Effect of Selected Organic Solvents on Hydroxyl Radical-Dependent Light Emission in the Fe2+-EGTA-H2O2 System
Abstract
:1. Introduction
2. Results
2.1. Solvents That Inhibited Light Emission from the Fe2+-EGTA-H2O2 System
2.2. Solvents That Enhanced Light Emission from the Fe2+-EGTA-H2O2 System
3. Discussion
3.1. Solvents That Inhibited Light Emission from the Fe2+-EGTA-H2O2 System
3.2. Solvents That Enhanced Light Emission from Fe2+-EGTA-H2O2 System
4. Material and Methods
4.1. Chemicals and Solutions
4.2. Effect of Selected Solvents on Light Emission by the Fe2+-EGTA-H2O2 System
4.3. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bergendi, L.; Benes, L.; Duracková, Z.; Ferencik, M. Chemistry, physiology and pathology of free radicals. Life Sci. 1999, 65, 1865–1874. [Google Scholar] [CrossRef] [PubMed]
- Brieger, K.; Schiavone, S.; Miller, F.J., Jr.; Krause, K.H. Reactive oxygen species: From health to disease. Swiss Med. Wkly. 2012, 142, 13659. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.; Mir, A.R.; Arfat, M.Y.; Khan, F.; Zaman, M.; Ali, A.; Moinuddin, F. Structural and immunological characterisation of hydroxyl radical modified human IgG: Clinical correlation in rheumatoid arthritis. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 194, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Vondrakova, D.; Lawson, M.; Valko, M. Metals, oxidative stress and neurodegenerative disorders. Mol. Cell Biochem. 2010, 345, 91–104. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Valko, M. Advances in metal-induced oxidative stress and human disease. Toxicology 2011, 283, 65–87. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.C.; Jen, J.F.; Tsai, T.H. Hydroxyl radical in living systems and its separation methods. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2002, 781, 481–496. [Google Scholar] [CrossRef] [PubMed]
- Hajhashemi, V.; Vaseghi, G.; Pourfarzam, M.; Abdollahi, A. Are antioxidants helpful for disease prevention? Res. Pharm. Sci. 2010, 1, 1–8. [Google Scholar]
- Zhang, Y.J.; Gan, R.Y.; Li, S.; Zhou, Y.; Li, A.N.; Xu, D.P.; Li, H.B. Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules 2015, 20, 21138–21156. [Google Scholar] [CrossRef] [PubMed]
- Apak, R.; Calokerinos, A.; Gorinstein, S.; Segundo, M.A.; Hibbert, D.B.; Gülçin, I.; Çekiç, S.D.; Güçlü, K.; Özyürek, M.; Çelik, S.E.; et al. Methods to evaluate the scavenging activity of antioxidants toward reactive oxygen and nitrogen species (IUPAC Technical Report). Pure Appl. Chem. 2022, 94, 87–144. [Google Scholar] [CrossRef]
- Backa, S.; Jansbo, K.; Reitberger, T. Detection of hydroxyl radicals by a chemiluminescence method—A critical review. Holzforschung 1997, 51, 557–564. [Google Scholar] [CrossRef]
- Ran, Y.; Moursy, M.; Hider, R.C.; Cilibrizzi, A. The colourimetric detection of the hydroxyl radical. Int. J. Mol. Sci. 2023, 24, 4162. [Google Scholar] [CrossRef]
- Rutely, C.B.C.; Jean, M.F.; Walter, Z.T.; Xochitl, D.B.; Mika, S. Towards reliable quantification of hydroxyl radicals in the Fenton reaction using chemical probes. RSC Adv. 2018, 8, 5321–5330. [Google Scholar] [CrossRef]
