Modification of 316L Stainless Steel, Nickel Titanium, and Cobalt Chromium Surfaces by Irreversible Immobilization of Fibronectin: Towards Improving the Coronary Stent Biocompatibility
Abstract
:1. Introduction
2. Results and Discussion
2.1. Immobilization of Fn on MUA-Modified 316L, NiCi, and CoCr Surfaces
2.2. Stability of the Fn Monolayer Covalently Bound to a 316L SS Surface
2.3. Investigation of the Secondary Structure of Fn Covalently Attached to the MUA Monolayer Formed on a 316L SS Surface
2.4. Modification of a Commercial 316L SS Coronary Stent Surface with Fn: Surface Coverage of Fn
3. Material and Methods
3.1. Immobilization of Fn on MUA-Modified 316L SS, NiTi, and L605 CoCr Surfaces
3.2. Polarization Modulation Infrared Reflection Adsorption Spectroscopy (PM-IRRAS)
3.3. Parallel Plate Flow Chamber Experiments
3.4. Determination of Fn Secondary Structure
3.5. Immunolabeling of Fn with Colloidal Gold Nanoparticles
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GouthamMurari, V. A Review on Surface Coatings on 316 L Stainless Steel to Improve Biomedical Properties. Int. J. New Innov. Eng. Technol. 2015, 4, 1–8. [Google Scholar]
- Capuani, S.; Malgir, G.; Chua, C.Y.X.; Grattoni, A. Advanced strategies to thwart foreign body response to implantable devices. Bioeng. Transl. Med. 2022, 7, e10300. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.-K.; Heo, S.-H.; Yoon, J.-K. In-stent Re-endothelialization Strategies: Cells, ECM, and Extracellular Vesicles. Tissue Eng. 2024; ahead of print. [Google Scholar]
- Mayer, K.; Ruhoff, A.; Chan, N.J.; Waterhouse, A.; O’Connor, A.J.; Scheibel, T.; Heath, D.E. REDV-Functionalized Recombinant Spider Silk for Next-Generation Coronary Artery Stent Coatings: Hemocompatible, Drug-Eluting, and Endothelial Cell-Specific Materials. ACS Appl. Mater. Interfaces 2024, 16, 14474–14488. [Google Scholar] [CrossRef]
- Labat-Robert, J. Cell-Matrix interactions, the role of fibronectin and integrins. A survey. Pathol. Biol. 2012, 60, 15–19. [Google Scholar] [CrossRef]
- Koteliansky, V.E.; Glukhova, M.A.; Bejanian, M.V.; Smirnov, V.N.; Filimonov, V.V.; Zalite, O.M.; Venyaminov, S.Y. A Study of the Structure of Fibronectin. Eur. J. Biochem. 1981, 119, 619–624. [Google Scholar] [CrossRef]
- Plummer, S.T.; Wang, Q.; Bohn, P.W.; Stockton, R.; Schwartz, M.A. Electrochemically derived gradients of the extracellular matrix protein fibronectin on gold. Langmuir 2003, 19, 7528–7536. [Google Scholar] [CrossRef]
- Keselowsky, B.G.; Collard, D.M.; Garcia, A.J. Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion. J. Biomed. Mater. Res. Part A 2003, 66, 247–259. [Google Scholar] [CrossRef]
- Dimilla, P.A.; Stone, J.A.; Quinn, J.A.; Albelda, S.M.; Lauffenburger, D.A. Maximal Migration of Human Smooth-Muscle Cells on Fibronectin and Type-Iv Collagen Occurs at an Intermediate Attachment Strength. J. Cell Biol. 1993, 122, 729–737. [Google Scholar] [CrossRef]
- Garcia, A.J.; Vega, M.D.; Boettiger, D. Modulation of cell proliferation and differentiation through substrate-dependent changes in fibronectin conformation. Mol. Biol. Cell 1999, 10, 785–798. [Google Scholar] [CrossRef]
