Synthesis and Characterization of Na-P1 (GIS) Zeolite Using Rice Husk
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nery, J.G.; Mascarenhas, Y.P.; Cheetham, A.K. A study of the highly crystalline, low-silica, fully hydrated zeolite P ion exchanged with (Mn2+, Cd2+, Pb2+, Sr2+, Ba2+) cations. Micropor. Mesopor. Mater. 2003, 57, 229–248. [Google Scholar] [CrossRef]
- Sharma, P.; Song, J.S.; Han, M.H. GIS-NaP1 zeolite microspheres as potential water adsorption material: Influence of initial silica concentration on adsorptive and physical/topological properties. Sci. Rep. 2016, 6, 22734. [Google Scholar] [CrossRef] [PubMed]
- Albert, B.R.; Cheetham, A.K.; Stuart, J.A.; Adams, C.J. Investigations on P zeolites: Synthesis, characterization, and structure of highly crystalline low-silica NaP. Micropor. Mesopor. Mater. 1998, 21, 133–142. [Google Scholar] [CrossRef]
- Baerlocher, C.; Meier, W.M. The crystal structure of synthetic zeolite Na-P1, an isotope of gismondine. Z. Krist. 1971, 135, 339–354. [Google Scholar] [CrossRef]
- Hansen, S.; Hakansson, U.; Landa-Canovas, A.R.; Falth, L. On the crystal chemistry of NaP zeolites. Zeolites 1993, 13, 276–280. [Google Scholar] [CrossRef]
- Hakansson, U.; Falth, L.; Hansen, S. Structure of a high-silica variety of zeolite Na-P. Acta Crystallogr. 1990, 46, 1363–1364. [Google Scholar] [CrossRef]
- Adams, C.J.; Araya, A.; Cunningham, K.J.; Franklin, K.R.; White, I.F. Measurement and prediction of Ca–Na ion-exchange equilibrium in maximum aluminium P (MAP), a zeolite with the GIS framework topology. J. Chem. Soc. Faraday Trans. 1997, 93, 499–503. [Google Scholar] [CrossRef]
- Huo, Z.; Xu, X.; Lv, Z.; Song, J.; He, M.; Li, Z.; Wang, Q.; Yan, L.; Li, Y. Thermal study of NaP zeolite with different morphologies. J. Therm. Anal. Calorim. 2013, 111, 365–369. [Google Scholar] [CrossRef]
- Szala, B.; Bajda, T.; Jelen, A. Removal of Chromium (VI) from aqueous solutions using zeolites modified with HDTMA and ODTMA surfactants. Clay Miner. 2015, 50, 103–115. [Google Scholar] [CrossRef]
- Cocke, D.L.; Mollah, M.Y.A. The chemistry and leaching mechanisms of hazardous substances in cementitious systems. In Chemistry and Microstructure of Solidified Waste Forms; Spence, R.D., Ed.; Lewis: Boca Raton, FL, USA, 1991; p. 187. [Google Scholar]
- Atkins, M.; Glasser, F.P.; Jack, J.J. Zeolite P in cements: Its potential for immobilizing toxic and radioactive waste species. Waste Manag. 1995, 15, 127–135. [Google Scholar] [CrossRef]
- Li, Z.; Wu, C.; Yang, Y.; Ma, X.; Fu, L.; Peng, G.; Guan, Q.; Can, Q. Nano-Co3O4 supported on magnetic N-doped graphene as highly efficient catalyst for epoxidation of alkenes. Mol. Catal. 2017, 432, 267–273. [Google Scholar] [CrossRef]
- Mortezaei, Z.; Zendehdel, M.; Bodaghifard, M.A. Synthesis and characterization of funcionalited NaP Zeolite CoFe3O4 hybrid materials: A micro-meso-structure catalyst for aldol condensation. Res. Chem. Intermed. 2020, 46, 2169–2193. [Google Scholar] [CrossRef]
- Rees, L.V.C.; Chandrasekhar, S. Verified Synthesis of Zeolitic Materials, 2nd ed.; Robson, H., Lillerud, K.P., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2001; pp. 169–170. [Google Scholar]
