Biomass-Derived-Carbon-Supported Spinel Cobalt Molybdate as High-Efficiency Electrocatalyst for Oxygen Evolution Reaction
Abstract
1. Introduction
2. Results and Discussion
2.1. Morphological and Structural Characterizations
2.2. OER Activity
3. Experimental Section
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, J.; Ye, Y.; Wang, Z.; Xu, Y.; Gui, L.; He, B.; Zhao, L. Probing dynamic self-Reconstruction on perovskite fluorides toward ultrafast oxygen evolution. Adv. Sci. 2022, 9, 2201916. [Google Scholar] [CrossRef] [PubMed]
- Yi, M.; Ma, J.; Ren, Y.; Wang, H.; Xie, L.; Zhu, Z.; Zhang, J. Ionic Liquid Meets MOF: A facile method to optimize the structure of CoSe2-NiSe2 heterojunctions with N, P, and F triple-doped carbon using ionic liquid for efficient hydrogen evolution and flexible supercapacitors. Adv. Sci. 2023, 10, 2206029. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Zhang, S.; Sun, Y.; Liu, X.; He, G.; Liu, H.; Khan, J.; Zhu, Y.; Su, Y.; Wang, S.; et al. Urchin-like structured MoO2/Mo3P/Mo2C triple-interface heterojunction encapsulated within nitrogen-doped carbon for enhanced hydrogen evolution reaction. Small 2023, 19, 2206472. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Pan, L.; Guo, B.; Huang, Z.F.; Chen, Z.; Wang, L.; Zhang, X.; Guo, Z.; Xu, W.; Loh, K.P.; et al. Tracking the role of defect types in Co3O4 structural evolution and active motifs during oxygen evolution reaction. J. Am. Chem. Soc. 2023, 145, 2271–2281. [Google Scholar] [CrossRef]
- Wang, R.; Wang, X.; Cheng, M.; Wei, Y.; Xia, J.; Lin, H.; Sun, W.; Hu, W. Phosphatizing engineering of heterostructured Rh2P/Rh nanoparticles on doped graphene for efficient hydrogen evolution in alkaline and acidic media. Int. J. Hydrogen Energy 2022, 47, 24669–24679. [Google Scholar] [CrossRef]
- Li, D.; Li, J.; Yi, L.; Wang, R.; Wei, Y.; Fang, C.; Sun, W.; Li, Y.; Hu, W. Ultrathin metal–organic framework hybrid nanosheets enabled active oxygen evolution electrocatalysis in alkaline media. J. Electroanal. Chem. 2022, 922, 116765. [Google Scholar] [CrossRef]
- Qin, M.; Chen, L.; Zhang, H.; Humayun, M.; Fu, Y.; Xu, X.; Xue, X.; Wang, C. Achieving highly efficient pH-universal hydrogen evolution by Mott-Schottky heterojunction of Co2P/Co4N. Chem. Eng. J. 2023, 454, 140230. [Google Scholar] [CrossRef]
- Shi, W.; Zhu, J.; Gong, L.; Feng, D.; Ma, Q.; Yu, J.; Tang, H.; Zhao, Y.; Mu, S. Fe-incorporated Ni/MoO2 hollow heterostructure nanorod arrays for high-efficiency overall water splitting in alkaline and seawater media. Small 2022, 18, 2205683. [Google Scholar] [CrossRef]
- Hou, G.; Jia, X.; Kang, H.; Qiao, X.; Liu, Y.; Li, Y.; Wu, X.; Qin, W. CoNi nano-alloys modified yolk-shell structure carbon cage via Saccharomycetes as carbon template for efficient oxygen evolution reaction. Appl. Catal. B Environ. 2022, 315, 121551. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Z.; Liu, L.; Wang, Y.; Wu, T.; Qin, W.; Liu, S.; Jia, B.; Wu, H.; Zhang, D.; et al. S and O co-coordinated Mo single sites in hierarchically porous tubes from sulfur-enamine copolymerization for oxygen reduction and evolution. J. Am. Chem. Soc. 2022, 144, 20571–20581. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, S.; Ai, Z.; Zhang, Y.; Wang, B.; Zou, R.; Sun, W. Investigation of seawater electrolyte on hydrogen evolution reaction from the perspective of kinetics and energy consumption using an Ni-based electrocatalyst supported on carbon nanotubes. Phys. Chem. Chem. Phys. 2023, 25, 29774–29782. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Shi, F.; Sun, Y.; Yan, L.; Zhang, X.; Wang, B.; Sun, W. Ni-enhanced molybdenum carbide loaded N-doped graphitized carbon as bifunctional electrocatalyst for overall water splitting. Appl. Surf. Sci. 2022, 572, 151480. [Google Scholar] [CrossRef]
