Electronic Structure of Rh and Ir Single Atom Catalysts Supported on Defective and Doped ZnO: Assessment of Their Activity Towards CO Oxidation
Abstract
1. Introduction
2. Computational Details
3. Results and Discussion
3.1. Substitutional Incorporation of Rh and Ir Atoms on the ZnO(0001) Surface
3.2. Rh and Ir Adsorbed on Impurity-Doped ZnO(0001)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SACs | Single-atom catalysts |
DFT | Density Functional Theory |
PBE | Perdew–Burke–Ernzerhof exchange correlation potential |
PAW | projector-augmented-wave scheme |
PDOS | Partial Density of States |
CDD | Charge density difference |
SM | Supplementary Material |
References
- Chen, Z.; Liu, J.; Koh, M.J.; Loh, K.P. Single-Atom Catalysis: From Simple Reactions to the Synthesis of Complex Molecules. Adv. Mater. 2021, 34, 2103882. [Google Scholar] [CrossRef] [PubMed]
- Di Liberto, G.; Cipriano, L.A.; Pacchioni, G. Single Atom Catalysts: What Matters Most, the Active Site or The Surrounding? ChemCatChem 2022, 14, e202200611. [Google Scholar] [CrossRef]
- Wang, A.; Li, J.; Tao, Z. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81. [Google Scholar] [CrossRef]
- Qiao, B.; Liu, J.; Wang, Y.; Lin, Q.; Liu, X.; Wang, A.; Li, J.; Zhang, T.; Liu, J.J. Highly Efficient Catalysis of Preferential Oxidation of CO in H2-Rich Stream by Gold Single-Atom Catalysts. ACS Catal. 2015, 5, 6249–6254. [Google Scholar] [CrossRef]
- Jones, J.; Xiong, H.; DeLaRiva, A.; Peterson, E.J.; Pham, H.N.; Challa, S.R.; Qi, G.; Oh, S.H.; Wiebenga, M.H.; Hernandez, X.I.P.; et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 2016, 353, 150–154. [Google Scholar] [CrossRef] [PubMed]
- Gawish, M.A.; Drmosh, Q.A.; Onaizi, S.A. Single Atom Catalysts: An Overview of the Coordination and Interactions with Metallic Supports. Chem. Rec. 2022, 22, e202100328. [Google Scholar] [CrossRef]
- Ma, F.; Chang, Q.; Yin, Q.; Sui, Z.; Zhou, X.; Chen, D.; Zhu, Y. Rational screening of single-atom-doped ZnO catalysts for propane dehydrogenation from microkinetic analysis. Catal. Sci. Technol. 2020, 10, 4938–4951. [Google Scholar] [CrossRef]
- Han, Z.; Gao, Y. Water Adsorption and Dissociation on Ceria-Supported Single-Atom Catalysts: A First-Principles DFT+U Investigation. Chemistry 2016, 22, 2092–2099. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wang, A.; Qiao, B.; Li, J.; Liu, J.J.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748. [Google Scholar] [CrossRef]
- Lang, R.; Du, X.; Huang, Y.; Jiang, X.; Zhang, Q.; Guo, Y.; Liu, K.; Qiao, B.; Wang, A.; Zhang, T. Single-Atom Catalysts Based on the Metal-Oxide Interaction. Chem. Rev. 2020, 120, 11986–12043. [Google Scholar] [CrossRef]
- Li, R.; Luo, L.; Ma, X.; Wu, W.; Wang, M.; Zeng, J. Single atoms supported on metal oxides for energy catalysis. J. Mater. Chem. A 2021, 10, 5717–5742. [Google Scholar] [CrossRef]
- Liu, J.J.; Duan, S.; Xu, J.; Qiao, B.; Lou, Y. Catalysis by Supported Single Metal Atoms. Microsc. Microanal. 2016, 22, 860–861. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, L.; Sterbinsky, G.E.; Mukherjee, D.; Unocic, R.R.; Tait, S.L. Pt-Ligand single-atom catalysts: Tuning activity by oxide support defect density. Catal. Sci. Technol. 2020, 10, 3353–3365. [Google Scholar] [CrossRef]