- Ali, I.O.; El-Sheikh, S.M.; Salama, T.M.; Bakr, M.F.; Fodial, M.H. Controllable synthesis of NaP zeolite and its application in calcium adsorption. Sci. China Mater. 2015, 58, 621–633. [Google Scholar] [CrossRef]
- Li, J.T.; Zeng, X.; Chen, R.Y.; Yang, X.B.; Luo, X.T. Synthesis of pure zeolite Na-P from kaolin and enhancement of crystallization rate by sodium fluoride. In Advanced Materials, Structure and Mechanical Engineering; Kaloop, M., Ed.; Taylor and Francis Group: London, UK, 2016. [Google Scholar]
- Meftha, M.; Oueslati, W.; Chorfi, N.; Ben Haj Amara, A. Effect of the raw material type and the reaction time on the synthesis of halloysite based Zeolite Na-P1. Results Phys. 2017, 7, 1475–1484. [Google Scholar] [CrossRef]
- Zubowa, H.L.; Kosslick, H.; Muller, D.; Richter, M.; Wilde, L.; Fricke, R. Crystallization of phase-pure zeolite NaP from MCM-22-type gel compositions under microwave radiation. Micropor. Mesopor. Mater. 2008, 108, 542–548. [Google Scholar] [CrossRef]
- Tayraukham, P.; Jantarit, N.; Osakoo, N.; Wittayakun, J. Synthesis of pure NaP2 zeolite from gel of NaY by conventional and microwave-assisted hydrothermal methods. Crystals 2020, 10, 951–962. [Google Scholar] [CrossRef]
- Sathupunya, M.; Gulari, E.; Wongkasemjit, S. ANA and GIS zeolite synthesis directly from alumatrane and silatrane by sol-gel process and microwave technique. J. Eur. Ceram. Soc. 2002, 22, 2305–2314. [Google Scholar] [CrossRef]
- Pal, P.; Das, J.K.; Das, N.; Bandyopadhyay, S. Synthesis of NaP zeolite at room temperature and short crystallization time by sonochemical method. Ultrason. Sonochem. 2013, 20, 314–321. [Google Scholar] [CrossRef]
- Srinivasan, A.; Grutzeck, M.W. The Adsorption of SO2 by Zeolites Synthesized from Fly Ash. Environ. Sci. Technol. 1999, 33, 1464–1469. [Google Scholar] [CrossRef]
- Murayama, N.; Yamamoto, H.; Shibata, J. Mechanism of zeolite synthesis from coal fly ash by alkali hydrothermal reaction. Int. J. Miner. Process. 2002, 64, 1–17. [Google Scholar] [CrossRef]
- Kazemian, H.; Naghdali, Z.; Kashani, T.G.; Farhadi, F. Conversion of high silicon fly ash to Na-P1 zeolite: Alkaline fusion followed by hydrothermal crystallization. Adv. Powder Technol. 2010, 21, 279–283. [Google Scholar] [CrossRef]
- Kucuk, M.E.; Makarava, I.; Kinnarinen, T.; Hakkinen, A. Simultaneus adsorption of Cu(II), Zn(II), Cd(II) and Pb(II) from synthehticwastewater using NaP and LTA zeolites prepared from biomass fly ash. Heliyon 2023, 9, e20253. [Google Scholar] [CrossRef] [PubMed]
- Lovat, V.C.; Chandrasekhar, S. Hydrothermal reaction of kaolinite in presence of fluoride ions at pH < 10. Zeolites 1993, 13, 534–541. [Google Scholar]
- Baccouche, A.; Srasra, E.; El Maaoui, M. Preparation of Na-P1 and sodalite octahydrate zeolites from interstratified illite-smectite. Appl. Clay Sci. 1998, 13, 255–273. [Google Scholar] [CrossRef]
- Kats, A.; Brough, A.R.; Kirkpatrick, R.J.; Struble, L.; Young, F. Effect of Solution Concentration on the Properties of a Cementitious Grout Wasteform for Low-Level Nuclear Waste. Nucl. Technol. 2017, 129, 236–245. [Google Scholar] [CrossRef]
- Sayehi, M.; Garbarino, G.; Delahay, G.; Busca, G.; Tounsi, H. Synthesis of high value-added Na-P1 and Na-FAU zeolites using waste glass from fluorescent tubes and aluminum scraps. Mater. Chem. Phys. 2020, 248, 122903. [Google Scholar] [CrossRef]