- Iuliano, D.J.; Saavedra, S.S.; Truskey, G.A. Effect of the conformation and orientation of adsorbed fibronectin on endothelial cell spreading and the strength of adhesion. J. Biomed. Mater. Res. 1993, 27, 1103–1113. [Google Scholar] [CrossRef]
- Grinnell, F.; Feld, M.K. Fibronectin adsorption on hydrophilic and hydrophobic surfaces detected by antibody binding and analyzed during cell adhesion in serum-containing medium. J. Biol. Chem. 1982, 257, 4888–4893. [Google Scholar] [CrossRef] [PubMed]
- Magnusson, M.K.; Mosher, D.F. Fibronectin—Structure, assembly, and cardiovascular implications. Arterioscler. Thromb. Vasc. Biol. 1998, 18, 1363–1370. [Google Scholar] [CrossRef] [PubMed]
- Zahedifar, P.; Aliakbarshirazi, S.; Morent, R.; Ghobeira, R.; De Geyter, N. Comprehensive study of plasma polymerization parameters on thiol-coated LDPE films for effective fibronectin adsorption targeting biomedical applications. Prog. Org. Coat. 2024, 196, 108771. [Google Scholar] [CrossRef]
- Palomino-Durand, C.; Pauthe, E.; Gand, A. Fibronectin-enriched biomaterials, biofunctionalization, and proactivity: A review. Appl. Sci. 2021, 11, 12111. [Google Scholar] [CrossRef]
- Rezvanian, P.; Álvarez-López, A.; Tabraue-Rubio, R.; Daza, R.; Colchero, L.; Elices, M.; Guinea, G.V.; González-Nieto, D.; Pérez-Rigueiro, J. Modulation of cell response through the covalent binding of fibronectin to titanium substrates. J. Funct. Biomater. 2023, 14, 342. [Google Scholar] [CrossRef]
- Balla, V.K.; Banerjee, S.; Bose, S.; Bandyopadhyay, A. Direct laser processing of a tantalum coating on titanium for bone replacement structures. Acta Biomater. 2010, 6, 2329–2334. [Google Scholar] [CrossRef]
- Ma, D.-d.; Xue, Y.-p.; Gao, J.; Ma, Y.; Yu, S.-w.; Wang, Y.-s.; Xue, C.; Hei, H.-j.; Tang, B. Effect of Ta diffusion layer on the adhesion properties of diamond coating on WC-Co substrate. Appl. Surf. Sci. 2020, 527, 146727. [Google Scholar] [CrossRef]
- Parisi, L.; Toffoli, A.; Ghezzi, B.; Mozzoni, B.; Lumetti, S.; Macaluso, G.M. A glance on the role of fibronectin in controlling cell response at biomaterial interface. Jpn. Dent. Sci. Rev. 2020, 56, 50–55. [Google Scholar] [CrossRef]
- Lan, S.; Veiseh, M.; Zhang, M. Surface modification of silicon and gold-patterned silicon surfaces for improved biocompatibility and cell patterning selectivity. Biosens. Bioelectron. 2005, 20, 1697–1708. [Google Scholar] [CrossRef]
- Altankov, G.; Thom, V.; Groth, T.; Jankova, K.; Jonsson, G.; Ulbricht, M. Modulating the biocompatibility of polymer surfaces with poly(ethylene glycol): Effect of fibronectin. J. Biomed. Mater. Res. 2000, 52, 219–230. [Google Scholar] [CrossRef]
- Harvey, J.; Bergdahl, A.; Dadafarin, H.; Ling, L.; Davis, E.C.; Omanovic, S. An electrochemical method for functionalization of a 316L stainless steel surface being used as a stent in coronary surgery: Irreversible immobilization of fibronectin for the enhancement of endothelial cell attachment. Biotechnol. Lett. 2012, 34, 1159–1165. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Hu, Y.; Tao, R.; Huo, Q.; Wang, L.; Tang, C.; Pan, C.; Gong, T.; Xu, N.; Liu, T. Immobilization of Fibronectin-Loaded Polyelectrolyte Nanoparticles on Cardiovascular Material Surface to Improve the Biocompatibility. BioMed Res. Int. 2019, 2019, 5478369. [Google Scholar] [CrossRef] [PubMed]
