Syntheses, Structures, and Photocatalytic and Sonocatalytic Degradations of Methyl Blue of Cu(II) and Mn(II) Coordination Polymers Based on Tri(triazole) and Dicarboxylate Ligands
Abstract
1. Introduction
2. Results and Discussion
2.1. Structures
2.2. Syntheses, PXRDs, FT-IR, and Eg
2.3. Photocatalytic and Sonocatalytic Decomposition of MB
3. Experimental Section
3.1. Materials and Methods
3.2. Preparation of [Cu(ttpa)(sub)]n (Cuttpa or 1)
3.3. Preparation of {[Mn2(ttpa)2(nip)2(H2O)2]·3H2O}n (Mnttpa or 2)
3.4. X-Ray Crystallography
3.5. Photocatalytic and Sonocatalytic Decomposition
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, Z.J.; Lü, J.; Hong, M.; Cao, R. Metal–organic frameworks based on flexible ligands (FL-MOFs): Structures and applications. Chem. Soc. Rev. 2014, 43, 5867–5895. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.K.; Chen, K.X.; Wang, M.; You, Y.J.; Zhou, X.H. A two-fold interpenetrated Zn-based coordination polymer for highly selective and sensitive detection of MnO4−. J. Mol. Struct. 2021, 1239, 130486. [Google Scholar] [CrossRef]
- Hong, W.H.; Perera, S.P.; Burrows, A.D. Manufacturing of metal-organic framework monoliths and their application in CO2 adsorption. Microporous Mesoporous Mater. 2015, 214, 149–155. [Google Scholar] [CrossRef]
- Ashouri, V.; Adib, K.; Nasrabadi, M.R.; Ghalkhani, M. Preparation of the extruded UiO-66-based Metal-Organic Framework for the diazinon removal from the real samples. J. Mol. Struct. 2021, 1240, 130607. [Google Scholar] [CrossRef]
- Hashemian, S.; Sedrpoushan, A.; Eshbala, F.H. Co-Zeolite imidazolate frameworks (ZIF-9@Zeolite) as heterogeneous catalyst for alcohols oxidation. Catal. Lett. 2017, 147, 196–203. [Google Scholar] [CrossRef]
- Wan, Q.Y.; Wakizaka, M.; Yamashita, M. Single-ion magnetism behaviors in lanthanide(III) based coordination frameworks. Inorg. Chem. Front. 2023, 10, 5212–5224. [Google Scholar] [CrossRef]
- Butorlin, O.S.; Petrova, A.S.; Toikka, Y.N.; Kolesnikov, I.E.; Orlov, S.N.; Ryazantsev, M.N.; Bogachev, N.A.; Skripkin, Y.M.; Mereshchenko, A.S. The Structure and Optical Properties of Luminescent Europium Terephthalate Antenna Metal–Organic Frameworks Doped by Yttrium, Gadolinium, and Lanthanum Ions. Molecules 2024, 29, 3558. [Google Scholar] [CrossRef]
- Kaur, H.; Mahanta, G.C.; Gupta, V.; Kukkar, D.; Tyagi, S. Synthesis and characterization of ZIF-8 nanoparticles for controlled release of 6-mercaptopurine drug. J. Drug Del. Sci. Technol. 2017, 41, 106–112. [Google Scholar] [CrossRef]
- Carlucci, L.; Ciani, G.; Proserpio, D.M. Proserpio, polycatenation, polythreading and polyknotting in coordination network chemistry. Coord. Chem. Rev. 2003, 246, 247–289. [Google Scholar] [CrossRef]
- Jiang, H.L.; Makal, T.A.; Zhou, H.C. Interpenetration control in metal–organic frameworks for functional applications. Coord. Chem. Rev. 2013, 257, 2232–2249. [Google Scholar] [CrossRef]
