B.; Zhou, Y.; Ji, Q.; Zhuang, Z.; Zhang, L.; Wang, C.; Hu, H.; Wang, H.; Mei, B.; Song, F.; et al. A Janus dual-atom catalyst for electrocatalytic oxygen reduction and evolution. Nat. Synth. 2024, 3, 878–890. [Google Scholar] [CrossRef]
- Li, P.; Wang, H.; Tan, X.; Hu, W.; Huang, M.; Shi, J.; Chen, J.; Liu, S.; Shi, Z.; Li, Z. Bifunctional electrocatalyst with CoN3 active sties dispersed on N-doped graphitic carbon nanosheets for ultrastable Zn-air batteries. Appl. Catal. B Environ. 2022, 316, 121674. [Google Scholar] [CrossRef]
- Zhao, D.P.; Zhang, R.; Dai, M.Z.; Liu, H.Q.; Wei, J.; Bai, F.Q.; Wu, X. Constructing high efficient CoZnxMn2−xO4 electrocatalyst by regulating the electronic structure and surface reconstruction. Small 2022, 18, 2107268. [Google Scholar] [CrossRef]
- Liu, M.; Lv, X.; Mi, Z.; Chen, S.; Li, J.; Wu, J.; Sun, T.; Zhang, L.; Zhang, J. Carbon-Layer-Protected CoP/Carbon Nanosheets as Highly Durable Bifunctional Electrocatalysts for Rechargeable Zinc–Air Batteries. ACS Appl. Energy Mater. 2023, 6, 7317–7322. [Google Scholar] [CrossRef]
- Meng, H.; Wu, B.; Zhang, D.; Zhu, X.; Luo, S.; You, Y.; Chen, K.; Long, J.; Zhu, J.; Liu, L.; et al. Optimizing electronic synergy of atomically dispersed dual-metal Ni–N4 and Fe–N4 sites with adjacent Fe nanoclusters for high-efficiency oxygen electrocatalysis. Energy Environ. Sci. 2024, 17, 704–716. [Google Scholar] [CrossRef]
- Wang, Z.; Jin, X.; Xu, R.; Yang, Z.; Ma, S.; Yan, T.; Zhu, C.; Fang, J.; Liu, Y.; Hwang, S.-J.; et al. Cooperation between Dual Metal Atoms and Nanoclusters Enhances Activity and Stability for Oxygen Reduction and Evolution. ACS Nano 2023, 17, 8622–8633. [Google Scholar] [CrossRef]
- Wu, X.; Han, G.; Wen, H.; Liu, Y.; Han, L.; Cui, X.; Kou, J.; Li, B.; Jiang, J. Co2N Nanoparticles Anchored on N-Doped Active Carbon as Catalyst for Oxygen Reduction Reaction in Zinc–Air Battery. Energy Environ. Mater. 2021, 5, 935–943. [Google Scholar] [CrossRef]
- Xue, Y.; Guo, Y.; Zhang, Q.; Xie, Z.; Wei, J.; Zhou, Z. MOF-Derived Co and Fe Species Loaded on N-Doped Carbon Networks as Efficient Oxygen Electrocatalysts for Zn-Air Batteries. Nano-Micro Lett. 2022, 14, 162. [Google Scholar] [CrossRef]
- Zhao, D.P.; Dai, M.Z.; Liu, H.Q.; Duan, Z.X.; Tan, X.J.; Wu, X. Bifunctional ZnCo2S4 hybrid electrocatalysts for high efficient overall water splitting. J. Energy Chem. 2022, 69, 292–300. [Google Scholar] [CrossRef]
- Li, P.; Jiao, Y.; Ruan, Y.; Fei, H.; Men, Y.; Guo, C.; Wu, Y.; Chen, S. Revealing the role of double-layer microenvironments in pH-dependent oxygen reduction activity over metal-nitrogen-carbon catalysts. Nat. Commun. 2023, 14, 6936. [Google Scholar] [CrossRef]
- Cao, S.; Shang, W.; Li, G.-L.; Lu, Z.-F.; Wang, X.; Yan, Y.; Hao, C.; Wang, S.; Sun, G. Defect-rich and metal-free N, S co-doped 3D interconnected mesoporous carbon material as an advanced electrocatalyst towards oxygen reduction reaction. Carbon 2021, 184, 127–135. [Google Scholar] [CrossRef]
