Design of a New Catalyst, Manganese(III) Complex, for the Oxidative Degradation of Azo Dye Molecules in Water Using Hydrogen Peroxide
Abstract
:1. Introduction
2. Results and Discussion
2.1. Material Characterization
2.1.1. FT-IR Spectroscopy
2.1.2. UV–Visible Absorption and Optical Gap
2.1.3. SEM Features
2.1.4. XRD Patterns
2.1.5. Thermal Analysis
2.1.6. XRF Characterization
2.2. Degradation of Calmagite in the Presence of [Mn(TPP)(Cl)]
2.2.1. Effect of Experimental Conditions
2.2.2. Kinetic Modeling and Thermodynamic Investigation
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Synthesis of Chloro(meso-tetrakis(phenyl)porphyrin) Manganese(III)
3.3. Sample Characterization
3.4. Oxidative Degradation of Dyes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Imran, M.; Ramzan, M.; Qureshi, A.K.; Khan, M.A.; Tariq, M. Emerging Applications of Porphyrins and Metalloporphyrins in Biomedicine and Diagnostic Magnetic Resonance Imaging. Biosensors 2018, 8, 95. [Google Scholar] [CrossRef]
- Tsolekile, N.; Nelana, S.; Oluwafemi, O.S. Porphyrin as Diagnostic and Therapeutic Agent. Molecules 2019, 24, 2669. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Zhang, F.; Linhardt, R.J. Porphyrin-based compounds and their applications in materials and medicine. Dye. Pigment. 2021, 188, 109136. [Google Scholar] [CrossRef]
- Yao, B.; He, Y.; Wang, S.; Sun, H.; Liu, X. Recent Advances in Porphyrin-Based Systems for Electrochemical Oxygen Evolution Reaction. Int. J. Mol. Sci. 2022, 23, 6036. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Pan, W.; Zhang, J.; Yang, M.; Chen, Q.; Liu, F.; Li, J.; Wei, S.; Zhu, G. Porphyrin-based porous organic polymers synthesized using the Alder–Longo method: The most traditional synthetic strategy with exceptional capacity. RSC Adv. 2024, 14, 20837–20855. [Google Scholar] [CrossRef] [PubMed]
- Park, J.M.; Lee, J.H.; Jang, W.D. Applications of porphyrins in emerging energy conversion technologies. Coord. Chem. Rev. 2020, 407, 213157. [Google Scholar] [CrossRef]
- Tian, J.; Zhang, W. Synthesis, self-assembly and applications of functional polymers based on porphyrins. Prog. Polym. Sci. 2019, 95, 65–117. [Google Scholar] [CrossRef]
- Jiang, Y.B.; Sun, Z. Self-assembled porphyrin and macrocycle derivatives: From synthesis to function. MRS Bull. 2019, 44, 167–171. [Google Scholar] [CrossRef]
- Chatterjee, T.; Shetti, V.S.; Sharma, R.; Ravikanth, M. Heteroatom-containing porphyrin analogues. Chem. Rev. 2017, 117, 3254–3328. [Google Scholar] [CrossRef]
- Soury, R.; Jabli, M.; Saleh, T.A.; Abdul-Hassan, W.S.; EricSaint-Aman; Loiseau, F.; Philouze, C.; Bujacz, A.; Nasri, H. Synthesis of the (4,4′-bipyridine)(5,10,15,20-tetratolylphenylporphyrinato)zinc(II) bis(4,4-bipyridine) disolvate dehydrate and evaluation of its interaction with organic dyes. J. Mol. Liq. 2018, 264, 134–142. [Google Scholar] [CrossRef]
- Soury, R.; Jabli, M.; Saleh, T.A.; Kechich, A.; Loiseau, F.; Saint-Aman, E.; Nasri, H. Degradation of Calmagite by dichloride(5,10,15,20 tetraphenylporphyrinato) antimony hexachloridoantimonate:[Sb(TPP)Cl2] SbCl6. Inorg. Chem. Commun. 2019, 104, 54–60. [Google Scholar] [CrossRef]