- Wu, L.; Shen, X.; Ji, Z.; Yuan, J.; Yang, S.; Zhu, G.; Chen, L.; Kong, L.; Zhou, H. Facile synthesis of medium-entropy metal sulfides as high-efficiency electrocatalysts toward oxygen evolution reaction. Adv. Funct. Mater. 2023, 33, 2208170. [Google Scholar] [CrossRef]
- He, W.; Zhang, R.; Cao, D.; Li, Y.; Zhang, J.; Hao, Q.; Liu, H.; Zhao, J.; Xin, H.L. Super-hydrophilic microporous Ni (OH)x/Ni3S2 heterostructure electrocatalyst for large-current-density hydrogen Evolution. Small 2023, 19, 2205719. [Google Scholar] [CrossRef]
- Hu, F.; Yu, D.; Ye, M.; Wang, H.; Hao, Y.; Wang, L.; Li, L.; Han, X.; Peng, S. Lattice-matching formed mesoporous transition metal oxide heterostructures advance water splitting by active Fe-O-Cu bridges. Adv. Energy Mater. 2022, 12, 2200067. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, F.W.; Zhao, X.Y.; Wang, X.J.; Li, Y.P.; Li, F.T. Self-composition of hierarchical core-shell-structured NiCo2O4@ NiCo2O4 microspheres with oxygen vacancies for efficient oxygen evolution electrocatalysis. Energy Fuels 2023, 37, 18111–18119. [Google Scholar] [CrossRef]
- Bahadur, A.; Hussain, W.; Iqbal, S.; Ullah, F.; Shoaib, M.; Liu, G.; Feng, K. A morphology controlled surface sulfurized CoMn2O4 microspike electrocatalyst for water splitting with excellent OER rate for binder-free electrocatalytic oxygen evolution. J. Mater. Chem. A 2021, 9, 12255–12264. [Google Scholar] [CrossRef]
- Zheng, Z.; Chen, Y.; Yin, H.; Xiao, H.; Zhou, X.; Li, Z.; Li, X.; Chen, J.; Yuan, S.; Guo, J.; et al. Stabilizing the dissolution kinetics by interstitial Zn cations in CoMoO4 for oxygen evolution reaction at high potential. Electrochim. Acta 2024, 473, 143386. [Google Scholar] [CrossRef]
- Shao, X.; Li, D.; Zhou, A.; Zhu, L.; Du, Y.; Li, B.; Zhang, Y.; Cao, L.; Yang, J. Superhydrophilic CoMoO4 with high oxygen vacancy for outstanding alkaline OER. Int. J. Hydrogen Energy 2024, 58, 1284–1294. [Google Scholar] [CrossRef]
- Yang, W.D.; Xiang, J.; Zhao, R.D.; Loy, S.; Li, M.T.; Ma, D.M.; Li, J.; Wu, F.F. Nanoengineering of ZnCo2O4@ CoMoO4 heterogeneous structures for supercapacitor and water splitting applications. Ceram. Int. 2023, 49, 4422–4434. [Google Scholar] [CrossRef]
- Xu, Y.; Xie, L.; Li, D.; Yang, R.; Jiang, D.; Chen, M. Engineering Ni(OH)2 nanosheet on CoMoO4 nanoplate array as efficient electrocatalyst for oxygen evolution reaction. ACS Sustain. Chem. Eng. 2018, 6, 16086–16095. [Google Scholar] [CrossRef]
- You, N.; Cao, S.; Huang, M.; Fan, X.; Shi, K.; Huang, H.; Chen, Z.; Yang, Z.; Zhang, W. Constructing P-CoMoO4@NiCoP heterostructure nanoarrays on Ni foam as efficient bifunctional electrocatalysts for overall water splitting. Nano Mater. Sci. 2023, 5, 278–286. [Google Scholar] [CrossRef]
- Wang, J.; Guo, Z.; Liu, M.; Wang, Y.; Liu, H.; Wu, L.; Xue, Y.; Cai, N.; Li, H.; Yu, F. CoMoO4 nanoparticles decorated ultrathin nanoplates constructed porous flower as an electrocatalyst toward overall water splitting and Zn-air batteries. Renew. Energy 2023, 212, 751–760. [Google Scholar] [CrossRef]