- Farpón, M.G.; Henao, W.; Plessow, P.N.; Andrés, E.; Arenal, R.; Marini, C.; Agostini, G.; Studt, F.; Prieto, G. Rhodium Single-Atom Catalyst Design through Oxide Support Modulation for Selective Gas-Phase Ethylene Hydroformylation. Angew. Chem. (Int. Ed.) 2022, 62, e202214048. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, W.; Wang, S.; Gao, Z.; Luo, Z.; Wang, X.; Zeng, R.; Li, A.; Li, H.; Wang, M.; et al. Atomic-level insights in optimizing reaction paths for hydroformylation reaction over Rh/CoO single-atom catalyst. Nat. Commun. 2016, 7, 14036. [Google Scholar] [CrossRef]
- Gu, X.K.; Qiao, B.; Huang, C.; Ding, W.; Sun, K.; Zhan, E.; Zhang, T.; Liu, J.J.; Li, W. Supported Single Pt1/Au1 Atoms for Methanol Steam Reforming. ACS Catal. 2014, 4, 3886–3890. [Google Scholar] [CrossRef]
- Humayun, M.H.; Israr, M.; Li, Z.; Luo, W.; Wang, C. Metal oxides confine single atoms toward efficient thermal catalysis. Coord. Chem. Rev. 2023, 488, 215189. [Google Scholar] [CrossRef]
- Shi, J.; Zhao, X.; Zhang, L.; Xue, X.; Guo, Z.; Guo, Z.; Gao, Y.; Gao, Y.; Li, S.F. An oxidized magnetic Au single atom on doped TiO2(110) becomes a high performance CO oxidation catalyst due to the charge effect. J. Mater. Chem. 2017, 5, 19316–19322. [Google Scholar] [CrossRef]
- Searles, K.; Chan, K.W.; Burak, J.A.M.; Zemlyanov, D.Y.; Safonova, O.V.; Copéret, C. Highly Productive Propane Dehydrogenation Catalyst Using Silica-Supported Ga-Pt Nanoparticles Generated from Single-Sites. J. Am. Chem. Soc. 2018, 140, 11674–11679. [Google Scholar] [CrossRef]
- Rochlitz, L.; Searles, K.; Alfke, J.L.; Zemlyanov, D.Y.; Safonova, O.V.; Copéret, C. Silica-supported, narrowly distributed, subnanometric Pt–Zn particles from single sites with high propane dehydrogenation performance. Chem. Sci. 2019, 11, 1549–1555. [Google Scholar] [CrossRef]
- Rochlitz, L.; Fischer, J.W.A.; Pessemesse, Q.; Clark, A.H.; Ashuiev, A.; Klose, D.; Payard, P.; Jeschke, G.; Copéret, C. Ti-Doping in Silica-Supported PtZn Propane Dehydrogenation Catalysts: From Improved Stability to the Nature of the Pt–Ti Interaction. JACS Au 2023, 3, 1939–1951. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Lang, R.; Tang, H.; Xu, J.; Gu, X.K.; Qiao, B.; Liu, J.J. Superior activity of Rh1/ZnO single-atom catalyst for CO oxidation. Chin. J. Catal. 2019, 40, 1847–1853. [Google Scholar] [CrossRef]
- Butburee, T.; Prasert, A.; Rungtaweevoranit, B.; Khemthong, P.; Mano, P.; Youngjan, S.; Phanthasri, J.; Namuangruk, S.; Faungnawakij, K.; Zhang, L.; et al. Engineering Lewis-Acid Defects on ZnO Quantum Dots by Trace Transition-Metal Single Atoms for High Glycerol-to-Glycerol Carbonate Conversion. Small 2024, 2403661. [Google Scholar] [CrossRef]
- Wang, Y.F.; Qi, M.Y.; Conte, M.; Tang, Z.R.; Xu, Y.J. Bimetallic Single Atom/Nanoparticle Ensemble for Efficient Photochemical Cascade Synthesis of Ethylene from Methane. Angew. Chem. Int. Ed. 2024, 63, e202407791. [Google Scholar] [CrossRef]
