Kinetic and Mechanistic Analysis of Phenol Adsorption on Activated Carbons from Kenaf
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physical Structure
2.1.1. Surface Area and Pore Size Distribution
2.1.2. Scanning Electron Micrograph
2.2. Chemical Structure
2.2.1. Elemental Analysis
2.2.2. Proximate Analysis
2.2.3. X-Ray Photoelectron Spectroscopy
2.2.4. Point of Zero Charge (PZC) and Total Surface Acidity and Basicity
2.3. Kinetic Experiments
2.3.1. Kinetic Models
2.3.2. Mechanistic Models
2.4. DFT Simulations
3. Materials and Methods
3.1. Preparation of the Samples
3.2. Materials Characterization
3.3. Adsorption
3.4. Theoretical Model Fits
3.5. DFT Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lan, J.; Wang, B.; Bo, C.; Gong, B.; Ou, J. Progress on Fabrication and Application of Activated Carbon Sphere in Recent Decade. J. Ind. Eng. Chem. 2023, 120, 47–72. [Google Scholar] [CrossRef]
- Ullah, S.; Rehman, A.U.; Najam, T.; Hossain, I.; Anjum, S.; Ali, R.; Shahid, M.U.; Shah, S.S.A.; Nazir, M.A. Advances in Metal-Organic Framework@activated Carbon (MOF@AC) Composite Materials: Synthesis, Characteristics and Applications. J. Ind. Eng. Chem. 2024, 137, 87–105. [Google Scholar] [CrossRef]
- Wong, S.; Ngadi, N.; Inuwa, I.M.; Hassan, O. Recent Advances in Applications of Activated Carbon from Biowaste for Wastewater Treatment: A Short Review. J. Clean. Prod. 2018, 175, 361–375. [Google Scholar] [CrossRef]
- De Gisi, S.; Lofrano, G.; Grassi, M.; Notarnicola, M. Characteristics and Adsorption Capacities of Low-Cost Sorbents for Wastewater Treatment: A Review. Sustain. Mater. Technol. 2016, 9, 10–40. [Google Scholar] [CrossRef]
- Kosheleva, R.I.; Mitropoulos, A.C.; Kyzas, G.Z. Synthesis of Activated Carbon from Food Waste. Environ. Chem. Lett. 2019, 17, 429–438. [Google Scholar] [CrossRef]
- Jones, I.; Zhu, M.; Zhang, J.; Zhang, Z.; Preciado-Hernandez, J.; Gao, J.; Zhang, D. The Application of Spent Tyre Activated Carbons as Low-Cost Environmental Pollution Adsorbents: A Technical Review. J. Clean. Prod. 2021, 312, 127566. [Google Scholar] [CrossRef]
- Kumar Mishra, R.; Singh, B.; Acharya, B. A Comprehensive Review on Activated Carbon from Pyrolysis of Lignocellulosic Biomass: An Application for Energy and the Environment. Carbon Resour. Convers. 2024, 7, 100228. [Google Scholar] [CrossRef]
- MacDermid-Watts, K.; Pradhan, R.; Dutta, A. Catalytic Hydrothermal Carbonization Treatment of Biomass for Enhanced Activated Carbon: A Review. Waste Biomass Valoriz. 2020, 12, 2171–2186. [Google Scholar] [CrossRef]
- Jain, A.; Balasubramanian, R.; Srinivasan, M.P. Hydrothermal Conversion of Biomass Waste to Activated Carbon with High Porosity: A Review. Chem. Eng. J. 2016, 283, 789–805. [Google Scholar] [CrossRef]