- Alfonsi, S.; Karunathasan, P.; Mamodaly-Samdjee, A.; Balathandayutham, K.; Lefevre, S.; Miranda, A.; Gallet, O.; Seyer, D.; Hindié, M. Fibronectin Conformations after Electrodeposition onto 316L Stainless Steel Substrates Enhanced Early-Stage Osteoblasts’ Adhesion but Affected Their Behavior. J. Funct. Biomater. 2024, 15, 5. [Google Scholar] [CrossRef]
- Sultana, N.; Nishina, Y.; Nizami, M.Z.I. Surface Modifications of Medical Grade Stainless Steel. Coatings 2024, 14, 248. [Google Scholar] [CrossRef]
- Dargahi, M.; Nelea, V.; Mousa, A.; Omanovic, S.; Kaartinen, M.T. Electrochemical modulation of plasma fibronectin surface conformation enables filament formation and control of endothelial cell-surface interactions. RSC Adv. 2014, 4, 47769–47780. [Google Scholar] [CrossRef]
- Dangas, G.; Kuepper, F. Cardiology patient page. Restenosis: Repeat narrowing of a coronary artery: Prevention and treatment. Circulation 2002, 105, 2586–2587. [Google Scholar] [CrossRef]
- Serruys, P.W.; Luijten, H.E.; Beatt, K.J.; Geuskens, R.; Defeyter, P.J.; Vandenbrand, M.; Reiber, J.H.C.; Tenkaten, H.J.; Vanes, G.A.; Hugenholtz, P.G. Incidence of Restenosis after Successful Coronary Angioplasty—A Time-Related Phenomenon—A Quantitative Angiographic Study in 342 Consecutive Patients at 1, 2, 3, and 4 Months. Circulation 1988, 77, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Foerster, A.; Duda, M.; Kraśkiewicz, H.; Wawrzyńska, M.; Podbielska, H.; Kopaczyńska, M. Physico-chemical stent surface modifications. In Functionalised Cardiovascular Stents; Elsevier: Amsterdam, The Netherlands, 2018; pp. 137–148. [Google Scholar]
- Alfonso, F.; Coughlan, J.; Giacoppo, D.; Kastrati, A.; Byrne, R.A. Management of in-stent restenosis. EuroIntervention 2022, 18, e103–e123. [Google Scholar] [CrossRef]
- Hassan, S.; Ali, M.N.; Ghafoor, B. Evolutionary perspective of drug eluting stents: From thick polymer to polymer free approach. J. Cardiothorac. Surg. 2022, 17, 65. [Google Scholar] [CrossRef]
- Jia, B.; Zhang, X.; Ma, N.; Mo, D.; Gao, F.; Sun, X.; Song, L.; Liu, L.; Deng, Y.; Xu, X.; et al. Comparison of Drug-Eluting Stent with Bare-Metal Stent in Patients with Symptomatic High-grade Intracranial Atherosclerotic Stenosis: A Randomized Clinical Trial. JAMA Neurol. 2022, 79, 176–184. [Google Scholar] [CrossRef]
- Kumar, T.; Shah, M.M.; Prajapati, A.; Pathak, S. A case of “very” very late stent thrombosis: More than 12 years after DES. J. Fam. Med. Prim. Care 2022, 11, 1545–1548. [Google Scholar] [CrossRef] [PubMed]
- Kafkas, N.; Dragasis, S. Current knowledge on very late stent thrombosis. Contin. Cardiol. Educ. 2018, 4, 40–44. [Google Scholar] [CrossRef]
- Otaal, P.S.; Gawalkar, A.A.; Shunmugarajan, A. Optical coherence tomographic insights of very late stent thrombosis of a second-generation drug-eluting stent: A case report. Eur. Heart J. Case Rep. 2021, 5, ytab490. [Google Scholar] [CrossRef] [PubMed]
- Pompe, T.; Kobe, F.; Salchert, K.; Jorgensen, B.; Oswald, J.; Werner, C. Fibronectin anchorage to polymer substrates controls the initial phase of endothelial cell adhesion. J. Biomed. Mater. Research. Part A 2003, 67, 647–657. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, J.; Shi, Y.; Tang, J.; Huang, D.; Yan, M.; Dargusch, M.S. Surface Modification of Biomedical Ti and Ti Alloys: A Review on Current Advances. Materials 2022, 15, 1749. [Google Scholar] [CrossRef]