- Jacobo-Fernandez, J.M.; Corona-García, C.A.; Ponce-Perez, R.; Borbon-Nunez, H.A.; Hoat, D.M.; Reyes-Serrato, A.; Guerrero-Sanchez, J. Spin-Polarized Total-Energy Calculations on Designing Magnetic Single-Atom Catalysts on the ZnO(000-1) Surface with Pt and Pd. ACS Appl. Nano Mater. 2023, 6, 16740–16748. [Google Scholar] [CrossRef]
- Mohite, S.V.; Kim, S.; Bae, J.; Jeong, H.J.; Kim, T.W.; Choi, J.; Kim, Y. Defects Healing of the ZnO Surface by Filling with Au Atom Catalysts for Efficient Photocatalytic H2 Production. Small 2024, 20, 2304393. [Google Scholar] [CrossRef]
- Ghosh, T.K.; Nair, N.N. Rh1/γ-Al2O3 Single-Atom Catalysis of O2 Activation and CO Oxidation: Mechanism, Effects of Hydration, Oxidation State, and Cluster Size. ChemCatChem 2013, 5, 1811–1821. [Google Scholar] [CrossRef]
- Albrahim, M.; Shrotri, A.; Unocic, R.R.; Hoffman, A.S.; Bare, S.R.; Karim, A.M. Size-Dependent Dispersion of Rhodium Clusters into Isolated Single Atoms at Low Temperature and the Consequences for CO Oxidation Activity. Angew. Chem. 2023, 62, e202308002. [Google Scholar] [CrossRef]
- Song, W.; Jansen, A.P.J.; Hensen, E.J.M. A computational study of the influence of the ceria surface termination on the mechanism of CO oxidation of isolated Rh atoms. Faraday Discuss. 2013, 162, 281–292. [Google Scholar] [CrossRef] [PubMed]
- García-Vargas, C.E.; Pereira-Hernández, X.I.; Jiang, D.; Alcala, R.; DeLaRiva, A.; Datye, A.K.; Wang, Y. Highly Active and Stable Single Atom Rh1/CeO2 Catalyst for CO Oxidation during Redox Cycling. ChemCatChem 2023, 15, e202201210. [Google Scholar] [CrossRef]
- Zhang, B.; Asakura, H.; Yan, N. Atomically Dispersed Rhodium on Self-Assembled Phosphotungstic Acid: Structural Features and Catalytic CO Oxidation Properties. Ind. Eng. Chem. Res. 2017, 56, 3578–3587. [Google Scholar] [CrossRef]
- Hülsey, M.J.; Zhang, B.; Ma, Z.; Asakura, H.; Do, D.; Chen, W.; Tanaka, T.; Zhang, P.; Wu, Z.; Yan, N. In situ spectroscopy-guided engineering of rhodium single-atom catalysts for CO oxidation. Nat. Commun. 2019, 10, 1330. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.L.; Sun, M.J.; Liu, C.G. CO oxidation on the phosphotungstic acid supported Rh single–atom catalysts via Rh–assisted Mans–van Krevelen mechanism. Mol. Catal. 2019, 462, 37–45. [Google Scholar] [CrossRef]
- Xu, G.; Liu, F.; Lu, Z.; Talib, S.H.; Ma, D.; Yang, Z. Design of promising single Rh atom catalyst for CO oxidation based on Graphdiyne sheets. Phys. E-Low Syst. Nanostructures 2021, 130, 114676. [Google Scholar] [CrossRef]
- Guan, H.; Lin, J.; Qiao, B.; Yang, X.; Li, L.; Miao, S.; Liu, J.J.; Wang, A.; Wang, X.; Zhang, T. Catalytically Active Rh Sub-Nanoclusters on TiO2 for CO Oxidation at Cryogenic Temperatures. Angew. Chem. 2016, 55, 2820–2824. [Google Scholar] [CrossRef]
- Tang, Y.; Asokan, C.; Xu, M.; Graham, G.W.; Pan, X.; Christopher, P.; Li, J.; Sautet, P. Rh single atoms on TiO2 dynamically respond to reaction conditions by adapting their site. Nat. Commun. 2019, 10, 4488. [Google Scholar] [CrossRef]