- Abioye, A.M.; Ani, F.N. Recent Development in the Production of Activated Carbon Electrodes from Agricultural Waste Biomass for Supercapacitors: A Review. Renew. Sustain. Energy Rev. 2015, 52, 1282–1293. [Google Scholar] [CrossRef]
- Rengga, W.D.P.; Sudibandriyo, M.; Nasikin, M. Development of Formaldehyde Adsorption Using Modified Activated Carbon—A Review. Int. J. Renew. Energy Dev. 2012, 1, 75–80. [Google Scholar] [CrossRef]
- Katheresan, V.; Kansedo, J.; Lau, S.Y. Efficiency of Various Recent Wastewater Dye Removal Methods: A Review. J. Environ. Chem. Eng. 2018, 6, 4676–4697. [Google Scholar] [CrossRef]
- Mc Namara, J.D.; Franco, R.; Mimna, R.; Zappa, L. Comparison of Activated Carbons for Removal of Perfluorinated Compounds from Drinking Water. J. Am. Water Work. Assoc. 2018, 110, E2–E14. [Google Scholar] [CrossRef]
- Mahene, W.L.; Kivevele, T.; Machunda, R. The Role of Textural Properties and Surface Chemistry of Activated Carbon Support in Catalytic Deoxygenation of Triglycerides into Renewable Diesel. Catal. Commun. 2023, 181, 106737. [Google Scholar] [CrossRef]
- Halip, J.A.; Tahir, P.M.; Cheng, A.; Choo, A.C.Y.; Ashaari, Z. Effect of Kenaf Parts. Bioresources 2014, 9, 1401–1416. [Google Scholar]
- Hong Ng, S.; Md Tahir, P.; Mohamad, R.; Abdullah, L.C.; Choo, A.C.Y.; Yee Liong, Y. Effect of Pretreatment Process on Bioconversion of Kenaf (Hibiscus cannabinus L.) Core to Glucose. Bioresources 2013, 8, 2010–2017. [Google Scholar]
- Hamidon, M.H.; Sultan, M.T.H.; Ariffin, A.H.; Shah, A.U.M. Effects of Fibre Treatment on Mechanical Properties of Kenaf Fibre Reinforced Composites: A Review. J. Mater. Res. Technol. 2019, 8, 3327–3337. [Google Scholar] [CrossRef]
- Umair, M.; Azis, N.; Halis, R.; Jasni, J. Investigation of Kenaf Paper in the Presence of PVA for Transformers Application. Materials 2020, 13, 5002. [Google Scholar] [CrossRef]
- Sreenivasan, S.; Sulaiman, S.; Baharudin, B.T.H.T.; Ariffin, M.K.A.; Abdan, K. Recent Developments of Kenaf Fibre Reinforced Thermoset Composites: Review. Mater. Res. Innov. 2013, 17, s2–s11. [Google Scholar] [CrossRef]
- Zhu, S.; Xie, J.; Sun, Q.; Zhang, Z.; Wan, J.; Zhou, Z.; Lu, J.; Chen, J.; Xu, J.; Chen, K.; et al. Recent Advances on Bast Fibre Composites: Engineering Innovations, Applications and Perspectives. Compos. B Eng. 2024, 284, 111738. [Google Scholar] [CrossRef]
- Guo, A.; Sun, Z.; Satyavolu, J. Impact of Modified Kenaf Fibres on Shrinkage and Cracking of Cement Pastes. Constr. Build. Mater. 2020, 264, 120230. [Google Scholar] [CrossRef]
- Park, C.H.; Kwon, S.J.; Kim, N.S.; Baek, S.A.; Yeo, H.J.; Park, Y.E.; Chung, Y.S.; Kim, J.K.; Park, S.U. Metabolic Analysis of Carotenoids and Phenolic Compounds Found in Green and Purple Kenaf. Nat. Prod. Commun. 2020, 15, 1934578X20971138. [Google Scholar] [CrossRef]