- Fernandez-Castro, P.; Vallejo, M.; San Roman, M.F.; Ortiz, I. Insight on the fundamentals of advanced oxidation processes. Role and review of the determination methods of reactive oxygen species. J. Chem. Technol. Biotechnol. 2015, 90, 796–820. [Google Scholar] [CrossRef]
- Chen, X.; Wang, F.; Hyun, J.Y.; Wei, T.; Qiang, J.; Ren, X.; Shin, I.; Yoon, J. Recent progress in the development of fluorescent, luminescent and colourimetric probes for detection of reactive oxygen and nitrogen species. Chem. Soc. Rev. 2016, 45, 2976–3016. [Google Scholar] [CrossRef] [PubMed]
- Shen, N.; Wang, T.; Gan, Q.; Liu, S.; Wang, L.; Jinc, B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022, 383, 132531. [Google Scholar] [CrossRef] [PubMed]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009, 5, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Rana, A.; Samtiya, M.; Dhewa, T.; Mishra, V.; Aluko, R.E. Health benefits of polyphenols: A concise review. J. Food. Biochem. 2022, 46, e14264. [Google Scholar] [CrossRef] [PubMed]
- Haminiuk, C.W.; Plata-Oviedo, M.S.; de Mattos, G.; Carpes, S.T.; Branco, I.G. Extraction and quantification of phenolic acids and flavonols from Eugenia pyriformis using different solvents. J. Food Sci. Technol. 2014, 5, 2862–2866. [Google Scholar] [CrossRef]
- Nowak, M.; Tryniszewski, W.; Sarniak, A.; Wlodarczyk, A.; Nowak, P.J.; Nowak, D. Light emission from the Fe2+-EGTA-H2O2 system: Possible application for the determination of antioxidant activity of plant phenolics. Molecules 2018, 23, 866. [Google Scholar] [CrossRef] [PubMed]
- Nowak, M.; Tryniszewski, W.; Sarniak, A.; Wlodarczyk, A.; Nowak, P.J.; Nowak, D. Concentration dependence of the anti- and pro-oxidant activity of polyphenols as evaluated with a light-emitting Fe2+-EGTA-H2O2 system. Molecules 2022, 27, 3453. [Google Scholar] [CrossRef]
- Nowak, M.; Tryniszewski, W.; Sarniak, A.; Wlodarczyk, A.; Nowak, P.J.; Nowak, D. Effect of physiological concentrations of vitamin C on the inhibition of hydroxyl radical-induced light emission from Fe2+-EGTA-H2O2 and Fe3+-EGTA-H2O2 systems In vitro. Molecules 2021, 26, 1993. [Google Scholar] [CrossRef] [PubMed]
- Jara-Toro, R.A.; Hernández, F.J.; Garavagno, M.L.A.; Taccone, R.A.; Pino, G.A. Water Catalysis of the reaction between hydroxyl radicals and linear saturated alcohols (ethanol and n-propanol) at 294 K. Phys. Chem. Chem. Phys. 2018, 20, 27885–27896. [Google Scholar] [CrossRef]
- Feierman, D.E.; Winston, G.W.; Cederbaum, A.I. Ethanol oxidation by hydroxyl radicals: Role of iron chelates, superoxide, and hydrogen peroxide. Alcohol. Clin. Exp. Res. 1985, 9, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Gligorovski, S.; Strekowski, R.; Barbati, S.; Vione, D. Environmental implications of hydroxyl radicals ((•)OH). Chem. Rev. 2015, 115, 13051–13092. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.S.; Rao, B.S.M.; Janata, E. •OH reactions with aliphatic alcohols: Evaluation of kinetics by direct optical absorption measurement. A pulse radiolysis study. Radiat. Phys. Chem. 2003, 67, 723–728. [Google Scholar] [CrossRef]