- Ptaszyńska, A.A.; Trytek, M.; Borsuk, G.; Buczek, K.; Rybicka-Jasińska, K.; Gryko, D. Porphyrins inactivate Nosema spp. microsporidia. Sci. Rep. 2018, 8, 5523. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Chen, H.; Qin, J.; Wei, C.; Liang, J.; Liu, T.; Kong, D. Thermosensitive porphyrin-incorporated hydrogel with four-arm PEG-PCL copolymer(II): Doxorubicin loaded hydrogel as a dual fluorescent drug delivery system for simultaneous imaging tracking in vivo. Drug Deliv. 2017, 24, 641–650. [Google Scholar] [CrossRef]
- Dini DCalvete, M.J.; Hanack, M. Nonlinear optical materials for the smart filtering of optical radiation. Chem. Rev. 2016, 116, 13043–13233. [Google Scholar] [CrossRef]
- Zucca, P.; Neves, C.M.B.; Simões, M.M.Q.; Neves, M.D.G.P.M.S.; Cocco, G.; Sanjust, E. Immobilized lignin peroxidase-like metalloporphyrins as reusable catalysts in oxidative bleaching of industrial dyes. Molecules 2016, 21, 964. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, S.V.; Srivatsan, A.; Reynolds, K.Y.; Gao, F.; Zhang, Y.; Heyes, C.D.; Pandey, R.K.; Chen, J. Understanding the interactions between porphyrin-containing photosensitizers and polymer-coated nanoparticles in model biological environments. J. Colloid Interface Sci. 2016, 461, 225–231. [Google Scholar] [CrossRef]
- Huang, H.; Song, W.; Rieffel, J.; Lovell, J.F. Emerging applications of porphyrins in photomedicine. Front. Phys. 2015, 3, 23. [Google Scholar] [CrossRef]
- Mouraviev, V.; Venkatraman, T.N.; Tovmasyan, A.; Kimura, M.; Tsivian, M.; Mouravieva, V.; Polascik, T.J.; Wang, H.; Amrhein, T.J.; Batinic-Haberle, I.; et al. Mn porphyrins as novel molecular magnetic resonance imaging contrast agents. J. Endourol. 2012, 26, 1420–1424. [Google Scholar] [CrossRef]
- Soury, R.; Alenezi, K.M.; Turowska-Tyrk, I.; Loiseau, F. Synthesis, Photophysical, Cyclic Voltammetry Properties, and Molecular structure Study Of Novel (5,10,15,20-tetratolylphenyl porphyrinato) zinc(II) with pyrazine. J. King Saud Univ. Sci. 2021, 33, 101364. [Google Scholar] [CrossRef]
- Ou, Z.; Erben, C.; Autret, M.; Will, S.; Rosen, D.; Lex, J.; Vogel, E.; Kadish, K.M. Manganese (III) and manganese (IV) corroles: Synthesis, spectroscopic, electrochemical and X-ray structural characterization. J. Porphyr. Phthalocyanines 2005, 9, 398–412. [Google Scholar] [CrossRef]
- He, M.; Li, X.; Liu, Y.; Li, J. Axial Mn−CCN Bonds of Cyano Manganese(II) Porphyrin Complexes: Flexible and Weak. Inorg. Chem. 2016, 55, 5871–5879. [Google Scholar] [CrossRef] [PubMed]
- Harhouri, W.; Dhifaoui, S.; Denden, Z.; Roisnel, T.; Blanchard, F.; Nasri, H. Synthesis, spectroscopic characterizations, cyclic voltammetry investigation and molecular structure of the high-spin manganese(III) trichloroacetato mesotetraphenylporphyrin and meso-tetra-(para-bromophenyl)porphyrin complexes. Polyhedron 2017, 130, 127–135. [Google Scholar] [CrossRef]