- Harussani, M.M.; Sapuan, S.M. Development of Kenaf Biochar in Engineering and Agricultural Applications. Chem. Afr. 2022, 5, 1–17. [Google Scholar] [CrossRef]
- Kamarudin, K.S.N.; Zaini, N.; Khairuddin, N.E.A. CO2 Removal Using Amine-Functionalized Kenaf in Pressure Swing Adsorption System. J. Environ. Chem. Eng. 2018, 6, 549–559. [Google Scholar] [CrossRef]
- Ezaty, S.N.; Zaini, N.; Farahhin, N.J.; Kamarudin, K.S.N. Study of Hydrogen Adsorption onto Kenaf Sorbent Surface by Metal Impregnation Method. Mater. Today Proc. 2021, 39, 1088–1093. [Google Scholar] [CrossRef]
- Sajab, M.S.; Chia, C.H.; Zakaria, S.; Jani, S.M.; Ayob, M.K.; Chee, K.L.; Khiew, P.S.; Chiu, W.S. Citric Acid Modified Kenaf Core Fibres for Removal of Methylene Blue from Aqueous Solution. Bioresour. Technol. 2011, 102, 7237–7243. [Google Scholar] [CrossRef]
- Cho, E.J.; Kang, J.K.; Moon, J.K.; Um, B.H.; Lee, C.G.; Jeong, S.; Park, S.J. Removal of Triclosan from Aqueous Solution via Adsorption by Kenaf-derived Biochar: Its Adsorption Mechanism Study via Spectroscopic and Experimental Approaches. J. Environ. Chem. Eng. 2021, 9, 106343. [Google Scholar] [CrossRef]
- Saeed, A.A.H.; Harun, N.Y.; Zulfani, N. Heavy Metals Capture from Water Sludge by Kenaf Fibre Activated Carbon in Batch Adsorption. J. Ecol. Eng. 2020, 21, 102–115. [Google Scholar] [CrossRef]
- Macías-García, A.; Cuerda-Correa, E.M.; Olivares-Marín, M.; Alexandre-Franco, M.; Gómez-Serrano, V. Preparation of Micropore-Containing Adsorbents from Kenaf Fibres and Their Use in Mercury Removal from Aqueous Solution. J. Nat. Fibres 2012, 9, 98–116. [Google Scholar] [CrossRef]
- Ramos, R.L.; Moreira, V.R.; Amaral, M.C.S. Phenolic compounds in water: Review of occurrence, risk, and retention by membrane technology. J. Environ. Manag. 2024, 351, 119772. [Google Scholar] [CrossRef]
- Sun, J.; Mu, Q.; Kimura, H.; He, M.; Du, W.; Hou, C. Oxidative degradation of phenols and substituted phenols in the water and atmosphere: A review. Adv. Compos. Hybrid Mater. 2022, 5, 627–640. [Google Scholar] [CrossRef]
- Cho, E.J.; Lee, C.G.; Jin-Kyu-Kang; Park, S.J. Adsorption of Phenol on Kenaf-derived Biochar: Studies on Physicochemical and Adsorption Characteristics and Mechanism. Biomass Convers. Biorefin. 2022, 14, 9621–9638. [Google Scholar] [CrossRef]
- Nabais, J.M.V.; Gomes, J.A.; Suhas; Carrott, P.J.M.; Laginhas, C.; Roman, S. Phenol Removal onto Novel Activated Carbons Made from Lignocellulosic Precursors: Influence of Surface Properties. J. Hazard. Mater. 2009, 167, 904–910. [Google Scholar] [CrossRef] [PubMed]