- Ahn, S.; Jain, A.; Kasuba, K.C.; Seimiya, M.; Okamoto, R.; Treutlein, B.; Müller, D.J. Engineering fibronectin-templated multi-component fibrillar extracellular matrices to modulate tissue-specific cell response. Biomaterials 2024, 308, 122560. [Google Scholar] [CrossRef]
- Miranda, A.; Seyer, D.; Palomino-Durand, C.; Morakchi-Goudjil, H.; Massonie, M.; Agniel, R.; Rammal, H.; Pauthe, E.; Gand, A. Poly-L-Lysine and Human Plasmatic Fibronectin Films as Proactive Coatings to Improve Implant Biointegration. Front. Bioeng. Biotechnol. 2022, 9, 807697. [Google Scholar] [CrossRef]
- Omanovic, S.; Harvey, J.; Dadafarin, H. Modified Stainless Steel Surface and Method for Preparing the Same Using an Electrochemical Process. US Patent 61,391,335, 7 October 2011. [Google Scholar]
- Jaster, M.; Horstkotte, D.; Willich, T.; Stellbaum, C.; Knie, W.; Spencker, S.; Pauschinger, M.; Schultheiss, H.P.; Rauch, U. The amount of fibrinogen-positive platelets predicts the occurrence of in-stent restenosis. Atherosclerosis 2008, 197, 190–196. [Google Scholar] [CrossRef]
- Dadafarin, H. Electrochemically-Assisted Functionalization of a 316L Stainless Steel Surface with Fibronectin: Towards the Enhancement of Biocompatibility of Coronary Stents. Ph.D. Thesis, McGill University, Montreal, QC, Canada, 2013. [Google Scholar]
- O’Brien, B.; Carroll, W. The evolution of cardiovascular stent materials and surfaces in response to clinical drivers: A review. Acta Biomater. 2009, 5, 945–958. [Google Scholar] [CrossRef]
- Danish, M.; Al-Amin, M.; Rubaiee, S.; Gul, I.A.; Ahmed, A.; Rahman, M.O.; Zhang, C.; Yildirim, M.B. Investigation of coated 316L steel surface: Surface morphology, composition, corrosion, and biocompatibility using hydroxyapatite mixed-EDM process. Surf. Coat. Technol. 2023, 467, 129689. [Google Scholar] [CrossRef]
- Parker, W.; Iqbal, J. Comparison of Contemporary Drug-eluting Coronary Stents—Is Any Stent Better than the Others? Heart Int. 2020, 14, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Korei, N.; Solouk, A.; Haghbin Nazarpak, M.; Nouri, A. A review on design characteristics and fabrication methods of metallic cardiovascular stents. Mater. Today Commun. 2022, 31, 103467. [Google Scholar] [CrossRef]
- Phan, T.; Jones, J.E.; Chen, M.; Bowles, D.K.; Fay, W.P.; Yu, Q. A Biocompatibility Study of Plasma Nanocoatings onto Cobalt Chromium L605 Alloy for Cardiovascular Stent Applications. Materials 2022, 15, 5968. [Google Scholar] [CrossRef]
- Duan, X.; Yang, Y.; Zhang, T.; Zhu, B.; Wei, G.; Li, H. Research progress of metal biomaterials with potential applications as cardiovascular stents and their surface treatment methods to improve biocompatibility. Heliyon 2024, 10, e25515. [Google Scholar] [CrossRef] [PubMed]
- Dadafarin, H.; Konkov, E.; Omanovic, S. Electrochemical Functionalization of a 316L Stainless Steel Surface with a 11-mercaptoundecanoic Acid Monolayer: Stability Studies. Int. J. Electrochem. Sci. 2013, 8, 369–389. [Google Scholar] [CrossRef]