- Hatipoğlu, A.; Çinar, Z. A QSAR study on the kinetics of the reactions of aliphatic alcohols with the photogenerated hydroxyl radicals. J. Mol. Struct. THEOCHEM 2003, 631, 189–207. [Google Scholar] [CrossRef]
- Alam, M.S.; Rao, B.S.M.; Janata, E. A pulse radiolysis study of H atom reactions with aliphatic alcohols: Evaluation of kinetics by direct optical absorption measurement. Phys. Chem. Chem. Phys. 2001, 3, 2622. [Google Scholar] [CrossRef]
- Wang, L.; Li, B.; Dionysiou, D.D.; Chen, B.; Yang, J.; Li, J. Overlooked formation of H2O2 during the hydroxyl radical-scavenging process when using alcohols as scavengers. Environ. Sci. Technol. 2022, 56, 3386–3396. [Google Scholar] [CrossRef] [PubMed]
- Kremer, M.L. Strong Inhibition of the Fe3+ + H2O2 reaction by ethanol: Evidence against the free radical theory. Prog. React. Kinet. Mech. 2017, 42, 397–413. [Google Scholar] [CrossRef]
- Pan, S.; Cao, B.; Yuan, D.; Jiao, T.; Zhang, Q.; Tang, S. Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chin. Chem. Lett. 2024, 35, 109185. [Google Scholar] [CrossRef]
- Brömme, H.J.; Zühlke, L.; Silber, R.E.; Simm, A. DCFH2 interactions with hydroxyl radicals and other oxidants—Influence of organic solvents. Exp. Gerontol. 2008, 43, 638–644. [Google Scholar] [CrossRef] [PubMed]
- Steiner, M.G.; Babbs, C.F. Quantitation of the hydroxyl radical by reaction with dimethyl sulfoxide. Arch. Biochem. Biophys. 1990, 278, 478–481. [Google Scholar] [CrossRef] [PubMed]
- Scaduto, R.C., Jr. Oxidation of DMSO and methanesulfinic acid by the hydroxyl radical. Free Radic. Biol. Med. 1995, 18, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Bernard, F.; Magneron, I.; Eyglunent, G.; Daële, V.; Wallington, T.J.; Hurley, M.D.; Mellouki, A. Atmospheric chemistry of benzyl alcohol: Kinetics and mechanism of reaction with OH radicals. Environ. Sci. Technol. 2013, 47, 3182–3189. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.M.; Schuchmann, M.N.; von Sonntag, C. Oxidation of benzene by the OH radical. A product and pulse radiolysis study in oxygenated aqueous solution. J. Chem. Soc. Perkin Trans. 1993, 2, 289–297. [Google Scholar] [CrossRef]
- Hynes, A.J.; Wine, P.H. Kinetics and mechanism of the reaction of hydroxyl radicals with acetonitrile under atmospheric conditions. J. Phys. Chem. 1991, 95, 1232–1241. [Google Scholar] [CrossRef]
- Galano, A. Mechanism of OH radical reactions with HCN and CH3CN: OH regeneration in the presence of O2. J. Phys. Chem. A 2007, 111, 5086–5091. [Google Scholar] [CrossRef]
- Williams, D.C.; O’Rji, L.N.; Daniel, A. Stone: Kinetics of the reactions of OH radicals with selected acetates and other esters under simulated atmospheric conditions. Int. J. Chem. Kinet. 1993, 25, 539–548. [Google Scholar] [CrossRef]