- Aber, S.; Khataee, A.; Sheydaei, M. Optimization of Activated Carbon Fibre Preparation from Kenaf Using K2HPO4 as Chemical Activator for Adsorption of Phenolic Compounds. Bioresour. Technol. 2009, 100, 6586–6591. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Yin, C.Y.; Aroua, M.K.; Daud, W.M.A.W. Review of Modifications of Activated Carbon for Enhancing Contaminant Uptakes from Aqueous Solutions. Sep. Purif. Technol. 2007, 52, 403–415. [Google Scholar] [CrossRef]
- Chingombe, P.; Saha, B.; Wakeman, R.J. Surface Modification and Characterisation of a Coal-Based Activated Carbon. Carbon 2005, 43, 3132–3143. [Google Scholar] [CrossRef]
- Moreno-Castilla, C.; López-Ramón, M.V.; Carrasco-Marín, F. Changes in Surface Chemistry of Activated Carbons by Wet Oxidation. Carbon 2000, 38, 1995–2001. [Google Scholar] [CrossRef]
- Durán-Valle, C.J.; Madrigal-Martínez, M.; Martínez-Gallego, M.; Fonseca, I.M.; Matos, I.; Botelho Do Rego, A.M. Activated Carbon as a Catalyst for the Synthesis of N-Alkylimidazoles and Imidazolium Ionic Liquids. Catal. Today 2012, 187, 108–114. [Google Scholar] [CrossRef]
- Bautista-Toledo, I.; Rivera-Utrilla, J.; Ferro-García, M.A.; Moreno-Castilla, C. Influence of the Oxygen Surface Complexes of Activated Carbons on the Adsorption of Chromium Ions from Aqueous Solutions: Effect of Sodium Chloride and Humic Acid. Carbon 1994, 32, 93–100. [Google Scholar] [CrossRef]
- Ibáñez-Redín, G.; Silva, T.A.; Vicentini, F.C.; Fatibello-Filho, O. Effect of Carbon Black Functionalization on the Analytical Performance of a Tyrosinase Biosensor Based on Glassy Carbon Electrode Modified with Dihexadecylphosphate Film. Enzym. Microb. Technol. 2018, 116, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Román, I.; Pardo-Botello, R.; Durán-Valle, C.J.; Cintas, P.; Fernando Martínez, R. An Eco-Friendly and Switchable Carbon-Based Catalyst for Protection-Deprotection of Vicinal Diols. ChemCatChem 2023, 15, e202300555. [Google Scholar] [CrossRef]
- Carvalho, R.C.; Durán-Valle, C.J.; Adame-Pereira, M. Unlocking the Potential of Chemically Modified Carbon Gels in Gallic Acid Adsorption. Gels 2024, 10, 123. [Google Scholar] [CrossRef] [PubMed]
- NIST. X-Ray Photoelectron Spectroscopy Database. Available online: https://srdata.nist.gov/xps/ (accessed on 11 August 2024).
- X-Ray Photoelectron Spectroscopy (XPS) Reference Pages. Available online: https://www.xpsfitting.com/ (accessed on 11 August 2024).
- XPS; AES; UPS; ESCA. LaSurface.Com. Available online: http://www.lasurface.com/accueil/ (accessed on 11 August 2024).
- Badalyan, A.; Bromball, R.; Pendleton, P.; Skinner, W. An Assessment of Activated Carbon Cloth Microporosity Change due to Chemical Activation. Carbon 2010, 48, 1004–1011. [Google Scholar] [CrossRef]
