The Reversible Electron Transfer Within Stimuli-Responsive Hydrochromic Supramolecular Material Containing Pyridinium Oxime and Hexacyanoferrate (II) Ions
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Experimental Techniques
3.2. Computational Details
3.3. Isolation of (BPA4)4[Fe(CN)6]
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ma, Q.; Buchon, L.; Magné, V.; Graff, B.; Morlet-Savary, F.; Xu, Y.; Benltifa, M.; Lakhdar, S.; Lalevée, J. Charge Transfer Complexes (CTCs) with Pyridinium Salts: Toward Efficient Dual Photochemical/Thermal Initiators and 3D Printing Applications. Macromol. Rapid Commun. 2022, 43, 2200314–2200321. [Google Scholar] [CrossRef] [PubMed]
- Barravecchia, L.; Blanco-Gómez, A.; Neira, L.; Skackauskaite, R.; Vila, A.; Rey-Rico, A.; Peinador, C.; Garcia, M.D. “Vermellogens” and the Development of CB [8]-Based Supramolecular Switches Using pH-Responsive and Non-Toxic Viologen Analogues. J. Am. Chem. Soc. 2022, 144, 19127–19136. [Google Scholar] [CrossRef] [PubMed]
- Porter, W.W.; Vaid, T.P. Isolation and Characterization of Phenyl Viologen as a Radical Cation and Neutral Molecule. J. Org. Chem. 2005, 70, 5028–5035. [Google Scholar] [CrossRef] [PubMed]
- Bird, C.L.; Kuhn, A.T. Electrochemistry of the Viologens. Chem. Soc. Rev. 1981, 10, 49–82. [Google Scholar] [CrossRef]
- He, F.; Ye, S.; Wu, J. Recent Advances in Pyridinium Salts as Radical Reservoirs in Organic Synthesis. ACS Catalysis 2019, 9, 8943–8960. [Google Scholar] [CrossRef]
- Madasamy, K.; Velayutham, D.; Suryanarayanan, V.; Kathiresan, M.; Ho, K. Viologen-based electrochromic materials and devices. J. Mater. Chem. C. 2019, 7, 4622–4637. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, K.; Wang, S.; Chang, Y.; Chen, J.; Wang, S.; Meng, C.; Long, Z.; Qin, Z.; Chen, G. Viologen-Based Cationic Radical Porous Organic Polymers for Visible-Light-Driven Photocatalytic Oxidation. ACS Appl. Polym. Mater. 2024, 6, 701–711. [Google Scholar] [CrossRef]
- Saxena, B.; Patel, R.I.; Sharma, A. Recent Advances in Electron Donor-Acceptor (EDA)-Complex Reactions involving Quaternary Pyridinium Derivatives. Adv. Synth. Catal. 2023, 365, 1538–1564. [Google Scholar] [CrossRef]
- Trabolsi, A.; Khashab, N.; Fahrenbach, A.C.; Friedman, D.C.; Colvin, M.T.; Cotí, K.K.; Benitez, D.; Tkatchouk, E.; Olsen, J.C.; Belowich, M.E.; et al. Radically enhanced molecular recognition. Nature Chem. 2010, 2, 42–49. [Google Scholar] [CrossRef]
- Jose, A.R.; Vikraman, A.E.; Girish Kumar, K. Photoinduced electron transfer between quantum dots and pralidoxime: An efficient sensing strategy. New J. Chem. 2017, 41, 10828–10834. [Google Scholar] [CrossRef]
- Yuan, T.; Xu, Y.; Zhu, C.; Jiang, Z.; Sue, H.; Fang, L.; Olson, M.A. Tunable Thermochromism of Multifunctional Charge-Transfer-Based Supramolecular Materials Assembled in Water. Chem. Mater. 2017, 29, 9937–9945. [Google Scholar] [CrossRef]
- Sui, Q.; Ren, X.; Dai, Y.; Wang, K.; Li, W.; Gong, T.; Fang, J.; Zou, B.; Gao, E.; Wang, L. Piezochromism and hydrochromism through electron transfer: New stories for viologen materials. Chem. Sci. 2017, 8, 2758–2768. [Google Scholar] [CrossRef] [PubMed]
- Yuan, T.; Vazquez, M.; Goldner, A.N.; Xu, Y.; Contrucci, R.; Firestone, M.A.; Olson, M.A.; Fang, L. Versatile Thermochromic Supramolecular Materials Based on Competing Charge Transfer Interactions. Adv. Funct. Mater. 2016, 26, 8604–8612. [Google Scholar] [CrossRef]
- Huang, Y.D.; Huo, P.; Shao, M.Y.; Yin, Y.X.; Shen, W.C.; Zhu, Q.Y.; Dai, J. A New Type of Charge-Transfer Salts Based on Tetrathiafulvalene−Tetracarboxylate Coordination Polymers and Methyl Viologen. Inorg. Chem. 2014, 53, 3480–3487. [Google Scholar] [CrossRef] [PubMed]