- Wallington, T.J.; Dagaut, P.; Liu, R.; Kurylo, M.J. The gas phase reactions of hydroxyl radicals with a series of esters over the temperature range 240–440 K. J. Chem. Kinet. 1988, 20, 177–186. [Google Scholar] [CrossRef]
- Piao, M.J.; Yoon, W.J.; Kang, H.K.; Yoo, E.S.; Koh, Y.S.; Kim, D.S.; Lee, N.H.; Hyun, J.W. Protective effect of the ethyl acetate fraction of Sargassum muticum against ultraviolet B-irradiated damage in human keratinocytes. Int. J. Mol. Sci. 2011, 12, 8146–8160. [Google Scholar] [CrossRef] [PubMed]
- Kamath, D.; Mezyk, S.P.; Minakata, D. Elucidating the elementary reaction pathways and kinetics of hydroxyl radical-induced acetone degradation in aqueous phase advanced oxidation processes. Environ. Sci. Technol. 2018, 52, 7763–7774. [Google Scholar] [CrossRef]
- Ranajit, K.; Talukdar, R.K.; Gierczak, T.; McCabe, D.C.; Ravishankara, A.R. Reaction of hydroxyl radical with acetone. 2. products and reaction mechanism. J. Phys. Chem. A 2003, 107, 5021–5032. [Google Scholar]
- Belén, F.A.; Trobajo, C.; Piqué, C.; García, J.R.; Blanco, J.A. From dihydrated iron(III) phosphate to monohydrated ammonium–iron(II) phosphate: Solvothermal reaction mediated by acetone–urea mixtures. J. Solid State Chem. 2012, 196, 458–464. [Google Scholar]
- Prasad, M.; Bavdekar, P.R. The photo-reduction of ferric chloride in the presence of aqueous acetone and anhydrous ether. Proc. Indian Acad. Sci. 1943, 18, 373–382. [Google Scholar] [CrossRef]
- Szafert, S.; Lis, T.; Drabent, K.; Sobota, P. Photochemical reduction of iron trichloride in ethyl acetate: Synthesis, Mössbauer spectra and the crystal structure at 80 K of hexakis(ethyl acetate)iron(II) bis-tetrachloroironate(III). J. Chem. Crystallogr. 1994, 24, 197–202. [Google Scholar] [CrossRef]
- Heicklen, J.; Noyes, W.A., Jr. The photolysis and fluorescence of acetone and acetone-biacetyl mixtures. J. Am. Chem. Soc. 1959, 81, 3858–3863. [Google Scholar] [CrossRef]
- Sasak, K.; Nowak, M.; Wlodarczyk, A.; Sarniak, A.; Tryniszewski, W.; Nowak, D. Light emission from Fe2+-EGTA-H2O2 system depends on the pH of the reaction milieu within the range that may occur in cells of the human body. Molecules 2024, 29, 4014. [Google Scholar] [CrossRef] [PubMed]
- Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Rémésy, C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr. 2005, 81, 230S–242S. [Google Scholar] [CrossRef] [PubMed]
- Steensma, A.; Faassen-Peters, M.A.; Noteborn, H.P.; Rietjens, I.M. Bioavailability of genistein and its glycoside genistin as measured in the portal vein of freely moving unanesthetized rats. J. Agric. Food Chem. 2006, 54, 8006–8012. [Google Scholar] [CrossRef]
Solvent | Final Solvent Concentration in Reaction Milieu [µmol/L] | Complete System Fe2+-EGTA-H2O2 | Incomplete System Fe2+-EGTA-H2O | ||
---|---|---|---|---|---|
Without Solvent | With Solvent | Without Solvent | With Solvent | ||
Solvents that inhibit light emission from Fe2+-EGTA-H2O2 system | |||||
Methanol | 0.105 | 4217 ± 79 (4203; 109) * | 1609 ± 130 (1563; 109) | 753 ± 18 (756; 21) | 786 ± 82 (756; 21) |