- Xie, W.; Huang, J.; Huang, L.; Geng, S.; Song, S.; Tsiakaras, P.; Wang, Y. Novel fluorine-doped cobalt molybdate nanosheets with enriched oxygen-vacancies for improved oxygen evolution reaction activity. Appl. Catal. B Environ. 2022, 303, 120871. [Google Scholar] [CrossRef]
- Luo, J.; Zhou, Y.; Wang, X.; Gu, Y.; Liu, W.; Wang, S.; Zhang, J. CoMoO4-CoP/NC heterostructure anchored on hollow polyhedral N-doped carbon skeleton for efficient water splitting. J. Colloid Interface Sci. 2023, 648, 90–101. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, Q.; Zhao, B.; Li, S.; Xiong, Y.; Xu, W. Few-layer N-doped porous carbon nanosheets derived from corn stalks as a bifunctional electrocatalyst for overall water splitting. Fuel 2020, 280, 118567. [Google Scholar] [CrossRef]
- Kumaresan, N.; Karuppasamy, P.; Kumar, M.P.; Peera, S.G.; AlSalhi, M.S.; Devanesan, S.; Mangalaraja, R.; Ramasamy, P.; de Oliveira, T.F.; Murugadoss, G. Synthesis and characterization of metal-free nanosheets of carbo-catalysts for bifunctional electrocatalyst towards HER and OER application. Mol. Catal. 2023, 539, 113043. [Google Scholar] [CrossRef]
- Yang, L.; Zeng, X.; Wang, D.; Cao, D. Biomass-derived FeNi alloy and nitrogen-codoped porous carbons as highly efficient oxygen reduction and evolution bifunctional electrocatalysts for rechargeable Zn-air battery. Energy Storage Mater. 2018, 12, 277–283. [Google Scholar] [CrossRef]
- Ma, X.; Guo, C.; Xiang, J.; Qi, Y.; Yu, J.; Li, K.; Tao, Z.; Wu, J.; Lv, Y. Synthesis and applications of biomass-derived electrocatalysts in water electrolysis. Int. J. Hydrogen Energy 2024, 60, 845–866. [Google Scholar] [CrossRef]
- Wang, L.; Liang, K.; Deng, L.; Liu, Y.-N. Protein hydrogel networks: A unique approach to heteroatom self-doped hierarchically porous carbon structures as an efficient ORR electrocatalyst in both basic and acidic conditions. Appl. Catal. B Environ. 2019, 246, 89–99. [Google Scholar] [CrossRef]
- Sun, Y.; Sun, W.; Huang, J.; Li, G.; Wang, L.; Li, S.; Meng, A.; Li, Z. Tailoring the local electron and modulating morphology to enhance the overall water splitting and urea electrolysis of CoMoO4@Cu2S electrocatalyst with superhydrophilicity. Chem. Eng. J. 2023, 477, 147016. [Google Scholar] [CrossRef]
- Li, Q.; Li, X.; Zhang, K.; He, J.; Lou, Y.; Chen, J. Rod-like CoMoO4 grows on lamellar Fe-MOF to assemble the composite electrocatalyst for efficient oxygen evolution reaction. Inorg. Chem. Commun. 2023, 153, 110835. [Google Scholar] [CrossRef]
- Jiang, M.; Hu, Z.; Zou, Y.; Xiang, C.; Xu, F.; Sun, L.; Hu, X. NiSe-modified CoMoO4 nanosheets as bifunctional electrocatalysts for hydrogen and oxygen evolution reactions. J. Alloys Compd. 2024, 978, 173495. [Google Scholar] [CrossRef]
- Yu, M.Q.; Jiang, L.X.; Yang, H.G. Ultrathin nanosheets constructed CoMoO4 porous flowers with high activity for electrocatalytic oxygen evolution. Chem. Commun. 2015, 51, 14361–14364. [Google Scholar] [CrossRef] [PubMed]
- Chi, K.; Tian, X.; Wang, Q.; Zhang, Z.; Zhang, X.; Zhang, Y.; Jing, F.; Lv, Q.; Yao, W.; Xiao, F.; et al. Oxygen vacancies engineered CoMoO4 nanosheet arrays as efficient bifunctional electrocatalysts for overall water splitting. J. Catal. 2020, 381, 44–52. [Google Scholar] [CrossRef]
- Fei, B.; Chen, Z.; Ha, Y.; Wang, R.; Yang, H.; Xu, H.; Wu, R. Anion-cation co-substitution activation of spinel CoMoO4 for efficient oxygen evolution reaction. Chem. Eng. J. 2020, 394, 124926. [Google Scholar] [CrossRef]