- Slavov, D.; Tomaszewska, E.; Grobelny, J.; Drenchev, N.; Karashanova, D.; Peshev, Z.; Bliznakova, I. FTIR spectroscopy revealed nonplanar conformers, chain order, and packaging density in diOctadecylamine-and Octadecylamine-passivated gold nanoparticles. J. Mol. Struct. 2024, 1314, 138827. [Google Scholar] [CrossRef]
- Sugihara, K.; Shimazu, K.; Uosaki, K. Electrode Potential Effect on the Surface pKa of a Self-Assembled 15-Mercaptohexadecanoic Acid Monolayer on a Gold/Quartz Crystal Microbalance Electrode. Langmuir 2000, 16, 7101–7105. [Google Scholar] [CrossRef]
- Sofronov, O.O.; Giubertoni, G.; Pérez de Alba Ortíz, A.; Ensing, B.; Bakker, H.J. Peptide Side-COOH Groups Have Two Distinct Conformations under Biorelevant Conditions. J. Phys. Chem. Lett. 2020, 11, 3466–3472. [Google Scholar] [CrossRef]
- Magdziarz, S.; Boguń, M.; Frączyk, J. Coating Methods of Carbon Nonwovens with Cross-Linked Hyaluronic Acid and Its Conjugates with BMP Fragments. Polymers 2023, 15, 1551. [Google Scholar] [CrossRef]
- Ohtsuka, K.; Kuroki, M.; Nojima, T.; Waki, M.; Takenaka, S. Interaction analysis of the carcinoembryonic antigen (CEA) with its monoclonal antibody immobilized on a gold surface using Fourier transform infrared reflection-absorption spectroscopy (FT-IR RAS). Anal. Sci. 2005, 21, 215–218. [Google Scholar] [CrossRef]
- Bieri, M.; Burgi, T. L-glutathione chemisorption on gold and acid/base induced structural changes: A PM-IRRAS and time-resolved in situ ATR-IR spectroscopic study. Langmuir 2005, 21, 1354–1363. [Google Scholar] [CrossRef] [PubMed]
- Abouelsayed, A.; El-Bahy, G.S.; Abdelrazzak, A.B. FTIR spectroscopic investigations of protein conformation provide clues of radioadaptation in the kidney of low-dose irradiated rats. J. Mol. Struct. 2024, 1295, 136643. [Google Scholar] [CrossRef]
- Baujard-Lamotte, L.; Noinville, S.; Goubard, F.; Marque, P.; Pauthe, E. Kinetics of conformational changes of fibronectin adsorbed onto model surfaces. Colloids Surf. B Biointerfaces 2008, 63, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Pauthe, E.; Pelta, J.; Patel, S.; Lairez, D.; Goubard, F. Temperature-induced beta-aggregation of fibronectin in aqueous solution. Biochim. Et Biophys. Acta (BBA)-Protein Struct. Mol. Enzymol. 2002, 1597, 12–21. [Google Scholar] [CrossRef]
- Afara, N.; Omanovic, S.; Asghari-Khiavi, M. Functionalization of a gold surface with fibronectin (FN) covalently bound to mixed alkanethiol self-assembled monolayers (SAMs): The influence of SAM composition on its physicochemical properties and FN surface secondary structure. Thin Solid Film. 2012, 522, 381–389. [Google Scholar] [CrossRef]
- Osterlund, E.; Eronen, I.; Osterlund, K.; Vuento, M. Secondary structure of human plasma fibronectin: Conformational change induced by calf alveolar heparan sulfates. Biochemistry 1985, 24, 2661–2667. [Google Scholar] [CrossRef]
- Cheng, S.S.; Chittur, K.K.; Sukenik, C.N.; Culp, L.A.; Lewandowska, K. The Conformation of Fibronectin on Self-Assembled Monolayers with Different Surface-Composition—An Ftir/Atr Study. J. Colloid Interf. Sci. 1994, 162, 135–143. [Google Scholar] [CrossRef]
- Sticht, H.; Pickford, A.R.; Potts, J.R.; Campbell, I.D. Solution structure of the glycosylated second type 2 module of fibronectin. J. Mol. Biol. 1998, 276, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Potts, J.R.; Campbell, I.D. Fibronectin structure and assembly. Curr. Opin. Cell Biol. 1994, 6, 648–655. [Google Scholar] [CrossRef]