- Cai, S.L.; Lu, L.; Shi, C.C.; Wang, J.; Sun, Y.C. Effect of ligand on the assembly of two entangled coordination polymers: Structures and photocatalytic properties. Polyhedron 2020, 191, 114804. [Google Scholar] [CrossRef]
- Yang, J.; Yan, S.W.; Wang, X.; Xiao, D.R.; Zhang, H.Y.; Chi, X.L.; Zhang, J.L.; Wang, E.B. An unusual polythreaded coordination network self-assembled from 2D motifs with two distinct lateral arms. Inorg. Chem. Commun. 2013, 38, 100–103. [Google Scholar] [CrossRef]
- Zhang, J.L.; Yang, J.; Wang, X.; Zhang, H.Y.; Chi, X.L.; Yang, Q.; Chen, Y.; Xiao, D.R. A series of polythreaded architectures based on a long flexible tetracarboxylate ligand and different N-donor ligands. Inorg. Chim. Acta 2016, 447, 66–76. [Google Scholar] [CrossRef]
- Wang, K.B.; Wang, X.; Zhang, D.; Wang, H.J.; Wang, Z.K.; Zhao, M.Y.; Xi, R.; Wu, H.; Zheng, M.B. Interpenetrated nano-MOFs for ultrahigh-performance supercapacitors and excellent dye adsorption performance. CrystEngComm 2018, 20, 6940–6949. [Google Scholar] [CrossRef]
- Zhao, F.H.; Guo, W.Y.; Guo, S.Y.; Li, S.Y.; Li, Z.L.; Yan, X.Q.; Jia, X.M.; Huang, L.W.; You, J.H. Two entangled photoluminescent MOFs of naphthalenedisulfonate and bis(benzimidazole) ligands for selective sensing of Fe3+. J. Solid State Chem. 2019, 278, 120926. [Google Scholar] [CrossRef]
- Liu, J.D.; Wang, Z.K.; Bi, R.; Mao, F.F.; Wang, K.B.; Wu, H.; Wang, X. A polythreaded MnII-MOF and its superperformances for dye adsorption and supercapacitors. Inorg. Chem. Front. 2020, 7, 718–730. [Google Scholar] [CrossRef]
- Singh, A.; Singh, A.K.; Liu, J.Q.; Kumar, A. Syntheses, design strategies, and photocatalytic charge dynamics of metal–organic frameworks (MOFs): A catalyzed photo-degradation approach towards organic dyes. Catal. Sci. Technol. 2021, 11, 3946–3989. [Google Scholar] [CrossRef]
- Zhang, Y.; Fan, W.; Du, H.Q.; Zhao, Y.W. Study on photocatalytic performance of TiO2 and Fe3+/TiO2 coatings. Surf. Eng. 2017, 33, 849–856. [Google Scholar] [CrossRef]
- Baradaran, M.; Ghodsi, F.E.; Bittencourt, C.; Llobet, E. The role of Al concentration on improving the photocatalytic performance of nanostructured ZnO/ZnO:Al/ZnO multilayer thin films. J. Alloys Compd. 2019, 788, 289–301. [Google Scholar] [CrossRef]
- Alvaro, M.; Carbonell, E.; Ferrer, B.; Xamena, F.X.L.; Garcia, H. Semiconductor behavior of a metal-organic framework (MOF). Chem. Eur. J. 2007, 13, 5106–5112. [Google Scholar] [CrossRef]
- Lu, L.; Wang, J.; Shi, C.C.; Sun, Y.C.; Wu, W.P.; Pan, Y.; Muddassir, M. Four structural diversity MOF-photocatalysts readily prepared for the degradation of the methyl violet dye under UV-visible light. New J. Chem. 2021, 45, 551–560. [Google Scholar] [CrossRef]
- Wu, Z.B.; Yuan, X.Z.; Zhang, J.; Wang, H.; Jiang, L.B.; Zeng, G.M. Photocatalytic decontamination of wastewater containing organic dyes by metal–organic frameworks and their derivatives. ChemCatChem 2017, 9, 41–64. [Google Scholar] [CrossRef]