- Zailan, Z.; Tahir, M.; Jusoh, M.; Zakaria, Z.Y. A Review of Sulfonic Group Bearing Porous Carbon Catalyst for Biodiesel Production. Renew. Energy 2021, 175, 430–452. [Google Scholar] [CrossRef]
- Nakajima, K.; Hara, M. Amorphous Carbon with SO3H Groups as a Solid Brønsted Acid Catalyst. ACS Catal. 2012, 2, 1296–1304. [Google Scholar] [CrossRef]
- Plazinski, W.; Rudzinski, W.; Plazinska, A. Theoretical Models of Sorption Kinetics Including a Surface Reaction Mechanism: A Review. Adv. Colloid Interface Sci. 2009, 152, 2–13. [Google Scholar] [CrossRef]
- Tütem, E.; Apak, R.; Ünal, Ç.F. Adsorptive Removal of Chlorophenols from Water by Bituminous Shale. Water Res. 1998, 32, 2315–2324. [Google Scholar] [CrossRef]
- Maeda, S.; Harabuchi, Y.; Ono, Y.; Taketsugu, T.; Morokuma, K. Intrinsic Reaction Coordinate: Calculation, Bifurcation, and Automated Search. Int. J. Quantum Chem. 2015, 115, 258–269. [Google Scholar] [CrossRef]
- Valente Nabais, J.M.; Carrott, P.J.M. Chemical Characterization of Activated Carbon Fibres and Activated Carbons. J. Chem. Educ. 2006, 83, 436–438. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X. Adsorption Kinetic Models: Physical Meanings, Applications, and Solving Methods. J. Hazard. Mater. 2020, 390, 122156. [Google Scholar] [CrossRef] [PubMed]
- El-Khaiary, M.I.; Malash, G.F.; Ho, Y.-S. On the Use of Linearized Pseudo-Second-Order Kinetic Equations for Modeling Adsorption Systems. Desalination 2010, 257, 93–101. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision A.03; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef] [PubMed]
- Lagergren, S.K. About the Theory of So-Called Adsorption of Soluble Substances. Sven. Vetenskapsakad. Handingarl 1898, 24, 1–39. [Google Scholar]
- Ho, Y.S.; McKay, G. Pseudo-Second Order Model for Sorption Processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Kannan, N.; Vanangamudi, A. A Study on Removal of Cr(VI) by Adsorption Lignite Coal. Indian J. Environ. Prot. 1991, 114, 241–245. [Google Scholar]
- Bhattacharya, A.K.; Venkobachar, C. Removal of Cadmium (II) by Low Cost Adsorbents. J. Environ. Eng. 1984, 110, 110–122. [Google Scholar] [CrossRef]
- Mall, I.D.; Srivastava, V.C.; Agarwal, N.K. Removal of Orange-G and Methyl Violet Dyes by Adsorption onto Bagasse Fly Ash—Kinetic Study and Equilibrium Isotherm Analyses. Dye. Pigment. 2006, 69, 210–223. [Google Scholar] [CrossRef]
- Mohamed Nasser, S.; Abbas, M.; Trari, M. Understanding the Rate-Limiting Step Adsorption Kinetics onto Biomaterials for Mechanism Adsorption Control. Prog. React. Kinet. Mech. 2024, 49. [Google Scholar] [CrossRef]
- Weber, W.J., Jr.; Morris, J.C. Kinetics of Adsorption on Carbon from Solution. J. Sanit. Eng. Div. 1963, 89, 31–59. [Google Scholar] [CrossRef]