- Jiang, S.; Lyu, Y.; Zhang, J.; Zhang, X.; Yuan, M.; Zhihan, Z.; Gang, J.; Bai, H.; Wei, X.; Huan, Y. Continuous adsorption removal of organic pollutants from wastewater in a UiO-66 fixed bed column. J. Environ. Chem. Eng. 2024, 12, 111951. [Google Scholar] [CrossRef]
- Sharma, B.; Dangi, A.K.; Shukla, P. Contemporary enzyme based technologies for bioremediation: A review. J. Environ. Manag. 2018, 210, 10–22. [Google Scholar] [CrossRef]
- Khan, I.; Tariq, M.R.; Ahmad, M.; Khan, I.; Zhang, B. Strategically coupled tungsten oxide-zinc oxide photosystems for solar-driven nerve agent simulant degradation and hydrogen evolution. Sep. Purif. Technol. 2025, 354 Pt 4, 129078. [Google Scholar] [CrossRef]
- Farinelli, G.; Di Luca, A.; Kaila, V.R.I.; MacLachlan, M.J.; Tiraferri, A. Fe-chitosan complexes for oxidative degradation of emerging contaminants in water: Structure, activity, and reaction mechanism. J. Hazard. Mater. 2021, 408, 124662. [Google Scholar] [CrossRef]
- Tabaï, A.; Bechiri, O.; Abbessi, M. Degradation of organic dye using a new homogeneous Fenton-like system based on hydrogen peroxide and a recyclable Dawson-type heteropolyanion. Int. J. Ind. Chem. 2017, 8, 83–89. [Google Scholar] [CrossRef]
- Samarghandi, M.R.; Dargahi, A.; Zolghadr Nasab, H.; Ghahramani, E.; Salehi, S. Degradation of azo dye Acid Red 14 (AR14) from aqueous solution using H2O2/nZVI and S2O82–/nZVI processes in the presence of UV irradiation. Water Environ. Res. 2020, 92, 1173–1183. [Google Scholar] [CrossRef]
- Cao, Y.; Sheriff, T.S. The oxidative degradation of Calmagite using added and in situ generated hydrogen peroxide catalyzed by manganese(II) ions: Efficacy evaluation, kinetics study and degradation pathways. Chemosphere 2022, 286, 13179. [Google Scholar] [CrossRef]
- Mora-Bonilla, K.Y.; Macías-Quiroga, I.F.; Sanabria-González, N.R.; Dávila-Arias, M.T. Bicarbonate-Activated Hydrogen Peroxide for an Azo Dye Degradation: Experimental Design. Chem. Eng. 2023, 7, 86. [Google Scholar] [CrossRef]
- Jabli, M.; Sebeia, N.; Bchetnia, A. Synthesis and Characterization of Pectin-Manganese Oxide and Pectin-Tin Oxide Nanocomposites: Application to the Degradation of Calmagite in Water. J. Polym. Environ. 2023, 31, 4326–4337. [Google Scholar] [CrossRef]
- La, D.D.; Tran, C.V.; Hoang, N.T.T.; Ngoc, M.D.D.; Nguyen, T.H.P.; Vo, H.T.; Ho, P.H.; Nguyen, T.A.; Bhosale, S.V.; Nguyen, X.C.; et al. Efficient photocatalysis of organic dyes under simulated sunlight irradiation by a novel magnetic CuFe2O4-porphyrin nanofiber hybrid material fabricated via self-assembly. Fuel 2010, 281, 118655. [Google Scholar] [CrossRef]
- Vo, H.T.; Nguyen, A.T.; Van Tran, C.; Nguyen, S.X.; Tung, N.T.; Pham, D.T.; Nguyen, D.D.; La, D.D. Self-Assembly of Porphyrin Nanofibers on ZnO Nanoparticles for the Enhanced Photocatalytic Performance for Organic Dye Degradation. ACS Omega 2021, 6, 23203–23210. [Google Scholar] [CrossRef] [PubMed]