- Utami, A.R.; Sugiarti, S.; Sugita, P. Synthesis of NaP1 and Faujasite zeolite from natural zeolite of ENDE-NTT as lead Pb (II) adsorbent. Rasajan J. Chem. 2019, 12, 650–658. [Google Scholar] [CrossRef]
- Hong, S.; Um, W. Top-down synthesis of NaP zeolite from natural zeolite for the higher removal efficiency of Cs, Sr, and Ni. Minerals 2021, 11, 252. [Google Scholar] [CrossRef]
- Moreno-Torres, J.A.; Espejel-Ayala, F.; Ramirez-Bon, R.; Coutino-Gonzalez, E. Sustainable strategies to synthesize small-pore NaP zeolites using natural minerals. J. Mater. Sci. 2024, 59, 423–434. [Google Scholar] [CrossRef]
- Khabuanchalead, S.; Khemthong, P.; Prayoonpokarack, S.; Wittayakun, J. Transformation of zeolite NaY synthesized from rice husk silica to NaP during hydrothermal synthesis. J. Sci. Technol. 2008, 15, 225–231. [Google Scholar]
- Wittayakun, J.; Khemthong, P.; Prayoonpokarach, S. Synthesis and characterization of zeolite NaY fron rice husk silica. Korean J. Chem. Eng. 2008, 25, 861–864. [Google Scholar] [CrossRef]
- Mohamed, R.M.; Mkhalid, I.A.; Bakarat, M.A. Rice husk ash as a renewable source for the production of zeolite NaY and its characterization. Arab. J. Chem. 2015, 8, 48–53. [Google Scholar] [CrossRef]
- Kongkachuichay, P.; Lohsoontorn, P. Phase diagram of zeolite synthesized from perlite and rice husk ash. ScienceAsia 2006, 32, 13–16. [Google Scholar] [CrossRef]
- Vasconcelos, A.A.; Len, T.; de Nararé Oliveira, A.; da Farias Costa, A.A.; da Silva Souza, A.R.; da Ferreira Costa, C.E.; Luque, R.; da Rocha Filho, G.N.; Rodriguez Noronha, R.C.; do Santos Nascimento, L.A. Zeolites: A Theoretical and Practical Approach with Uses in (Bio) Chemical Processes. Appl. Sci. 2023, 13, 1897–1951. [Google Scholar] [CrossRef]
- Akinjokun, A.I.; Ogunfowokan, A.O.; Ajao, J.; Petrik, L.F.; Ojumu, T.V. Template-free conversion of rice husk silica into nano-zeolite X and its application in adsorption of heavy metal ions. Int. J. Environ. Sci. Technol. 2024, 21, 1949–1960. [Google Scholar] [CrossRef]
- Treacy, M.M.J.; Higgins, J.B.; Ballmoos, R. Collectionof Simulated XRD Powder Patterns for Zeolites, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 1996. [Google Scholar]
- Petkowicz, D.I.; Rigo, R.T.; Radtke, C.; Pergher, S.B.; dos Santos, J.H.Z. Zeolite NaA from Brazilian Chrysotile and rice husk. Micropor. Mesopor. Mater. 2008, 116, 548–554. [Google Scholar] [CrossRef]
- Yusof, A.M.; Malek, N.A.N.N.; Rashid, N.A.A. Hydrothermal conversion of rice husk ash to faujasite-types and NaA-type of zeolites. J. Porous. Mater. 2010, 17, 39–47. [Google Scholar] [CrossRef]
- Novembre, D.; Gimeno, D.; Marinangeli, L.; Tangari, A.C.; Rosatelli, G.; Ciulla, M.; di Profio, P. Rice Husk as Raw Material in Synthesis of NaA (LTA) Zeolite. Molecules 2024, 29, 4396. [Google Scholar] [CrossRef]
- Breck, D. Zeolite Molecular Sieves; John Wiley & Sons: New York, NY, USA, 1974. [Google Scholar]
- Flanigen, E.M.; Khatami, H.; Szymanski, H.A. Infrared Structural Studies of Zeolite Frameworks. In Molecular Sieve Zeolites, Advances in Chemistry 101; Flanigen, E.M., Sand, L.B., Eds.; American Chemical Society: Washington, DC, USA, 1971; pp. 201–229. [Google Scholar]
- Novembre, D.; Gimeno, D.; Del Vecchio, A. Synthesis and characterization of Na-P1 (GIS) zeolite using a kaolinitic rock. Sci. Rep. 2021, 11, 4872–4883. [Google Scholar] [CrossRef]