- Zhao, D.P.; Liu, X.Y.; Zhang, W.C.; Wu, X.; Cho, Y.R. Highly efficient and stable Mo-CoP3@FeOOH electrocatalysts for alkaline seawater splitting. Small Methods 2024, 8, 2301474. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Z.-W.; Liu, X.; Wen, Z.; Singh, C.V.; Yang, C.C.; Jiang, Q. Vacancy-Enhanced Sb–N4 Sites for the Oxygen Reduction Reaction and Zn–Air Battery. Nano Lett. 2024, 24, 4291–4299. [Google Scholar] [CrossRef]
- Ruan, Y.; Lei, H.; Xue, W.; Wang, T.; Song, S.; Xu, H.; Yu, Y.; Zhang, G.-R.; Mei, D. Cu-N-C assisted MnO nanorods as bifunctional electrocatalysts for superior long-cycle Zn-air batteries. J. Alloy. Compd. 2023, 934, 167781. [Google Scholar] [CrossRef]
- Wei, P.; Li, X.; He, Z.; Sun, X.; Liang, Q.; Wang, Z.; Fang, C.; Li, Q.; Yang, H.; Han, J.; et al. Porous N, B co-doped carbon nanotubes as efficient metal-free electrocatalysts for ORR and Zn-air batteries. Chem. Eng. J. 2021, 422, 130134. [Google Scholar] [CrossRef]
- Wu, Q.; Jia, Y.; Liu, Q.; Mao, X.; Guo, Q.; Yan, X.; Zhao, J.; Liu, F.; Du, A.; Yao, X. Ultra-dense carbon defects as highly active sites for oxygen reduction catalysis. Chem 2022, 8, 2715–2733. [Google Scholar] [CrossRef]
- Lin, L.; Ni, Y.; Shang, L.; Sun, H.; Zhang, Q.; Zhang, W.; Yan, Z.; Zhao, Q.; Chen, J. Atomic-Level Modulation-Induced Electron Redistribution in Co Coordination Polymers Elucidates the Oxygen Reduction Mechanism. ACS Catal. 2022, 12, 7531–7540. [Google Scholar] [CrossRef]
- Liang, Z.; Luo, M.; Chen, M.; Qi, X.; Liu, J.; Liu, C.; Peera, S.G.; Liang, T. Exploring the oxygen electrode bi-functional activity of Ni–N–C-doped graphene systems with N, C co-ordination and OH ligand effects. J. Mater. Chem. A 2020, 8, 20453–20462. [Google Scholar] [CrossRef]
- Zhu, M.; Xu, H.; Dai, J.; Guan, D.; Hu, Z.; She, S.; Chen, C.; Ran, R.; Zhou, W.; Shao, Z. A dynamically stable self-assembled CoFe (oxy)hydroxide-based nanocatalyst with boosted electrocatalytic performance for the oxygen-evolution reaction. J. Mater. Chem. A 2024, 8, 24308–24317. [Google Scholar] [CrossRef]
- Choi, E.Y.; Kim, D.E.; Lee, S.Y.; Park, C.B.; Kim, C.K. Cobalt nanoparticles-encapsulated holey nitrogen-doped carbon nanotubes for stable and efficient oxygen reduction and evolution reactions in rechargeable Zn-air batteries. Appl. Catal. B-Environ. 2023, 325, 122386. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, J.; Tang, S.; Yang, J.; Ye, C.; Chen, J.; Lei, Y.; Wang, D. Synergistic Fe−Se Atom Pairs as Bifunctional Oxygen Electrocatalysts Boost Low-Temperature Rechargeable Zn-Air Battery. Angew. Chem. Int. Ed. 2023, 62, e202219191. [Google Scholar] [CrossRef]
- Shi, W.; Li, Z.; Gong, Z.; Liang, Z.; Liu, H.; Han, Y.-C.; Niu, H.; Song, B.; Chi, X.; Zhou, J.; et al. Transient and general synthesis of high-density and ultrasmall nanoparticles on two-dimensional porous carbon via coordinated carbothermal shock. Nat. Commun. 2023, 14, 2294. [Google Scholar] [CrossRef]