- Ghoochani, S.H.; Heshmati, A.; Hosseini, H.A.; Darroudi, M. Adsorption and photocatalytic properties of porphyrin loaded MIL-101 (Cr) in methylene blue degradation. Environ. Sci. Pollut. Res. 2022, 29, 34406–34418. [Google Scholar] [CrossRef] [PubMed]
- El-Khalafy, S.H.; Azaam, M.M.; El-nshar, E.M.; Kamoun, E.A.; Kenawy, E.R. Catalytic activity of Co (II)-porphyrin anchored onto polymeric support of electrospun polyacrylonitrile nanofiber: Synthesis and efficient green oxidation of crystal violet dye with hydrogen peroxide. Biomass Convers. Biorefinery 2023, 1–12. [Google Scholar] [CrossRef]
- Reddy, M.P.; Venugopal, A.; Subrahmanyam, M. Hydroxyapatite photocatalytic degradation of calmagite (an azo dye) in aqueous suspension. Appl. Catal. B Environ. 2007, 69, 164–170. [Google Scholar] [CrossRef]
- Kurochkin, I.Y.; Olshevskaya, V.A.; Zaitsev, A.; Girichevac, N.; Girichev, G. Vibrational Spectra of 5,10,15,20-Tetraphenylporphyrin (H2TPP) and Platinum(II) 5,10,15,20 Tetra(phenyl/pentafluorophenyl)porphyrins (PtTPP and PtTF5PP). Macroheterocycles 2021, 14, 334–341. [Google Scholar] [CrossRef]
- Richeter, S.; Larionova, J.; Long, J.; van Der Lee, A.; Leclercq, D. Syntheses, Crystal Structures, and Magnetic Properties of MnIII(L)phosphinate Complexes (L = mesotetraphenylporphyrin or Schiff base). Eur. J. Inorg. Chem. 2013, 2013, 3206–3216. [Google Scholar] [CrossRef]
- Harhouri, W.; Mchiri, C.; Najmudin, S.; Bonifácio, C.; Nasri, H. Synthesis, FT–IR characterization and crystal structure of aqua(5,10,15,20 tetraphenyl-porphyrinato-j4N) manganese(III) trifluoromethanesulfonate. Acta Cryst. Sect. E Crystallogr. Commun. 2016, 72, 720–723. [Google Scholar] [CrossRef]
- Li, X.; Gurzadyan, G.G.; Gelin, M.F.; Domcke, W.; Gong, C.; Liu, J.; Sun, L. Enhanced S2 fluorescence from a free-base tetraphenylporphyrin surface-mounted metal organic framework. J. Phys. Chem. C 2018, 122, 23321–23328. [Google Scholar] [CrossRef]
- Pérez-Morales, M.; de Miguel, G.; Bolink, H.J.; Martín-Romero, M.T.; Camacho, L. Soret emission from water-soluble porphyrin thin films: Effect on the electroluminescence response. J. Mater. Chem. 2009, 19, 4255–4260. [Google Scholar] [CrossRef]
- Liang, X.; Zhao, J.; Ren, W.; Yuan, Y.; Guo, W.; Li, J. Does one hydrogen atom matter? Crystal structures and spectroscopic studies of five-coordinate manganese porphyrin complexes. Dye. Pigment. 2023, 211, 111068. [Google Scholar] [CrossRef]
- Polat, O.; Caglar, M.; Coskun, F.M.; Coskun, M.; Caglar, Y.; Turut, A. An investigation of the optical properties of YbFe1-xIrxO3-ẟ (x=0, 0.01 and 0.10) orthoferrite films. Vacuum 2020, 173, 109124. [Google Scholar] [CrossRef]
- Tauc, J.; Grigorovici, R.; Vancu, A. Optical properties and electronic structure of amorphous germanium. Phys. Stat. Sol. 2020, 15, 627–637. [Google Scholar] [CrossRef]
- Soury, R.; Chaabene, M.; Jabli, M.; Saleh, T.A.; Chaabane, R.B.; Saint-Aman, E.; Loiseau, F.; Philouze, C.; Allouche, A.-R.; Nasri, H. meso-tetrakis(3,4,5-trimethoxyphenyl)porphyrin derivatives: Synthesis, spectroscopic characterizations and adsorption of NO2. Chem. Eng. J. 2019, 375, 122005. [Google Scholar] [CrossRef]