- Sui, Q.; Yang, N.N.; Gong, T.; Li, P.; Yuan, Y.; Gao, E.Q.; Wang, L. Impact of Lattice Water on Solid-State Electron Transfer in Viologen Pseudopolymorphs: Modulation of Photo- and Piezochromism. J. Phys. Chem. Lett. 2017, 8, 5450–5455. [Google Scholar] [CrossRef]
- Sui, Q.; Yuan, Y.; Yang, N.N.; Li, X.; Gong, T.; Gao, E.Q.; Wang, L. Coordination-modulated piezochromism in metal–viologen materials. J. Mater. Chem. C. 2017, 5, 12400–12407. [Google Scholar] [CrossRef]
- Sun, J.K.; Wang, P.; Yao, Q.X.; Chen, Y.J.; Li, Z.H.; Zhang, Y.F.; Wua, L.M.; Zhang, J. Solvent- and anion-controlled photochromism of viologen-based metal–organic hybrid materials. J. Mater. Chem. 2012, 22, 12212–12219. [Google Scholar] [CrossRef]
- Tanaka, R.; Okazawa, A.; Konaka, H.; Sasaki, A.; Kojima, N.; Matsushita, N. Unique Hydration/Dehydration-Induced Vapochromic Behavior of a Charge-Transfer Salt Comprising Viologen and Hexacyanidoferrate(II). Inorg. Chem. 2018, 57, 2209–2217. [Google Scholar] [CrossRef]
- Papadakis, R.; Deligkiozi, I.; Giorgi, M.; Faured, B.; Tsolomitis, A. Supramolecular complexes involving non-symmetric viologen cations and hexacyanoferrate(II) anions. A spectroscopic, crystallographic and computational study. RSC Adv. 2016, 6, 575–585. [Google Scholar] [CrossRef]
- Tanaka, R.; Matsushita, N. Crystal structure of bis(1-ethylpyridinium) dioxonium hexacyanidoferrate(II). Acta Cryst. 2017, 73, 219–222. [Google Scholar] [CrossRef]
- Tanaka, R.; Okazawa, A.; Kojima, N.; Matsushita, N. Ionic Crystal Containing Protons (H+) as Counter Cations: Preparation and Crystal Structure of a Salt of 4,4’-Bipiperidine-1,1’-diium and Hexacyanidoferrate(II). Chem. Lett. 2018, 47, 697–699. [Google Scholar] [CrossRef]
- Abouelwafa, A.S.; Mereacre, V.; Balaban, T.S.; Anson, C.E.; Powell, A.K. Photo- and thermally-enhanced charge separation in supramolecular viologen–hexacyanoferrate complexes. CrystEngComm 2010, 12, 94–99. [Google Scholar] [CrossRef]
- Ferlay, S.; Hellwig, P.; Hosseini, M.W. Partially Reversible Thermal-Induced Oxidation During a Dehydration Process in an H-bonded Supramolecular System. Chem. Phys. Chem. 2018, 19, 3219–3225. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.M.; Lin, C.L.; Chang, T.H.; Lu, H.C.; Hsu, S.H.; Ho, K.C. Influence of ferrocyanide on the long-term stability of poly(butyl viologen) thin film based electrochromic devices. Sol. Energy Mater. Sol. Cells 2019, 200, 110012–110020. [Google Scholar] [CrossRef]
- Xydias, P.; Lymperopoulou, S.; Dokorou, V.; Manos, M.; Plakatouras, J.C. Supramolecular networks derived from hexacyanoferrates and nitrogen heterocyclic cations. Polyhedron 2019, 157, 341–357. [Google Scholar] [CrossRef]
- Cvrtila, I.; Stilinović, V. New Tricks by Old Anions: Hydrogen Bonded Hexacyanoferrous Anionic Networks. Cryst. Growth Des. 2017, 17, 6793–6800. [Google Scholar] [CrossRef]
- Cvrtila, I.; Stilinović, V. Polymorphs of phenazine hexacyanoferrate(II) hydrate: Supramolecular isomerism in a 2D hydrogen-bonded network. Acta Cryst. 2021, 77, 211–218. [Google Scholar] [CrossRef]
- Sakurada, K.; Ikegaya, H.; Ohta, H.; Akutsu, T.; Takatori, T. Hydrolysis of an acetylthiocholine by pralidoxime iodide (2-PAM). Toxicol. Lett. 2006, 166, 255–260. [Google Scholar] [CrossRef]
- Foretić, B.; Damjanović, V.; Vianello, R.; Picek, I. Novel Insights into the Thioesterolytic Activity of N-Substituted Pyridinium-4-oximes. Molecules 2020, 25, 2385. [Google Scholar] [CrossRef]
- Zorbaz, T.; Malinak, D.; Maraković, N.; Macek Hrvat, N.; Zandona, A.; Novotny, M.; Skarka, A.; Andrys, R.; Benkova, M.; Soukup, O.; et al. Pyridinium Oximes with Ortho-Positioned Chlorine Moiety Exhibit Improved Physicochemical Properties and Efficient Reactivation of Human Acetylcholinesterase Inhibited by Several Nerve Agents. J. Med. Chem. 2018, 61, 10753–10766. [Google Scholar] [CrossRef]