- Boyd, G.E.; Adamson, A.W.; Myers, L.S. The Exchange Adsorption of Ions from Aqueous Solutions by Organic Zeolites. II. Kinetics. J. Am. Chem. Soc. 1947, 69, 2836–2848. [Google Scholar] [CrossRef]
- Qiu, H.; Lv, L.; Pan, B.C.; Zhang, Q.J.; Zhang, W.M.; Zhang, Q.X. Critical Review in Adsorption Kinetic Models. J. Zhejiang Univ. Sci. A 2009, 10, 716–724. [Google Scholar] [CrossRef]
Code | Precursor | Carbonization | Activation | Acid Treatment |
---|---|---|---|---|
K0 | Kenaf | Yes | No | No |
KA | K0 | No | Air | No |
KAN | KA | No | No | HNO3 |
KAS | KA | No | No | H2SO4 |
KC | K0 | No | CO2 | No |
KCN | KC | No | No | HNO3 |
KCS | KC | No | No | H2SO4 |
D-R | t-Plot | ||||||
---|---|---|---|---|---|---|---|
Sample | SBET (m2 g−1) | W0 (cm3 g−1) | E0 (KJ mol−1) | L (nm) | W0 (cm3 g−1) | Vmeso (cm3 g−1) | Vmacro (cm3 g−1) |
K0 | 29 | 0.017 | 13.7 | 0.95 | 0.013 | 0.047 | 3.664 |
KA | 15 | 0.004 | 10.3 | 1.26 | 0.000 | 0.099 | 4.830 |
KAN | 315 | 0.153 | 19.7 | 1.32 | 0.115 | 0.080 | 4.427 |
KAS | 106 | 0.036 | 13.4 | 0.97 | 0.023 | 0.101 | 5.075 |
KC | 124 | 0.035 | 14.7 | 0.89 | 0.020 | 0.034 | 6.229 |
KCN | 185 | 0.084 | 19.4 | 0.67 | 0.043 | 0.045 | 4.520 |
KCS | 316 | 0.137 | 19.0 | 0.68 | 0.124 | 0.085 | 5.414 |
Sample | Elemental Analysis (wt %) | Proximate Analysis (wt %) | ||||||
---|---|---|---|---|---|---|---|---|
C | H | N | S | O | VM | Ash | FC | |
K0 | 89.7 | 2.2 | 0.8 | 0.3 | 6.9 | 17.5 | 5.8 | 76.7 |
KA | 91.0 | 1.8 | 0.7 | 0.4 | 6.1 | 15.2 | 6.5 | 78.3 |
KAN | 80.4 | 1.9 | 1.8 | 0.2 | 15.8 | 27.4 | 2.0 | 70.6 |
KAS | 87.9 | 2.1 | 0.8 | 0.8 | 8.3 | 22.2 | 6.5 | 71.3 |
KC | 90.7 | 1.6 | 1.1 | 0.5 | 6.0 | 17.7 | 7.2 | 75.1 |
KCN | 86.9 | 0.9 | 1.5 | 0.5 | 10.3 | 18.6 | 1.4 | 80.0 |
KCS | 91.8 | 0.8 | 0.8 | 0.9 | 5.7 | 14.5 | 1.7 | 83.8 |
Sample | Elemental Analysis (wt %) | |||
---|---|---|---|---|
C | O | N | S | |
K0 | 78.6 | 16.6 | 0.9 | 3.9 |
KA | 85.7 | 12.9 | 0.7 | 0.6 |
KAN | 83.1 | 14.6 | 2.0 | 0.3 |
KAS | 86.7 | 11.4 | 1.0 | 1.0 |
KC | 87.5 | 10.6 | 1.0 | 0.9 |
KCN | 84.1 | 13.6 | 1.6 | 0.7 |
KCS | 88.8 | 9.1 | 0.8 | 1.3 |
Concentration on the Surface (% At) | |||||
---|---|---|---|---|---|
Sample | -C-C (284.8) | C-O (285.8–286.4) | C=O (287.8–287.9) | COO (288.9–291.5) | π-π Transition (293.1–293.9) |
K0 | 70.3 | 21.5 | - | 3.1 | 5.0 |
KA | 69.1 | 22.3 | - | 7.5 | 1.0 |
KAN | 58.9 | 19.9 | - | 21.2 | - |
KAS | 53.6 | 21.4 | - | 24.9 | - |
KC | 59.8 | 30.0 | - | 7.7 | 2.5 |
KCN | 43.3 | 28.9 | - | 23.3 | 4.5 |
KCS | 48.9 | 25.6 | - | 25.5 | - |
Concentration on the Surface (% At) | ||||
---|---|---|---|---|
Sample | Nreduced (398.2–400.7) | Noxidized (405.8–405.9) | Sreduced (162.8–165.2) | Soxidized (168.5–170.6) |
K0 | 100.0 | - | 5.6 | 94.4 |
KA | 100.0 | - | 43.6 | 56.4 |
KAN | 47.3 | 52.7 | 53.9 | 46.1 |