- Lin, S.-Y.; Chen, Y.-P.; Cao, Y.; Zhang, L.; Feng, J.-J.; Wang, A.-J. Aminouracil-assisted synthesis of CoFe decorated bougainvillea-like N-doped carbon nanoflowers for boosting Zn–air battery and water electrolysis. J. Power Sources 2022, 521, 230926. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, C.H.; Zheng, H.; Li, R.; Zhou, K. Oxygen-rich cobalt–nitrogen–carbon porous nanosheets for bifunctional oxygen electrocatalysis. Adv. Funct. Mater. 2022, 32, 2200763. [Google Scholar] [CrossRef]
- Li, J.-C.; Meng, Y.; Zhang, L.; Li, G.; Shi, Z.; Hou, P.-X.; Liu, C.; Cheng, H.-M.; Shao, M. Dual-Phasic Carbon with Co Single Atoms and Nanoparticles as a Bifunctional Oxygen Electrocatalyst for Rechargeable Zn–Air Batteries. Adv. Funct. Mater. 2021, 31, 2103360. [Google Scholar] [CrossRef]
- Li, H.; Wang, J.; Tjardts, T.; Barg, I.; Qiu, H.; Müller, M.; Krahmer, J.; Askari, S.; Veziroglu, S.; Aktas, C.; et al. Plasma-Engineering of Oxygen Vacancies on NiCo2O4 Nanowires with Enhanced Bifunctional Electrocatalytic Performance for Rechargeable Zinc-air Battery. Small 2024, 20, 2310660. [Google Scholar] [CrossRef]
- Cui, T.; Wang, Y.-P.; Ye, T.; Wu, J.; Chen, Z.; Li, J.; Lei, Y.; Wang, D.; Li, Y. Engineering Dual Single-Atom Sites on 2D Ultrathin N-doped Carbon Nanosheets Attaining Ultra-Low-Temperature Zinc-Air Battery. Angew. Chem. Int. Ed. 2022, 61, e202115219. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, H.; Sun, H.; Dai, M.; Li, Y.; Wang, J.; Song, S.; Zhang, D.; Zhao, D. Optimizing the Ratio of Metallic and Single-Atom Co in CoNC via Annealing Temperature Modulation for Enhanced Bifunctional Oxygen Evolution Reaction/Oxygen Reduction Reaction Activity. Molecules 2024, 29, 5721. https://doi.org/10.3390/molecules29235721
Cheng H, Sun H, Dai M, Li Y, Wang J, Song S, Zhang D, Zhao D. Optimizing the Ratio of Metallic and Single-Atom Co in CoNC via Annealing Temperature Modulation for Enhanced Bifunctional Oxygen Evolution Reaction/Oxygen Reduction Reaction Activity. Molecules. 2024; 29(23):5721. https://doi.org/10.3390/molecules29235721
Chicago/Turabian StyleCheng, Hengxu, Haojie Sun, Meizhen Dai, Yucai Li, Jian Wang, Shiwei Song, Dong Zhang, and Depeng Zhao. 2024. "Optimizing the Ratio of Metallic and Single-Atom Co in CoNC via Annealing Temperature Modulation for Enhanced Bifunctional Oxygen Evolution Reaction/Oxygen Reduction Reaction Activity" Molecules 29, no. 23: 5721. https://doi.org/10.3390/molecules29235721
APA StyleCheng, H., Sun, H., Dai, M., Li, Y., Wang, J., Song, S., Zhang, D., & Zhao, D. (2024). Optimizing the Ratio of Metallic and Single-Atom Co in CoNC via Annealing Temperature Modulation for Enhanced Bifunctional Oxygen Evolution Reaction/Oxygen Reduction Reaction Activity. Molecules, 29(23), 5721. https://doi.org/10.3390/molecules29235721