- Li, F.; Li, Y.; Zeng, X.C.; Chen, Z. Exploration of High-Performance Single-Atom Catalysts on Support M1/FeOx for CO Oxidation via Computational Study. ACS Catal. 2015, 5, 544–552. [Google Scholar] [CrossRef]
- Amsler, J.; Sarma, B.B.; Agostini, G.; Prieto, G.; Plessow, P.N.; Studt, F. Prospects of Heterogeneous Hydroformylation with Supported Single Atom Catalysts. J. Am. Chem. Soc. 2020, 142, 5087–5096. [Google Scholar] [CrossRef]
- Jurado, L.; Esvan, J.; Luque-Álvarez, L.A.; Bobadilla, L.F.; Odriozola, J.; Posada-Pérez, S.; Poater, A.; Comas-Vives, A.; Axet, M.R. Highly dispersed Rh single atoms over graphitic carbon nitride as a robust catalyst for the hydroformylation reaction. Catal. Sci. Technol. 2023, 13, 1425–1436. [Google Scholar] [CrossRef]
- Wang, C.; Gu, X.K.; Yan, H.; Lin, Y.; Li, J.; Liu, D.; Li, W.; Lu, J. Water-Mediated Mars–Van Krevelen Mechanism for CO Oxidation on Ceria-Supported Single-Atom Pt1 Catalyst. ACS Catal. 2017, 7, 887–891. [Google Scholar] [CrossRef]
- Lang, R.; Li, T.; Matsumura, D.; Miao, S.; Ren, Y.; Cui, Y.; Tan, Y.; Qiao, B.; Li, L.; Wang, A.; et al. Hydroformylation of Olefins by a Rhodium Single-Atom Catalyst with Activity Comparable to RhCl(PPh3)3. Angew. Chem. 2016, 55, 16054–16058. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Chen, C.; Shen, T.; Guo, X.; Yang, C.; Wang, D.; Zhu, Y. Hollow Carbon Nanorod Confined Single Atom Rh for Direct Formic Acid Electrooxidation. Adv. Sci. 2022, 9, 2205299. [Google Scholar] [CrossRef] [PubMed]
- Matsubu, J.C.; Yang, V.N.; Christopher, P. Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity. J. Am. Chem. Soc. 2015, 137, 3076–3084. [Google Scholar] [CrossRef]
- Lin, J.; Wang, A.; Qiao, B.; Liu, X.; Yang, X.; Wang, X.; Liang, J.; Li, J.; Liu, J.J.; Tao, Z. Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction. J. Am. Chem. Soc. 2013, 135, 15314–15317. [Google Scholar] [CrossRef]
- Liang, J.X.; Lin, J.; Yang, X.; Wang, A.; Qiao, B.; Liu, J.J.; Zhang, T.; Li, J. Theoretical and Experimental Investigations on Single-Atom Catalysis: Ir1/FeOx for CO Oxidation. J. Phys. Chem. C 2014, 118, 21945–21951. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, J.; Yu, L.; Kovarik, L.; Zhang, X.; Hoffman, A.S.; Gallo, A.; Bare, S.R.; Sokaras, D.; Kroll, T.; et al. Identification of the active complex for CO oxidation over single-atom Ir-on-MgAl2O4 catalysts. Nat. Catal. 2018, 2, 149–156. [Google Scholar] [CrossRef]
- Liang, J.X.; Lin, J.; Liu, J.J.; Wang, X.; Zhang, T.; Li, J. Dual metal active sites in an Ir1/FeOx single-atom catalyst: A redox mechanism for the water-gas-shift reaction. Angew. Chem. 2020, 59, 12868. [Google Scholar] [CrossRef]
- Akça, A.; Karaman, O.; Karaman, C.; Atar, N.; Yola, M.L. A comparative study of CO catalytic oxidation on the single vacancy and di-vacancy graphene supported single-atom iridium catalysts: A DFT analysis. Surf. Interfaces 2021, 25, 101293. [Google Scholar] [CrossRef]