- Bala, S.; Bhattacharya, S.; Goswami, A.; Adhikary, A.; Konar, S.; Mondal, R. Designing functional metal−organic frameworks by imparting a hexanuclear copper-based secondary building unit specific properties: Structural correlation with magnetic and photocatalytic activity. Cryst. Growth Des. 2014, 14, 6391–6398. [Google Scholar] [CrossRef]
- Dong, J.P.; Shi, Z.Z.; Li, B.; Wang, L.Y. Synthesis of a novel 2D zinc(II) metal–organic framework for photocatalytic degradation of organic dyes in water. Dalton Trans. 2019, 48, 17626–17632. [Google Scholar] [CrossRef]
- Liu, X.X.; Lu, L.P.; Zhu, M.L.; Englert, U. Design and synrhesis of three new copper coordination polymers: Efficient degradation of an organic dye at alkaline pH. Dalton Trans. 2021, 50, 13866–13876. [Google Scholar] [CrossRef]
- Mosleh, S.; Rahimi, M.R.; Ghaedi, M.; Dashtian, K. Sonophotocatalytic degradation of trypan blue and vesuvine dyes in the presence of blue light active photocatalyst of Ag3PO4/Bi2S3-HKUST-1-MOF: Central composite optimization and synergistic effect study. Ultrason. Sonochem. 2016, 32, 387–397. [Google Scholar] [CrossRef]
- Razavi, S.A.A.; Morsali, A. Linker functionalized metal-organic frameworks. Coord. Chem. Rev. 2019, 399, 213023. [Google Scholar] [CrossRef]
- Zeng, B.X.; Zhang, Y.; Chen, Y.H.; Liu, G.P.; Li, Y.Z.; Chen, L.J.; Zhao, J.W. 3-D Antimonotungstate framework based on 2,6-H2pdca-connecting iron-cerium heterometallic Krebs-type polyoxotungstates for detecting small biomolecules. Inorg. Chem. 2021, 60, 2663–2671. [Google Scholar] [CrossRef]
- Martín-García, Y.; Tapiador, J.; Orcajo, G.; Ayala, J.; Lago, A.B. [BMIM][X] ionic liquids supported on a pillared-layered metal–organic framework: Synthesis, characterization, and adsorption properties. Molecules 2024, 29, 3644. [Google Scholar] [CrossRef]
- Elenkova, D.; Dimitrova, Y.; Tsvetkov, M.; Morgenstern, B.; Milanova, M.; Todorovsky, D.; Zaharieva, J. Investigation of the sensing properties of lanthanoid metal–organic frameworks (Ln-MOFs) with terephthalic acid. Molecules 2024, 29, 3713. [Google Scholar] [CrossRef]
- Shi, Z.Z.; Pan, Z.R.; Jia, H.L.; Chen, S.G.; Qin, L.; Zheng, H.G. Zn(II)/Cd(II) terephthalate coordination polymers incorporating bi-, tri-, and tetratopic phenylamine derivatives: Crystal structures and photoluminescent properties. Cryst. Growth Des. 2016, 16, 2747–2755. [Google Scholar] [CrossRef]
- Qian, L.L.; Blatov, V.A.; Wang, Z.X.; Ding, J.G.; Zhu, L.M.; Li, K.; Li, B.L.; Wu, B. Sonochemical synthesis and characterization of four nanostructural nickel coordination polymers and photocatalytic degradation of methylene blue. Ultrason. Sonochem. 2019, 56, 213–228. [Google Scholar] [CrossRef] [PubMed]
- Ngue, C.M.; Baskoro, F.; Wong, H.Q.; Yen, H.J.; Leung, M.K. Co- and Ni-based electroactive metal−organic frameworks for stable lithium storage: Electrochemical and charge-storage behavior in response to different metal centers. Cryst. Growth Des. 2022, 22, 5872–5882. [Google Scholar] [CrossRef]
- Luo, G.G.; Wu, D.L.; Liu, L.; Wu, S.H.; Li, D.X.; Xiao, Z.J.; Dai, J.C. A novel 1D T5(0)A(2) water tape incorporated in the channel of the first 3D silver-suberate framework. J. Mol. Struct. 2012, 1014, 92–96. [Google Scholar] [CrossRef]