- Liu, X.; Yang, Y.; Guan, S. An efficient electrode based on one-dimensional CoMoO4 nanorods for oxygen evolution reaction. Chem. Phys. Lett. 2017, 675, 11–14. [Google Scholar] [CrossRef]
- Yin, Z.; Chen, Y.; Zhao, Y.; Li, C.; Zhu, C.; Zhang, X. Hierarchical nanosheet-based CoMoO4-NiMoO4 nanotubes for applications in asymmetric supercapacitors and the oxygen evolution reaction. J. Mater. Chem. A 2015, 3, 22750–22758. [Google Scholar] [CrossRef]
- Srirapu, V.; Kumar, A.; Kumari, N.; Srivastava, P.; Singh, R.N. A comparative study of electrocatalytic performance of metal molybdates for the water oxidation. Int. J. Hydrogen Energy 2018, 43, 16543–16555. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Cui, M.; Chen, S.; Ma, T. A novel strategy to synthesize CoMoO4 nanotube as highly efficient oxygen evolution reaction electrocatalyst. Catal. Commun. 2019, 131, 105800. [Google Scholar] [CrossRef]
- Ahmed, J.; Ubaidullah, M.; Ahmad, T.; Alhokbany, N.; Alshehri, S.M. Synthesis of graphite oxide/cobalt molybdenum oxide hybrid nanosheets for enhanced electrochemical performance in supercapacitors and the oxygen evolution reaction. ChemElectroChem 2019, 6, 2524–2530. [Google Scholar] [CrossRef]
- Gong, Y.; Yang, Z.; Lin, Y.; Wang, J.; Pan, H.; Xu, Z. Hierarchical heterostructure NiCo2O4@CoMoO4/NF as an efficient bifunctional electrocatalyst for overall water splitting. J. Mater. Chem. A 2018, 6, 16950–16958. [Google Scholar] [CrossRef]
- Connor, P.; Schuch, J.; Kaiser, B.; Jaegermann, W. The determination of electrochemical active surface area and specific capacity revisited for the system MnOx as an oxygen evolution catalyst. Z. Phys. Chem. 2020, 234, 979–994. [Google Scholar] [CrossRef]
Catalyst | η (mV vs. RHE) | Tafel Slope (mV dec−1) | Electrolyte (KOH) | Refs. |
---|---|---|---|---|
CoMoO4/GPLC | η10, 289 | 60.4 | 1.0 M | This work |
CoMoO4 flowers | η10, 312 | 56 | 1.0 M | [34] |
NF/H-CoMoO4 | η10, 295 | / | 1.0 M | [35] |
Fe0.5Co0.5MoO4−xSx | η10, 268 | 87 | 1.0 M | [36] |
CoMoO4 nanorods | η10, 343 | 67 | 1.0 M | [37] |
CoMoO4-NiMoO4 | η10, 300 | 68 | 1.0 M | [38] |
CoMoO4/G | η10, 327 | 43 | 1.0 M | [39] |
CoMoO4 nanotube | η10, 315 | 108 | 1.0 M | [40] |
rGO/CoMoO4 | η10, 475 | 167 | 1.0 M | [41] |
NiCo2O4@CoMoO4/NF−7 | η20, 265 | 102 | 1.0 M | [42] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Yang, X.; Chen, Y.; Wang, J.; Lan, M.; Tang, K.; Yang, F. Biomass-Derived-Carbon-Supported Spinel Cobalt Molybdate as High-Efficiency Electrocatalyst for Oxygen Evolution Reaction. Molecules 2024, 29, 4953. https://doi.org/10.3390/molecules29204953
Wang B, Yang X, Chen Y, Wang J, Lan M, Tang K, Yang F. Biomass-Derived-Carbon-Supported Spinel Cobalt Molybdate as High-Efficiency Electrocatalyst for Oxygen Evolution Reaction. Molecules. 2024; 29(20):4953. https://doi.org/10.3390/molecules29204953
Chicago/Turabian StyleWang, Baoli, Xiujiu Yang, Yan Chen, Jiahan Wang, Mingguo Lan, Kai Tang, and Feng Yang. 2024. "Biomass-Derived-Carbon-Supported Spinel Cobalt Molybdate as High-Efficiency Electrocatalyst for Oxygen Evolution Reaction" Molecules 29, no. 20: 4953. https://doi.org/10.3390/molecules29204953
APA StyleWang, B., Yang, X., Chen, Y., Wang, J., Lan, M., Tang, K., & Yang, F. (2024). Biomass-Derived-Carbon-Supported Spinel Cobalt Molybdate as High-Efficiency Electrocatalyst for Oxygen Evolution Reaction. Molecules, 29(20), 4953. https://doi.org/10.3390/molecules29204953