- Chambers, J.E.; Dail, M.B.; Meek, E.C. Oxime-Mediated Reactivation of Organophosphate-Inhibited Acetylcholinesterase with Emphasis on Centrally-Active Oximes. Neuropharmacology 2020, 175, 108201–108218. [Google Scholar] [CrossRef] [PubMed]
- Kovacic, P. Mechanism of Organophosphates (Nerve Gases and Pesticides) and Antidotes: Electron Transfer and Oxidative Stress. Curr. Med. Chem. 2003, 10, 2705–2709. [Google Scholar] [CrossRef] [PubMed]
- Foretić, B.; Picek, I.; Damjanović, V.; Cvijanović, D.; Pulić, I.; Kukovec, B.M.; Matković-Čalogović, D. Spectroscopic and structural insights into N-substituted pyridinium-4-aldoximes and their pentacyanoferrate(II) complexes. Polyhedron 2013, 52, 733–742. [Google Scholar]
- Foretić, B.; Picek, I.; Đilović, I.; Burger, N. Preparation, characterization and reactivity of 1-benzylpyridinium-4-aldoxime chloride and 1-phenacylpyridinium-4-aldoxime chloride and their complexes with the aquapentacyanoferrate(II) ion. Inorg. Chim. Acta 2010, 363, 1425–1434. [Google Scholar] [CrossRef]
- Foretić, B.; Vianello, R.; Matković-Čalogović, D.; Jadreško, D.; Picek, I. Supramolecular inter-ionic charge-transfer complexes between derivatives of pyridinium-4-oxime cations and hexacyanoferrate(II) anions. New J. Chem. 2018, 42, 16115–16126. [Google Scholar] [CrossRef]
- Picek, I.; Matković-Čalogović, D.; Dražić, G.; Kapun, G.; Šket, P.; Popović, J.; Foretić, B. Supramolecular Solid Complexes between Bis-pyridinium-4- oxime and Distinctive Cyanoiron Platforms. Molecules 2024, 29, 1698. [Google Scholar] [CrossRef]
- Misra, S.K.; Diehl, S.; Tipikin, D.; Freed, J.H. A multifrequency EPR study of Fe2+ and Mn2+ ions in a ZnSiF6·6H2O single crystal at liquid-helium temperatures. J. Magn. Reson. 2010, 205, 14–22. [Google Scholar] [CrossRef]
- Mathies, G.; Chatziefthimiou, S.D.; Maganas, D.; Sanakis, Y.; Sottini, S.; Kyritsis, P.; Groenen, E.J.J. High-frequency EPR study of the high-spin FeII complex Fe[(SPPh2)2N]2. J. Magn. Reson. 2012, 224, 94–100. [Google Scholar] [CrossRef]
- Baker, J.M.; Bleaney, B.; Bowers, K.D. Paramagnetic Resonance in some Complex Cyanides of the Iron Group I: Experimental Results. Proc. Phys. Soc. 1956, 69, 1205–1215. [Google Scholar] [CrossRef]
- Box, H.C.; Lilga, K.T.; Budzinski, E.E. Radiation-induced oxidation and reduction of iron-cyanide complexes. Chem. Phys. 1977, 66, 2135–2138. [Google Scholar] [CrossRef]
- Berliner, L.J. Spin Labelling. Theory and Applications; Academic Press: New York, NY, USA, 1976. [Google Scholar]
- Bou-Abdallah, F.; Chasteen, N.D. Spin concentration measurements of high-spin (g’ = 4.3) rhombic iron(III) ions in biological samples: Theory and application. J. Biol. Inorg. Chem. 2008, 13, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Mohaček Grošev, V.; Foretić, B.; Gamulin, O. Vibrational analysis of 1-methyl-pyridinium-2-aldoxime and 1-methyl-pyridinium-4-aldoxime cations. Spectrochim. Acta A 2011, 78, 1376–1379. [Google Scholar] [CrossRef] [PubMed]
- Abouelwafa, A.S.; Hauser, A.; Mereacre, V.; Lan, Y.; Long, G.J.; Grandjean, F.; Buth, G.; Anson, C.E.; Powell, A.K. Search for Electron Delocalization from [Fe(CN)6]3− to the Dication of Viologen in (DNP)3[Fe(CN)6]2·10H2O. Inorg. Chem. 2017, 56, 6477–6488. [Google Scholar] [CrossRef] [PubMed]
- Hazra, A.; Gurunatha, K.L.; Maji, T.K. Charge-Assisted Soft Supramolecular Porous Frameworks: Effect of External Stimuli on Structural Transformation and Adsorption Properties. Cryst. Growth Des. 2013, 13, 4824–4836. [Google Scholar] [CrossRef]