- Soury, R.; Jabli, M.; Alenezi, K.M.; Chaabene, M.; Haque, A.; El Moll, H.; Solladié, N. A novel meso-tetrakis (2,4,6-trimethylphenyl) porphyrinato ([Zn (TMP)(4,4′-bpy)]) complex: Synthesis, characterization, and application. Inorg. Chem. Commun. 2021, 130, 108716. [Google Scholar] [CrossRef]
- Muniappan, S.; Lipstman, S.; George, S.; Goldberg, I. Porphyrin Framework Solids. Synthesis and Structure of Hybrid Coordination Polymers of Tetra(carboxyphenyl)porphyrins and Lanthanide-Bridging Ions. Inorg. Chem. 2007, 46, 5544–5554. [Google Scholar] [CrossRef]
- Hikal, W.M.; Harmon, H.J. Photocatalytic self-assembled solid porphyrin microcrystals from water-soluble porphyrins: Synthesis, characterization and application. Polyhedron 2009, 28, 113–120. [Google Scholar] [CrossRef]
- Rana, M.S.; Rahim, M.A.; Mosharraf, M.P.; Tipu, M.F.K.; Chowdhury, J.A.; Haque, M.R.; Kabir, S.; Amran, M.S.; Chowdhury, A.A. Morphological, spectroscopic and thermal analysis of cellulose nanocrystals extracted from waste jute fiber by acid hydrolysis. Polymers 2023, 15, 1530. [Google Scholar] [CrossRef]
- Hassani, R.; Jabli, M.; Kacem, Y.; Marrot, J.; DPrim, D.; Hassine, B.B. New Palladium-Oxazoline Complexes: Synthesis and Evaluation of the Optical Properties and the catalytic power during the oxidation of textile dyes. Beilstein J. Org. Chem. 2015, 11, 1175–1186. [Google Scholar] [CrossRef]
- Aloui, F.; Jabli, M.; Hassine, B.B. Synthesis and characterization of a new racemic helically chiral Ru (II) complex and its catalytic degradation of Eriochrome Blue Black B. Synth. Commun. 2012, 42, 3620–3631. [Google Scholar] [CrossRef]
- Aloui, F.; Jabli, M.; Hassine, B.B. New helically chiral metallated complexes: Characterization and catalytic activity. Synth. Commun. 2013, 43, 277–291. [Google Scholar] [CrossRef]
- Banat, S.; Al-Asheh, M.; Al-Rawashdeh, M.; Nusair, M. Photodegradation of methylene blue dye by the UV/H2O2 and UV/acetone oxidation processes. Desalination 2005, 181, 225–232. [Google Scholar] [CrossRef]
- Ltaief, S.; Jabli, M.; Abdessalem, S.B. Immobilization of copper oxide nanoparticles onto chitosan biopolymer: Application to the oxidative degradation of Naphthol blue black. Carbohydr. Polym. 2021, 261, 117908. [Google Scholar] [CrossRef]
- Santana, C.S.; Ramos, M.D.N.; Velloso, C.C.V.; Aguiar, A. Kinetic evaluation of dye decolorization by Fenton processes in the presence of 3-hydroxyanthranilic acid. Int. J. Environ. Res. Public Health 2019, 16, 1602. [Google Scholar] [CrossRef]
- Narayanan, R.K.; Devaki, S.J.; Rao, T.P. Robust fibrillar nanocatalysts based on silver nanoparticle-entrapped polymeric hydrogels. Appl. Catal. A Gen. 2014, 483, 31–40. [Google Scholar] [CrossRef]
- Wasilewska, M.; Marczewski, A.W.; Deryło-Marczewska, A.; Sternik, D. Nitrophenols removal from aqueous solutions by activated carbon–temperature effect of adsorption kinetics and equilibrium. J. Environ. Chem. Eng. 2021, 9, 105459. [Google Scholar] [CrossRef]