- Dutta, B.; Ahmed, F.; Mir, M.H. Coordination polymers: A promising candidate for photo-responsive electronic device application. Dalton Trans. 2023, 52, 17084–17098. [Google Scholar] [CrossRef]
- Blatov, V.A.; Shevchenko, A.P.; Proserpio, D.M. Applied topological analysis of crystal structures with the program package ToposPro. Cryst. Growth Des. 2014, 14, 3576–3586. [Google Scholar]
- Siadatnasab, F.; Farhadi, S.; Khataee, A. Sonocatalytic performance of magnetically separable CuS/CoFe2O4 nanohybrid for efficient degradation of organic deys. Ultrason. Sonochem. 2018, 44, 359–367. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXTL-2016, Program for the Refinement of Crystal Structures from Diffraction Data; University of Göttingen: Göttingen, Germany, 2016. [Google Scholar]
Cuttpa | Mnttpa | |
---|---|---|
Formula | C32H30CuN10O4 | C64H46Mn2N22O14 |
Fw | 682.20 | 1457.11 |
T/K | 188 (2) | 189 (2) |
Crystal system | Monoclinic | Triclinic |
Space group | P21/c | |
a/Å | 14.7579 (10) | 11.5963 (8) |
b/Å | 18.6867 (13) | 17.6243 (11) |
c/Å | 11.5203 (9) | 19.6708 (12) |
α (°) | 90 | 113.519 (2) |
β (°) | 100.047 (2) | 94.839 (2) |
γ (°) | 90 | 104.434 (2) |
V /Å3 | 3128.3 (4) | 3492.6 (4) |
F(000) | 1412 | 1492 |
Z | 4 | 2 |
ρcalcd (g cm−3) | 1.448 | 1.386 |
µ(mm−1) | 0.753 | 0.440 |
Reflections collected | 60030 | 68,021 |
Unique reflections | 7209 [R(int) = 0.0894] | 15,953 [R(int) = 0.0951] |
Parameter | 424 | 939 |
Goodness of fit | 1.050 | 1.050 |
R1 [I > 2σ(I)] | 0.0541 | 0.0591 |
wR2 (all data) | 0.1519 | 0.1797 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, C.; Wang, X.; Ding, J.-G.; Li, B.-L.; Wu, B.; Hu, C.-J. Syntheses, Structures, and Photocatalytic and Sonocatalytic Degradations of Methyl Blue of Cu(II) and Mn(II) Coordination Polymers Based on Tri(triazole) and Dicarboxylate Ligands. Molecules 2024, 29, 5289. https://doi.org/10.3390/molecules29225289
Yin C, Wang X, Ding J-G, Li B-L, Wu B, Hu C-J. Syntheses, Structures, and Photocatalytic and Sonocatalytic Degradations of Methyl Blue of Cu(II) and Mn(II) Coordination Polymers Based on Tri(triazole) and Dicarboxylate Ligands. Molecules. 2024; 29(22):5289. https://doi.org/10.3390/molecules29225289
Chicago/Turabian StyleYin, Chao, Xing Wang, Jian-Gang Ding, Bao-Long Li, Bing Wu, and Chuan-Jiang Hu. 2024. "Syntheses, Structures, and Photocatalytic and Sonocatalytic Degradations of Methyl Blue of Cu(II) and Mn(II) Coordination Polymers Based on Tri(triazole) and Dicarboxylate Ligands" Molecules 29, no. 22: 5289. https://doi.org/10.3390/molecules29225289
APA StyleYin, C., Wang, X., Ding, J.-G., Li, B.-L., Wu, B., & Hu, C.-J. (2024). Syntheses, Structures, and Photocatalytic and Sonocatalytic Degradations of Methyl Blue of Cu(II) and Mn(II) Coordination Polymers Based on Tri(triazole) and Dicarboxylate Ligands. Molecules, 29(22), 5289. https://doi.org/10.3390/molecules29225289