- Chen, L.; Ali, I.S.; Sterbinsky, G.E.; Zhou, X.; Wasim, E.; Tait, S.L. Ligand-coordinated Ir single-atom catalysts stabilized on oxide supports for ethylene hydrogenation and their evolution under a reductive atmosphere. Catal. Sci. Technol. 2021, 11, 2081–2093. [Google Scholar] [CrossRef]
- Lin, S.; Ye, X.; Johnson, R.S.; Guo, H. First-Principles Investigations of Metal (Cu, Ag, Au, Pt, Rh, Pd, Fe, Co, and Ir) Doped Hexagonal Boron Nitride Nanosheets: Stability and Catalysis of CO Oxidation. J. Phys. Chem. C 2013, 117, 17319–17326. [Google Scholar] [CrossRef]
- Chen, M.; Serna, P.; Lu, J.; Gates, B.C.; Dixon, D.A. Molecular models of site-isolated cobalt, rhodium, and iridium catalysts supported on zeolites: Ligand bond dissociation energies. Comput. Theor. Chem. 2015, 1074, 58–72. [Google Scholar] [CrossRef]
- Karmakar, S.; Chowdhury, C.; Datta, A. Noble-Metal-Supported GeS Monolayer as Promising Single-Atom Catalyst for CO Oxidation. J. Phys. Chem. C 2018, 122, 14488–14498. [Google Scholar] [CrossRef]
- Tan, K.; Dixit, M.; Dean, J.; Mpourmpakis, G. Predicting Metal–Support Interactions in Oxide-Supported Single-Atom Catalysts. Ind. Eng. Chem. Res. 2019, 58, 20236–20246. [Google Scholar] [CrossRef]
- Sarma, B.B.; Plessow, P.N.; Agostini, G.; Concepción, P.; Pfänder, N.; Kang, L.; Wang, F.R.; Studt, F.; Prieto, G. Metal-specific reactivity in single-atom-catalysts: CO oxidation on 4d and 5d transition metals atomically dispersed on MgO. J. Am. Chem. Soc. 2020, 142, 14890–14902. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.G.; Zhang, L.L.; Chen, X.M. CO oxidation over the polyoxometalate-supported single-atom catalysts M1/POM (Fe, Co, Mn, Ru, Rh, Os, Ir, and Pt; POM = [PW12O40]3−): A computational study on the activation of surface oxygen species. Dalton Trans. 2019, 48, 6228–6235. [Google Scholar] [CrossRef]
- Qi, R.; Zhu, B.; Han, Z.; Gao, Y. High-Throughput Screening of Stable Single-Atom Catalysts in CO2 Reduction Reactions. ACS Catal. 2022, 12, 8269–8278. [Google Scholar] [CrossRef]
- Wang, R.; Zheng, J.C. ZnO monolayer-supported single atom catalysts for efficient electrocatalytic hydrogen evolution reaction. Phys. Chem. Chem. Phys. PCCP 2024, 26, 5848–5857. [Google Scholar] [CrossRef]
- Xie, X.; Li, Y.; Liu, Z.; Haruta, M.M.; Shen, W. Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 2009, 458, 746–749. [Google Scholar] [CrossRef]
- Freund, H.; Meijer, G.; Scheffler, M.; Schlögl, R.; Wolf, M. CO oxidation as a prototypical reaction for heterogeneous processes. Angew. Chem. 2011, 50, 10064–10094. [Google Scholar] [CrossRef]
- Falsig, H.; Hvolbaek, B.; Kristensen, I.S.; Jiang, T.; Bligaard, T.; Christensen, C.H.; Nørskov, J.K. Trends in the catalytic CO oxidation activity of nanoparticles. Angew. Chem. 2008, 47, 4835–4839. [Google Scholar] [CrossRef]
- Liang, J.X.; Yu, Q.; Yang, X.; Zhang, T.; Li, J. A systematic theoretical study on FeOx-supported single-atom catalysts: M1/FeOx for CO oxidation. Nano Res. 2018, 11, 1599–1611. [Google Scholar] [CrossRef]