- Jabli, M.; Touati, R.; Kacem, Y.; Hassine, B.B. New chitosan microspheres supported [bis (2-methylallyl)(1, 5-cyclooctadienne) ruthenium (II)] as efficient catalysts for colour degradation in the presence of hydrogen peroxide. J. Text. Inst. 2012, 103, 434–450. [Google Scholar] [CrossRef]
- Guibal, E.; Vincent, T. Chitosan-supported palladium catalyst. IV. Influence of temperature on nitrophenol degradation and thermodynamic parameters. J. Environ. Manag. 2004, 71, 15–23. [Google Scholar] [CrossRef]
- Lea, J.; Adesina, A.A. Oxidative degradation of 4-nitrophenol in UV-illuminated titania suspension. J. Chem. Technol. Biotechnol. 2001, 76, 803–810. [Google Scholar] [CrossRef]
m/m (%) | |
---|---|
Elements | [Mn(TPP)Cl] |
Mn | 70.59 |
Cl | 28.60 |
Co | 0.706 |
Nb | 0.044 |
Mo | 0.035 |
In | 0.016 |
Kinetics | Zero-Order | First-Order | Second-Order | |||
---|---|---|---|---|---|---|
K0 | R2 | K1 | R2 | K2 | R2 | |
H2O2 amount (mL) | ||||||
20 | 1.43 | 0.86 | 0.06 | 0.99 | 0.44 | 0.96 |
40 | 1.2 | 0.73 | 0.14 | 0.95 | 3.72 | 0.88 |
60 | 1.24 | 0.75 | 0.11 | 0.96 | 0.60 | 0.93 |
80 | 1.30 | 0.76 | 0.09 | 0.97 | 0.28 | 0.93 |
Calmagite concentration (mg/mL) | ||||||
30 | 1.2 | 0.73 | 0.14 | 0.95 | 3.72 | 0.88 |
40 | 1.4 | 0.82 | 0.07 | 0.98 | 0.58 | 0.94 |
50 | 1.49 | 0.87 | 0.05 | 0.96 | 0.34 | 0.93 |
60 | 1.58 | 0.90 | 0.03 | 0.98 | 0.61 | 0.92 |
Temperature (°C) | ||||||
20 | 1.20 | 0.73 | 0.15 | 0.95 | 3.72 | 0.88 |
40 | 1.12 | 0.67 | 0.18 | 0.96 | 21.66 | 0.90 |
50 | 1.04 | 0.59 | 0.23 | 0.93 | 30.29 | 0.93 |
Thermodynamic parameters | ||||||
Temperature (°C) | Ea (Kj/mol) | ΔS° (j/mol/K) | ΔH° (kj/mol) | ΔG° (kj/mol) | ||
20 | 56.33 | |||||
40 | 10.57 | −163.3 | 8.46 | 59.60 | ||
50 | 61.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soury, R.; Elamri, A.; El Oudi, M.; Alenezi, K.M.; Jabli, M.; Al Otaibi, A.; Alanazi, A.A.; Albadri, A.E.A.E. Design of a New Catalyst, Manganese(III) Complex, for the Oxidative Degradation of Azo Dye Molecules in Water Using Hydrogen Peroxide. Molecules 2024, 29, 5217. https://doi.org/10.3390/molecules29215217
Soury R, Elamri A, El Oudi M, Alenezi KM, Jabli M, Al Otaibi A, Alanazi AA, Albadri AEAE. Design of a New Catalyst, Manganese(III) Complex, for the Oxidative Degradation of Azo Dye Molecules in Water Using Hydrogen Peroxide. Molecules. 2024; 29(21):5217. https://doi.org/10.3390/molecules29215217
Chicago/Turabian StyleSoury, Raoudha, Adel Elamri, Mabrouka El Oudi, Khalaf M. Alenezi, Mahjoub Jabli, Ahmed Al Otaibi, Abdulaziz A. Alanazi, and Abuzar E. A. E. Albadri. 2024. "Design of a New Catalyst, Manganese(III) Complex, for the Oxidative Degradation of Azo Dye Molecules in Water Using Hydrogen Peroxide" Molecules 29, no. 21: 5217. https://doi.org/10.3390/molecules29215217
APA StyleSoury, R., Elamri, A., El Oudi, M., Alenezi, K. M., Jabli, M., Al Otaibi, A., Alanazi, A. A., & Albadri, A. E. A. E. (2024). Design of a New Catalyst, Manganese(III) Complex, for the Oxidative Degradation of Azo Dye Molecules in Water Using Hydrogen Peroxide. Molecules, 29(21), 5217. https://doi.org/10.3390/molecules29215217