- Gaffar, A.M.; Omar, M.H. Thermal Analytical Study Of Different Phases Of Potassium Hexacyanoferrate(II) Crystal Effects of growth conditions, heat treatment and -irradiation on the unit cell parameters. J. Therm. Anal. Cal. 2005, 81, 477–487. [Google Scholar] [CrossRef]
- Lee, C.; Mi Lee, Y.; Sun Moon, M.; Hee Park, S.; Woo Park, J.; Gon Kim, K.; Jeon, S. UV-vis-NIR and Raman spectroelectrochemical studies on viologen cation radicals: Evidence for the presence of various types of aggregate species. J. Electroanal. Chem. 1996, 416, 139–144. [Google Scholar] [CrossRef]
- Bockman, T.M.; Kochi, J.K. Isolation and Oxidation-Reduction of Methylviologen Cation Radicals. Novel Disproportionation in Charge-Transfer Salts by X-ray Crystallography. J. Org. Chem. 1990, 55, 4127–4135. [Google Scholar] [CrossRef]
- Ross, M.; Andersen, A.; Fox, Z.W.; Zhang, Y.; Hong, K.; Lee, J.; Cordones, A.; March, A.M.; Doumy, G.; Southworth, S.H.; et al. Comprehensive Experimental and Computational Spectroscopic Study of Hexacyanoferrate Complexes in Water: From Infrared to X ray Wavelengths. J. Phys. Chem. B 2018, 122, 5075–5086. [Google Scholar] [CrossRef]
- Rigaku Oxford Diffraction. CrysAlisPRO, version 1.171.38.46; Rigaku Corporation: Tokyo, Japan, 2015. [Google Scholar]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT-Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Spackman, P.R.; Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer: A program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Cryst. 2021, 54, 1006–1011. [Google Scholar] [CrossRef] [PubMed]
- Smidstrup, S.; Markussen, T.; Vancraeyveld, P.; Wellendorff, J.; Schneider, J.; Gunst, T.; Verstichel, B.; Stradi, D.; Khomyakov, P.A.; Vej-Hansen, U.G.; et al. QuantumATK: An integrated platform of electronic and atomic-scale modelling tools. J. Phys. Condens. Matter 2020, 32, 015901. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- van Setten, M.J.; Giantomassi, M.; Bousquet, E.; Verstraete, M.J.; Hamann, D.R.; Gonze, X.; Rignanese, G.M. The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table. Comput. Phys. Commun. 2018, 226, 39–54. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foretić, B.; Klaser, T.; Ovčar, J.; Lončarić, I.; Žilić, D.; Šantić, A.; Štefanić, Z.; Bjelopetrović, A.; Popović, J.; Picek, I. The Reversible Electron Transfer Within Stimuli-Responsive Hydrochromic Supramolecular Material Containing Pyridinium Oxime and Hexacyanoferrate (II) Ions. Molecules 2024, 29, 5611. https://doi.org/10.3390/molecules29235611
Foretić B, Klaser T, Ovčar J, Lončarić I, Žilić D, Šantić A, Štefanić Z, Bjelopetrović A, Popović J, Picek I. The Reversible Electron Transfer Within Stimuli-Responsive Hydrochromic Supramolecular Material Containing Pyridinium Oxime and Hexacyanoferrate (II) Ions. Molecules. 2024; 29(23):5611. https://doi.org/10.3390/molecules29235611
Chicago/Turabian StyleForetić, Blaženka, Teodoro Klaser, Juraj Ovčar, Ivor Lončarić, Dijana Žilić, Ana Šantić, Zoran Štefanić, Alen Bjelopetrović, Jasminka Popović, and Igor Picek. 2024. "The Reversible Electron Transfer Within Stimuli-Responsive Hydrochromic Supramolecular Material Containing Pyridinium Oxime and Hexacyanoferrate (II) Ions" Molecules 29, no. 23: 5611. https://doi.org/10.3390/molecules29235611
APA StyleForetić, B., Klaser, T., Ovčar, J., Lončarić, I., Žilić, D., Šantić, A., Štefanić, Z., Bjelopetrović, A., Popović, J., & Picek, I. (2024). The Reversible Electron Transfer Within Stimuli-Responsive Hydrochromic Supramolecular Material Containing Pyridinium Oxime and Hexacyanoferrate (II) Ions. Molecules, 29(23), 5611. https://doi.org/10.3390/molecules29235611