- Tsai, Y.L.; Huang, E.; Li, Y.H.; Hung, H.T.; Jiang, J.H.; Liu, T.C.; Fang, J.N.; Chen, H.F. Raman spectroscopic characteristics of Zeolite Group Minerals. Minerals 2021, 11, 167. [Google Scholar] [CrossRef]
- Mozgawa, W. The relation between structure and vibrational spectra of natural zeolites. J. Mol. Struct. 2001, 596, 129–137. [Google Scholar] [CrossRef]
- Novembre, D.; Gimeno, D.; Pasculli, A.; Di Sabatino, B. Synthesis and characterization of sodalite using natural kaolinite: An analytical and mathematical approach to simulate the loss in weight of chlorine during the synthesis process. Fresen. Environ. Bull. 2010, 19, 1109–1117. [Google Scholar]
- Novembre, D.; Pasculli, A.; Pace, C.; Gimeno, D.; Di Sabatino, B. Synthesis of sodalite from natural kaolinite. A way to simulate the loss in weight of chlorine during synthesis process by an analytical and mathematical modelling. Rend. Online Soc. Geol. It. 2010, 11, 548–549. [Google Scholar]
- Novembre, D.; Gimeno, D.; D’Alessandro, N.; Tonucci, L. Hydrothermal synthesis and characterization of kalsilite by using a kaolinitic rock from Sardinia, Italy, and its application in the production of biodiesel. Mineral. Mag. 2018, 82, 961–973. [Google Scholar] [CrossRef]
- Gisbert, G.; Gimeno, D. Ignimbrite correlation using whole-rock geochemistry: An example from the Sulcis (SW Sardinia, Italy). Geol. Mag. 2017, 154, 740–756. [Google Scholar] [CrossRef]
- Novembre, D.; Di Sabatino, B.; Gimeno, D.; Garcia Valles, M.; Martinez-Manent, S. Synthesis of Na-X zeolites from tripolaceous deposits (Crotone, Italy) and volcanic zeolitized rocks (Vico Volcano, Italy). Micropor. Mesopor. Mat. 2004, 75, 1–11. [Google Scholar] [CrossRef]
- Aulinas, M.; Civetta, L.; Di Vito, M.; Orsi, G.; Gimeno, D.; Fernandez Turiel, J.L. The Plinian Mercato eruption of Somma Vesuvius: Magma chamber processes and eruption dynamics. Bull. Volcanol. 2008, 70, 825–840. [Google Scholar] [CrossRef]
- Gimeno, D.; Puges, M. Caracterización química de la vidriera histórica de Sant Pere i Sant Jaume (Monestir de Pedralbes, Barcelona). Bol. Soc. Esp. Ceram. Vidr. 2002, 41, 13–20. [Google Scholar] [CrossRef]
- Aulinas, M.; Gimeno, D.; Fernandez-Turiel, J.L.; Perez-Torrado, F.J.; Rodriguez-Gonzalez, A.; Gasperini, D. The Plio-Quaternary magmatic feeding system beneath Gran Canaria (Canary Islands, Spain): Constraints from thermobarometric studies. J. Geol. Soc. 2010, 167, 785–801. [Google Scholar] [CrossRef]
- Novembre, D.; Pace, C.; Gimeno, D. Syntheses and characterization of zeolites K-F and W type using a diatomite precursor. Mineral. Mag. 2014, 78, 1209–1225. [Google Scholar] [CrossRef]
- Novembre, D.; Gimeno, D.; Del Vecchio, A. Improvement in the synthesis conditions and studying the physicochemical properties of the zeolite Li-A (BW) obtained from a kaolinitic rock. Sci. Rep. 2020, 10, 5715–5723. [Google Scholar] [CrossRef] [PubMed]
- Novembre, D.; Pace, C.; Gimeno, D. Synthesis and characterization of wollastonite-2M by using a diatomite precursor. Mineral. Mag. 2018, 82, 95–110. [Google Scholar] [CrossRef]
- Larson, A.C.; Von Dreele, R.B. GSAS: General Structure Analysis System; Document Laur 86-748; Los Alamos National Laboratory: Los Alamos, NM, USA, 1997.