KAS | 100.0 | - | 21.6 | 78.4 |
KC | 100.0 | - | 93.3 | 6.7 |
KCN | 69.3 | 30.7 | 92.2 | 7.8 |
KCS | 100.0 | - | 47.9 | 52.1 |
Sample | PZC | Total Acidity Meq H+ g−1 | Total Basicity Meq OH− g−1 |
---|---|---|---|
K0 | 9.9 | 0.10 | 0.88 |
KA | 10.3 | 0.06 | 1.40 |
KAN | 6.3 | 0.45 | 0.36 |
KAS | 6.2 | 0.32 | 0.34 |
KC | 10.3 | 0.06 | 1.59 |
KCN | 6.7 | 0.44 | 0.34 |
KCS | 6.8 | 0.36 | 0.39 |
Model | Sample | Concentration of Carbon | ||||
---|---|---|---|---|---|---|
0.1 g L−1 | 0.25 g L−1 | 0.5 g L−1 | 1 g L−1 | 2 g L−1 | ||
Pseudo-first order | KA | 9.7 | 3.7 | 4.4 | 4.9 | 4.4 |
KAN | 7.5 | 4.4 | 2.0 | 1.6 | 1.0 | |
KAS | 7.4 | 2.9 | 2.3 | 1.5 | 1.8 | |
KC | 14.0 | 13.6 | 11.9 | 6.6 | 2.6 | |
KCN | 12.8 | 7.3 | 5.8 | 4.7 | 2.5 | |
KCS | 18.1 | 5.8 | 6.0 | 5.9 | 3.6 | |
Pseudo-second order | KA | 7.9 | 3.9 | 2.9 | 3.8 | 2.7 |
KAN | 8.3 | 5.4 | 1.9 | 1.6 | 0.9 | |
KAS | 7.4 | 2.3 | 2.0 | 1.2 | 1.5 | |
KC | 10.0 | 13.7 | 7.2 | 4.5 | 1.2 | |
KCN | 19.9 | 5.9 | 4.5 | 4.8 | 1.8 | |
KCS | 14.8 | 4.1 | 4.5 | 3.7 | 2.5 | |
Elovich | KA | 6.1 | 4.2 | 1.7 | 1.7 | 0.9 |
KAN | 7.5 | 5.4 | 4.6 | 2.9 | 0.8 | |
KAS | 8.3 | 2.5 | 1.8 | 1.6 | 0.5 | |
KC | 11.2 | 12.9 | 4.9 | 2.3 | 2.1 | |
KCN | 24.4 | 5.6 | 4.0 | 6.4 | 4.1 | |
KCS | 18.8 | 3.3 | 3.4 | 1.8 | 0.9 | |
Natarajan and Khalaf | KA | 35.1 | 25.9 | 21.0 | 13.9 | 7.3 |
KAN | 13.5 | 6.3 | 2.7 | 3.2 | 2.9 | |
KAS | 16.3 | 9.9 | 8.8 | 8.1 | 5.9 | |
KC | 55.8 | 36.2 | 31.0 | 16.0 | 4.0 | |
KCN | 34.4 | 28.5 | 24.9 | 9.0 | 1.6 | |
KCS | 38.1 | 32.4 | 28.4 | 18.1 | 6.3 | |
Bhattacharya and Venkobachar | KA | 11.4 | 3.5 | 4.8 | 4.9 | 4.1 |
KAN | 9.6 | 5.7 | 1.6 | 1.7 | 0.8 | |
KAS | 8.3 | 2.6 | 2.3 | 2.0 | 1.9 | |
KC | 13.5 | 19.1 | 9.9 | 6.2 | 2.7 | |
KCN | 12.8 | 5.9 | 7.6 | 4.7 | 2.2 | |
KCS | 24.6 | 5.9 | 6.8 | 7.0 | 3.6 |
Sample | Experimental qe, mg g−1 | ||
---|---|---|---|
KA | qe, mg g−1 | 43.48 | 42.68 |
k2, g h−1 mg−1·10−4 | 7.1 | ||
KAN | qe, mg g−1 | 25.85 | 23.62 |
k2, g h−1 mg−1·10−4 | 3.0 | ||
KAS | qe, mg g−1 | 35.19 | 34.27 |
k2, g h−1 mg−1·10−4 | 4.9 | ||
KC | qe, mg g−1 | 48.73 | 48.64 |
k2, g h−1 mg−1·10−4 | 37.9 | ||
KCN | qe, mg g−1 | 51.13 | 48.80 |
k2, g h−1 mg−1·10−4 | 14.8 | ||
KCS | qe, mg g−1 | 43.64 | 46.18 |
k2, g h−1 mg−1·10−4 | 67.4 |
Model | Sample | Concentration of Carbon | ||||
---|---|---|---|---|---|---|
0.1 g L−1 | 0.25 g L−1 | 0.5 g L−1 | 1 g L−1 | 2 g L−1 | ||
Bangham | KA | 7.1 | 5.2 | 2.8 | 1.6 | 0.8 |
KAN | 7.6 | 4.3 | 1.3 | 0.9 | 0.6 | |
KAS | 7.1 | 2.6 | 2.0 | 1.9 | 0.5 | |
KC | 12.7 | 11.0 | 5.4 | 2.7 | 1.0 | |
KCN | 17.0 | 10.3 | 5.6 | 4.3 | 1.2 | |
KCS | 15.8 | 4.8 | 4.9 | 1.9 | 1.0 | |
Intraparticle Diffusion | KA | 13.5 | 13.3 | 10.8 | 9.0 | 6.8 |
KAN | 8.8 | 6.0 | 1.7 | 0.7 | 0.6 | |
KAS | 9.5 | 3.7 | 3.8 | 4.4 | 3.6 | |