0.21 | 3925 ± 164 (3871; 108) * | 1202 ± 316 (1355; 365) | 740 ± 32 (727; 46) | 734 ± 17 (730; 23) | |
0.42 | 3109 ± 340 (3237; 353) * | 1142 ± 65 (1171; 60) | 654 ± 21 (655; 15) | 626 ± 11 (630; 16) | |
Ethanol | 0.105 | 3971 ± 248 (3937; 198) * | 1890 ± 35 (1879; 23) | 812 ± 26 (815; 38) | 789 ± 15 (787; 19) |
0.21 | 4062 ± 91 (4033; 114) * | 1735 ± 56 (1746; 52) | 733 ± 20 (723; 16) | 725 ± 12 (728; 15) | |
0.42 | 3765 ± 165 (3778; 262) * | 1331 ± 47 (1337; 54) | 642 ± 21 (633; 31) | 618 ± 23 (627; 27) | |
Propan-1-ol | 0.105 | 4214 ± 78 (4203; 101) * | 1457 ± 120 (1447; 90) | 672 ± 25 (673; 27) | 660 ± 16 (651; 23) |
0.21 | 4136 ± 175 (4254; 244) * | 1369 ± 86 (1392; 91) | 707 ± 16 (712; 27) | 710 ± 18 (715; 24) | |
0.42 | 3407 ± 198 (3389; 119) * | 1222 ± 58 (1230; 72) | 617 ± 14 (615; 10) | 640 ± 62 (631; 46) | |
n-Pentanol | 0.105 | 2999 ± 206 (2939; 103) * | 1975 ± 106 (1967; 129) | 761 ± 31 (754; 20) | 752 ± 52 (737; 18) |
0.21 | 2829 ± 164 (2884; 172) * | 2116 ± 139 (2084; 1510) | 690 ± 15 (684; 15) | 679 ± 13 (680; 17) | |
0.42 | 2801 ± 159 (2741; 137) * | 1825 ± 55 (1819; 25) | 607 ± 17 (595; 30) | 579 ± 39 (567; 22) | |
Acetonitrile | 0.105 | 3243 ± 361 (3353; 164) | 3249 ± 52 (3266; 49) | 794 ± 14 (787; 18) | 778 ± 11 (780; 18) |
0.21 | 3550 ± 110 (3577; 173) * | 2894 ± 51 (2872; 62) | 699 ± 20 (704; 30) | 705 ± 52 (683; 88) | |
0.42 | 3347 ± 188 (3254; 1420) * | 2576 ± 65 (2560; 92) | 603 ± 20 (601; 28) | 572 ± 13 (572; 16) | |
DMSO | 0.105 | 3624 ± 242 (3650; 170) * | 1207 ± 46 (1197; 34) | 759 ± 52 (738; 26) | 754 ± 23 (761; 37) |
0.21 | 3921 ± 969 (3932; 663) * | 1200 ± 54 (1198; 71) | 708 ± 18 (705; 20) | 690 ± 19 (694; 15) | |
0.42 | 3641 ± 193 (3722; 172) * | 1072 ± 36 (1057; 46) | 625 ± 18 (631; 26) | 587 ± 20 (588; 12) | |
Benzyl acetate | 0.105 | 3224 ± 144 (3246; 106) * | 2105 ± 131 (2116; 85) | 580 ± 17 (578; 26) | 551 ± 22 (560; 25) |
0.210 | 3125 ± 133 (3174; 171) * | 2144 ± 27 (2143; 29) | 689 ± 15 (681; 19) | 674 ± 14 (681; 13) | |
0.42 | 3173 ± 107 (3205; 124) * | 2017 ± 65 (2019; 87) | 580 ± 17 (578; 26) | 551 ± 22 (560; 25) | |
Solvents that enhance light emission from Fe2+-EGTA-H2O2 system | |||||
Acetone | 0.105 | 3270 ± 96 (3243; 103) * | 4427 ± 135 (4454; 71) | 704 ± 17 (703; 20) | 715 ± 29 (711; 42) |
0.21 | 3015 ± 176 (2950; 197) * | 4174 ± 96 (4165; 110) | 681 ± 15 (682; 10) | 672 ± 19 (669; 20) | |
0.42 | 3240 ± 221 (3299; 271) * | 4179 ± 99 (4194; 96) | 639 ± 14 (637; 11) | 617 ± 14 (615; 21) | |
Ethyl acetate | 0.105 | 3260 ± 184 (3196; 155) * | 5960 ± 196 (5932; 167) | 467 ± 20 (461; 33) | 463 ± 13 (459; 22) |
0.21 | 3528 ± 149 (3492; 148) * | 5377 ± 141 (5303; 193) | 710 ± 10 (714; 11) | 720 ± 5 (721; 5) | |
0.42 | 3043 ± 360 (3209; 500) * | 5280 ± 238 (5176; 3330 | 731 ± 18 (733; 27) | 702 ± 11 (705; 18) | |
Amyl acetate | 0.105 | 3478 ± 222 (3439; 207) * | 4623 ± 213 (4651; 160) | 747 ± 18 (752; 24) | 749 ± 14 (750; 14) |
0.21 | 3057 ± 159 (3082; 135) * | 4153 ± 261 (4063; 380) | 736 ± 25 (731; 27) | 739 ± 18 (733; 26) | |