- Toby, B.H. EXPGUI, a Graphical User Interface for GSAS. J. Appl. Crystallogr. 2001, 34, 210–213. [Google Scholar] [CrossRef]
- Novembre, D.; Gimeno, D. The solid-state conversion of kaolin to KAlSiO4 minerals: The effects of time and temperature. Clays Clay Miner. 2017, 65, 355–366. [Google Scholar] [CrossRef]
- Novembre, D.; Gimeno, D.; Poe, B. Synthesis and Characterization of Leucite Using a Diatomite Precursor. Sci. Rep. 2019, 9, 10051–10061. [Google Scholar] [CrossRef]
- Novembre, D.; Gimeno, D.; Cappelletti, P.; Graziano, S.F. A case study of zeolitization process: “tufo Rosso a Scorie Nere” (Vico Volcano, Italy): Inferences for a general model. Eur. J. Mineral. 2021, 33, 315–328. [Google Scholar] [CrossRef]
- Novembre, D.; Di Sabatino, B.; Gimeno, D. Synthesis of Na-A zeolite from 10 Å halloysite and a new crystallization kinetic model for the transformation of Na-A into HS zeolite. Clays Clay Miner. 2005, 53, 28–36. [Google Scholar] [CrossRef]
- Ciulla, M.; Canale, V.; Wolicki, R.D.; Pilato, S.; Bruni, P.; Ferrari, S.; Siani, G.; Fontana, A.; Di Profio, P. Enhanced CO2 Capture by Sorption on Electrospun Poly (Methyl Methacrylate). Separations 2023, 10, 505–521. [Google Scholar] [CrossRef]
- Novembre, D.; Di Sabatino, B.; Gimeno, D.; Pace, C. Synthesis and characterization of Na-X, Na-A and Na-P zeolites and hydroxysodalite from metakaolinite. Clay Miner. 2011, 46, 336–354. [Google Scholar] [CrossRef]
- Novembre, D.; Gimeno, D. Synthesis and characterization of analcime (ANA) zeolite using a kaolinitic rock. Sci. Rep. 2021, 11, 13373–13382. [Google Scholar] [CrossRef]
SiO2 | Al2O3 | Fe2O3 | CaO | Na2O | K2O | MnO | TiO2 | MgO | P2O5 |
---|---|---|---|---|---|---|---|---|---|
98.55 | 0.28 | 0.16 | 0.16 | 0.18 | 0.22 | 0.16 | 0.02 | 0.14 | 0.13 |
Sample + 10% Corundum Nist 676a | 110 °C-48 h |
---|---|
Rwp | 0.18 |
Rp | 0.15 |
CHI2 | 2.39 |
space group Na-P1 | C2/c |
a (Å) | 14.3027 (0.0023) |
b (Å) | 10.0857 (0.0035) |
c (Å) | 10.0129 (0.0042) |
β (°) | 135.2833 (0.0031) |
% amorphous | 6.5 (15) |
Na-P1 | 93.5 (18) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novembre, D.; Gimeno, D.; Marinangeli, L.; Tangari, A.C.; Rosatelli, G.; Ciulla, M.; di Profio, P. Synthesis and Characterization of Na-P1 (GIS) Zeolite Using Rice Husk. Molecules 2024, 29, 5596. https://doi.org/10.3390/molecules29235596
Novembre D, Gimeno D, Marinangeli L, Tangari AC, Rosatelli G, Ciulla M, di Profio P. Synthesis and Characterization of Na-P1 (GIS) Zeolite Using Rice Husk. Molecules. 2024; 29(23):5596. https://doi.org/10.3390/molecules29235596
Chicago/Turabian StyleNovembre, Daniela, Domingo Gimeno, Lucia Marinangeli, Anna Chiara Tangari, Gianluigi Rosatelli, Michele Ciulla, and Pietro di Profio. 2024. "Synthesis and Characterization of Na-P1 (GIS) Zeolite Using Rice Husk" Molecules 29, no. 23: 5596. https://doi.org/10.3390/molecules29235596
APA StyleNovembre, D., Gimeno, D., Marinangeli, L., Tangari, A. C., Rosatelli, G., Ciulla, M., & di Profio, P. (2024). Synthesis and Characterization of Na-P1 (GIS) Zeolite Using Rice Husk. Molecules, 29(23), 5596. https://doi.org/10.3390/molecules29235596