- Hulva, J.; Meier, M.; Bliem, R.; Jakub, Z.; Kraushofer, F.; Schmid, M.; Diebold, U.; Franchini, C.; Parkinson, G.S. Unraveling CO adsorption on model single-atom catalysts. Science 2021, 371, 375–379. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Zhou, K.; Zhang, R.; Cui, H.; Yu, Y.; Cui, P.; Song, W.; Cao, C. Regulating the electronic structure through charge redistribution in dense single-atom catalysts for enhanced alkene epoxidation. Nat. Commun. 2023, 14, 2494. [Google Scholar] [CrossRef]
- Meunier, F.C. Relevance of IR Spectroscopy of Adsorbed CO for the Characterization of Heterogeneous Catalysts Containing Isolated Atoms. J. Phys. Chem. C 2021, 125, 21810–21823. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Dudarev, S.L.; Botton, G.A.; Savrasov, S.Y.; Humphreys, C.J.; Sutton, A.P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 1998, 57, 1505–1509. [Google Scholar] [CrossRef]
- Harun, K.; Salleh, N.A.; Deghfel, B.; Yaakob, M.K.; Mohamad, A.A. DFT + U calculations for electronic, structural, and optical properties of ZnO wurtzite structure: A review. Results Phys. 2020, 16, 102829. [Google Scholar] [CrossRef]
- Meyer, B.; Marx, D. Density-functional study of the structure and stability of ZnO surfaces. Phys. Rev. B 2003, 67, 035403. [Google Scholar] [CrossRef]
- Tang, W.; Sanville, E.; Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter 2009, 21, 084204. [Google Scholar] [CrossRef]
- Xue, Z.; Gao, X.; Zhang, Y.; Yan, M.; Xu, J.; Wu, Y. Site-coverage dependent single-atom-layer catalysts toward hydrogen production. Chem Catal. 2023, 3, 100538. [Google Scholar] [CrossRef]
- Lausche, A.C.; Medford, A.J.; Khan, T.S.; Xu, Y.; Bligaard, T.; Abild-Pedersen, F.; Nørskov, J.K.; Studt, F. On the effect of coverage-dependent adsorbate–adsorbate interactions for CO methanation on transition metal surfaces. J. Catal. 2013, 307, 275–282. [Google Scholar] [CrossRef]
- Silva, J.C.M.; dos Santos, E.C.; Heine, T.; De Abreu, H.A.; Duarte, H.A. Oxidation Mechanism of Arsenopyrite in the Presence of Water. J. Phys. Chem. C 2017, 121, 26887–26894. [Google Scholar] [CrossRef]
- Gao, Z.y.; Yang, W.j.; Ding, X.l.; Lv, G.; Yan, W.p. Support effects on adsorption and catalytic activation of O2 in single atom iron catalysts with graphene-based substrates. Phys. Chem. Chem. Phys. 2018, 20, 7333–7341. [Google Scholar] [CrossRef]
- Holland, P.L. Metal–dioxygen and metal–dinitrogen complexes: Where are the electrons? Dalton Trans. 2010, 39, 5415–5425. [Google Scholar] [CrossRef]
- Hess, F.; Staykov, A.T.; Yildiz, B.; Kilner, J. Solid Oxide Fuel Cell Materials and Interfaces. In Handbook of Materials Modeling: Applications: Current and Emerging Materials; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–31. [Google Scholar]
- Moltved, K.A.; Kepp, K.P. The Chemical Bond between Transition Metals and Oxygen: Electronegativity, d-Orbital Effects, and Oxophilicity as Descriptors of Metal–Oxygen Interactions. J. Phys. Chem. C 2019, 123, 18432–18444. [Google Scholar] [CrossRef]
CO | O2 | O | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Rh | Ir | Rh | Ir | Rh | Ir | Rh | Ir | Rh | Ir | Rh | Ir | |
[eV] | −2.74 | −3.85 | −3.43 | −3.97 | −1.47 | −1.97 | −2.01 | −2.07 | −4.77 | −6.68 | −5.80 | −6.40 |