0.42 | 3125 ± 91 (3121; 66) * | 4193 ± 187 (4215; 98) | 595 ± 29 (600; 410 | 570 ± 18 (562; 19) | |
Butyl butyrate | 0.105 | 3364 ± 117 (3406; 167) * | 6475 ± 462 (6372; 680) | 747 ± 18 (752; 24) | 749 ± 14 (750; 14) |
0.21 | 3315 ± 110 (3307; 163) * | 18,124 ± 1412 (18,633; 1751) | 727 ± 14 (727; 17) | 739 ± 28 (730; 17) | |
0.42 | 3303 ± 137 (3295; 204) * | 19,338 ± 738 (19,310; 761) | 686 ± 10 (687; 11) | 700 ± 21 (705; 20) |
Solvent | Chemical Structure | % Inhibition | Graph | ||
---|---|---|---|---|---|
0.105 µmol/L | 0.21 µmol/L | 0.42 µmol/L | |||
Methanol | 62 ± 4 * (62; 2) | 69 ± 8 * (65; 9) | 63 ± 4 * (64; 3) | ||
Ethanol | 52 ± 3 * (52; 3) | 57 ± 2 * (57; 20 | 65 ± 1 * (64; 2) | ||
Propan-1-ol | 65 ± 2 * (66; 2) | 67 ± 2 * (66; 3) | 64 ± 3 * (64; 4) | ||
n-Pentanol | 34 ± 6 * (32; 0) | 25 ± 5 * (26; 0) | 35 ± 2 * (32; 0) | ||
Acetonitrile | −1 ± 13 (2; 0) | 18 ± 3 * (19; 0) | 23 ± 5 * (21; 0) | ||
DMSO | 67 ± 2 * (67; 1) | 68 ± 7 * (67; 5) | 70 ± 2 * (71; 3) | ||
Benzyl acetate | 35 ± 8 * (35; 6) | 31 ± 3 * (31; 4) | 36 ± 4 * (37; 2) |
Solvent | Chemical Structure | % Enhancement of UPE | Graph | ||
---|---|---|---|---|---|
0.105 µmol/L | 0.21 µmol/L | 0.42 µmol/L | |||
Acetone | 36 ± 7 * (39; 8) | 39 ± 6 * (40; 5) | 30 ± 12 * (25; 14) | ||
Ethyl acetate | 83 ± 11 * (84; 12) | 53 ± 8 * (52; 12) | 75 ± 20 * (75; 24) | ||
Amyl acetate | 33 ± 8 * (35; 8) | 36 ± 10 * (40; 15) | 34 ± 8 * (37; 10) | ||
Butyl butyrate | 93 ± 16 * (93; 12) | 446 ± 35 * (452; 40) | 487 ± 40 * (496; 53) |
Number | Sample | Working Solutions Added to Luminometer Tube (µL) | |||||
---|---|---|---|---|---|---|---|
A PB | B EGTA | C FeSO4 | D Solvent | E H2O2 | F H2O | ||
1 | Complete system | 940 | 20 | 20 | 0 | 100 | 0 |
2 | Complete system + solvent | 920 | 20 | 20 | 20 | 100 | 0 |
3 | Incomplete system | 940 | 20 | 20 | 0 | 0 | 100 |
4 | Incomplete system + solvent | 920 | 20 | 20 | 20 | 0 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sasak, K.; Nowak, M.; Wlodarczyk, A.; Sarniak, A.; Nowak, D. Effect of Selected Organic Solvents on Hydroxyl Radical-Dependent Light Emission in the Fe2+-EGTA-H2O2 System. Molecules 2024, 29, 5635. https://doi.org/10.3390/molecules29235635
Sasak K, Nowak M, Wlodarczyk A, Sarniak A, Nowak D. Effect of Selected Organic Solvents on Hydroxyl Radical-Dependent Light Emission in the Fe2+-EGTA-H2O2 System. Molecules. 2024; 29(23):5635. https://doi.org/10.3390/molecules29235635
Chicago/Turabian StyleSasak, Krzysztof, Michał Nowak, Anna Wlodarczyk, Agata Sarniak, and Dariusz Nowak. 2024. "Effect of Selected Organic Solvents on Hydroxyl Radical-Dependent Light Emission in the Fe2+-EGTA-H2O2 System" Molecules 29, no. 23: 5635. https://doi.org/10.3390/molecules29235635
APA StyleSasak, K., Nowak, M., Wlodarczyk, A., Sarniak, A., & Nowak, D. (2024). Effect of Selected Organic Solvents on Hydroxyl Radical-Dependent Light Emission in the Fe2+-EGTA-H2O2 System. Molecules, 29(23), 5635. https://doi.org/10.3390/molecules29235635