KC | 27.3 | 17.4 | 20.2 | 16.5 | 13.5 | |
KCN | 19.8 | 17.0 | 17.0 | 16.8 | 12.6 | |
KCS | 24.9 | 20.1 | 17.9 | 14.5 | 9.5 | |
Liquid film diffusion | KA | 10.7 | 5.2 | 4.5 | 4.9 | 4.1 |
KAN | 7.3 | 4.7 | 2.3 | 1.8 | 1.0 | |
KAS | 11.4 | 5.4 | 2.3 | 2.0 | 1.8 | |
KC | 15.1 | 13.4 | 9.9 | 7.2 | 2.6 | |
KCN | 23.2 | 7.2 | 7.6 | 4.7 | 2.2 | |
KCS | 17.2 | 6.2 | 6.4 | 5.9 | 3.6 |
Model | ΔG, kJ mol−1 | ΔH, kJ mol−1 | ΔS, J mol−1 K−1 |
---|---|---|---|
M3 | −2.97 | −55.02 | −174.59 |
M4 | −4.67 | −55.83 | −171.60 |
M5 | 11.93 | −30.73 | −143.07 |
M6 | −11.47 | −58.21 | −156.75 |
M7 | 15.91 | −30.55 | −155.82 |
Model | EHOMO | ELUMO | Gap |
---|---|---|---|
M1 (grahpene) | −5.21 | −2.42 | 2.79 |
M2 (phenol) | −6.54 | −0.03 | 6.52 |
Oxidized graphene | −5.16 | −3.56 | 1.60 |
M3 | −5.19 | −2.40 | 2.78 |
M4 | −5.14 | −3.54 | 1.60 |
M5 | −5.42 | −3.62 | 1.81 |
M6 | −5.12 | −3.51 | 1.61 |
M7 | −5.17 | −3.58 | 1.59 |
Model | Donor NBO | Acceptor NBO | E (kJ mol−1) |
---|---|---|---|
M3 | BD (2) C 9–C 10 | LP*(1) H 57 | 3.10 |
LP (3) O 56 | RY*(3) C 10 | 2.05 | |
LP*(1) H 57 | RY*(3) C 10 | 3.60 | |
M4 | BD (2) C 4–C 5 | BD*(2) C 44–C 45 | 1.88 |
BD*(2) C 14–C 15 | BD*(2) C 43–C 48 | 2.93 | |
BD*(2) C 14–C 15 | BD*(2) C 44–C 45 | 3.35 | |
BD*(2) C 17–C 19 | BD*(2) C 43–C 48 | 2.76 | |
BD (2) C 9–C 40 | LP*(1) H 55 | 2.64 | |
M5 | LP*(1) H 37 | BD*(1) C 45–O 54 | 13.01 |
LP*(1) H 37 | LP*(1) H 55 | 296.23 | |
LP (1) O 54 | LP*(1) H 37 | 92.47 | |
LP (2) O 54 | LP*(1) H 37 | 40.88 | |
M6 | BD*(2) C 9–C 40 | BD*(2) C 43–C 44 | 8.70 |
LP (2) O 35 | LP*(1) H 55 | 282.29 | |
LP (1) O 35 | LP*(1) H 55 | 32.34 | |
LP*(1) H 55 | BD*(1) C 3–O 35 | 10.79 | |
M7 | LP (2) O 32 | LP*(1) H 55 | 59.58 |
LP*(1) H 34 | LP*(1) H 55 | 284.09 | |
LP (2) O 54 | LP*(1) H 34 | 63.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omenat-Morán, D.; Durán-Valle, C.J.; Martínez-Cañas, M.A. Kinetic and Mechanistic Analysis of Phenol Adsorption on Activated Carbons from Kenaf. Molecules 2024, 29, 4941. https://doi.org/10.3390/molecules29204941
Omenat-Morán D, Durán-Valle CJ, Martínez-Cañas MA. Kinetic and Mechanistic Analysis of Phenol Adsorption on Activated Carbons from Kenaf. Molecules. 2024; 29(20):4941. https://doi.org/10.3390/molecules29204941
Chicago/Turabian StyleOmenat-Morán, Delia, Carlos J. Durán-Valle, and Manuel A. Martínez-Cañas. 2024. "Kinetic and Mechanistic Analysis of Phenol Adsorption on Activated Carbons from Kenaf" Molecules 29, no. 20: 4941. https://doi.org/10.3390/molecules29204941
APA StyleOmenat-Morán, D., Durán-Valle, C. J., & Martínez-Cañas, M. A. (2024). Kinetic and Mechanistic Analysis of Phenol Adsorption on Activated Carbons from Kenaf. Molecules, 29(20), 4941. https://doi.org/10.3390/molecules29204941