[] | 0.44 | 0.41 | 0.04 | 0.07 | 0.64 | 0.71 | 0.37 | 0.30 | 0.93 | 0.78 | 0.49 | 0.42 |
[] | 0.88 | 0.87 | 0.88 | 0.84 | −0.29 | −0.34 | −0.24 | −0.33 | −0.61 | −0.61 | −0.62 | −0.64 |
[] | −1.10 | −1.10 | −1.11 | −1.11 | −0.06 | −0.07 | −0.18 | −0.13 | – | – | – | – |
[Å] | 1.17 | 1.17 | 1.17 | 1.18 | 1.27 | 1.28 | 1.29 | 1.29 | – | – | – | – |
f [] | 1968.63 | 1985.14 | 1959.92 | 1963.94 | 1323.51 | 1331.73 | 1208.50 | 1234.77 | 851.63 | 908.51 | 793.41 | 870.07 |
Top | Hollow | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
M = Rh | Rh | Al | Cr | Cu | Pd | Rh | Al | Cr | Cu | Pd |
[eV] | −3.94 | −3.58 | −3.79 | −1.81 | −2.38 | −4.28 | −4.99 | −4.74 | −2.74 | −3.34 |
[] | 0.44 | 2.24 | 1.24 | 0.54 | 0.22 | 0.69 | 2.25 | 1.31 | 0.74 | 0.51 |
[] | −0.11 | −0.84 | −0.45 | −0.12 | 0.03 | −0.27 | −0.82 | −0.52 | −0.23 | −0.21 |
M = Ir | Ir | Al | Cr | Cu | Pd | Ir | Al | Cr | Cu | Pd |
[eV] | −4.68 | −4.10 | −4.67 | −2.43 | −3.15 | −5.80 | −5.88 | −5.78 | −3.47 | −4.16 |
[] | 0.33 | 2.29 | 1.24 | 0.61 | 0.29 | 0.70 | 2.29 | 1.31 | 0.78 | 0.54 |
[] | −0.09 | −1.02 | −0.61 | −0.27 | −0.07 | −0.39 | −0.99 | −0.65 | −0.39 | −0.32 |
CO | O2 | O | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Rh–Al | Rh–Cr | Ir–Al | Ir–Cr | Rh–Al | Rh–Cr | Ir–Al | Ir–Cr | Rh–Al | Rh–Cr | Ir–Al | Ir–Cr | |
[eV] | −2.16 | −0.71 | −2.50 | −1.21 | −0.28 | −0.11 | −1.91 | −0.24 | −5.71 | −4.13 | −4.24 | −4.80 |
[] | −0.49 | −0.35 | −0.60 | −0.37 | −0.49 | −0.20 | 0.02 | −0.29 | 0.07 | 0.06 | −0.28 | 0.05 |
[] | 2.30 | 1.32 | 2.34 | 1.35 | 2.26 | 1.31 | 2.42 | 1.30 | 2.43 | 1.26 | 2.31 | 1.27 |
[] | 0.77 | 0.93 | 0.75 | 0.89 | −0.19 | −0.24 | −0.33 | −0.27 | −1.12 | −0.56 | −0.57 | −0.63 |
[] | −1.18 | −1.08 | −1.17 | −1.12 | −0.11 | −0.12 | −0.78 | −0.12 | – | – | – | – |
[Å] | 1.20 | 1.16 | 1.21 | 1.17 | 1.28 | 1.29 | 1.50 | 1.29 | – | – | – | – |
f [] | 1728.48 | 1990.71 | 1730.06 | 1940.57 | 1246.31 | 1247.60 | 695.95 | 1211.55 | 660.75 | 880.38 | 894.30 | 937.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erbasan, A.; Ustunel, H.; Toffoli, D. Electronic Structure of Rh and Ir Single Atom Catalysts Supported on Defective and Doped ZnO: Assessment of Their Activity Towards CO Oxidation. Molecules 2024, 29, 5082. https://doi.org/10.3390/molecules29215082
Erbasan A, Ustunel H, Toffoli D. Electronic Structure of Rh and Ir Single Atom Catalysts Supported on Defective and Doped ZnO: Assessment of Their Activity Towards CO Oxidation. Molecules. 2024; 29(21):5082. https://doi.org/10.3390/molecules29215082
Chicago/Turabian StyleErbasan, Arda, Hande Ustunel, and Daniele Toffoli. 2024. "Electronic Structure of Rh and Ir Single Atom Catalysts Supported on Defective and Doped ZnO: Assessment of Their Activity Towards CO Oxidation" Molecules 29, no. 21: 5082. https://doi.org/10.3390/molecules29215082
APA StyleErbasan, A., Ustunel, H., & Toffoli, D. (2024). Electronic Structure of Rh and Ir Single Atom Catalysts Supported on Defective and Doped ZnO: Assessment of Their Activity Towards CO Oxidation. Molecules, 29(21), 5082. https://doi.org/10.3390/molecules29215082