- Afara, N. Modification of a Gold Surface with Mixed Alkanethiol Self-Assembled-Monolayers and Fibronectin: Design of Surfaces for Controlled Cell/Surface Interactions. Master’s Thesis, McGill University, Montreal, QC, Canada, 2009. [Google Scholar]
- Wnek, G.E.; Bowlin, G.L. Encyclopedia of Biomaterials and Biomedical Engineering; Informa Healthcare USA: New York, NY, USA, 2008. [Google Scholar]
- Hynes, R.O. Integrins: Versatility, modulation, and signaling in cell adhesion. Cell 1992, 69, 11–25. [Google Scholar] [CrossRef]
- Bose, S.; Robertson, S.F.; Bandyopadhyay, A. Surface modification of biomaterials and biomedical devices using additive manufacturing. Acta Biomater. 2018, 66, 6–22. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Wang, T.; Li, F.; Mao, X. Surface modifications of biomaterials in different applied fields. RSC Adv. 2023, 13, 20495–20511. [Google Scholar] [CrossRef] [PubMed]
- Inuzuka, N.; Shobayashi, Y.; Tateshima, S.; Sato, Y.; Ohba, Y.; Ekdahl, K.N.; Nilsson, B.; Teramura, Y. Stent coating containing a charged silane coupling agent that regulates protein adsorption to confer antithrombotic and cell-adhesion properties. Sci. Rep. 2024, 14, 15178. [Google Scholar] [CrossRef]
- Baneyx, G.; Baugh, L.; Vogel, V. Coexisting conformations of fibronectin in cell culture imaged using fluorescence resonance energy transfer. Proc. Natl. Acad. Sci. USA 2001, 98, 14464–14468. [Google Scholar] [CrossRef]
- Hermann, R.; Walther, P.; Muller, M. Immunogold labeling in scanning electron microscopy. Histochem. Cell Biol. 1996, 106, 356. [Google Scholar] [CrossRef] [PubMed]
- Bozzola, J.J.; Russell, L.D. Electron Microscopy: Principles and Techniques for Biologists, 2nd ed.; Jones and Bartlett: Sudbury, MA, USA, 1999; Volume 670, p. 23. [Google Scholar]
- Yamada, K.M.; Geiger, B. Molecular interactions in cell adhesion complexes. Curr. Opin. Cell Biol. 1997, 9, 76–85. [Google Scholar] [CrossRef]
- Cukierman, E.; Pankov, R.; Stevens, D.R.; Yamada, K.M. Taking cell-matrix adhesions to the third dimension. Science 2001, 294, 1708–1712. [Google Scholar] [CrossRef]
- Cavalcanti-Adam, E.A.; Volberg, T.; Micoulet, A.; Kessler, H.; Geiger, B.; Spatz, J.P. Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands. Biophys. J. 2007, 92, 2964–2974. [Google Scholar] [CrossRef] [PubMed]
- Le Saux, G.; Magenau, A.; Gunaratnam, K.; Kilian, K.A.; Bocking, T.; Gooding, J.J.; Gaus, K. Spacing of integrin ligands influences signal transduction in endothelial cells. Biophys. J. 2011, 101, 764–773. [Google Scholar] [CrossRef]
- Geiger, B.; Bershadsky, A.; Pankov, R.; Yamada, K.M. Transmembrane crosstalk between the extracellular matrix and the cytoskeleton. Nat. Rev. Mol. Cell Biol. 2001, 2, 793–805. [Google Scholar] [CrossRef]
- Massia, S.P.; Hubbell, J.A. An RGD spacing of 440 nm is sufficient for integrin alpha V beta 3-mediated fibroblast spreading and 140 nm for focal contact and stress fiber formation. J. Cell Biol. 1991, 114, 1089–1100. [Google Scholar] [CrossRef] [PubMed]
- Hughes, R.C.; Pena, S.D.; Clark, J.; Dourmashkin, R.R. Molecular requirements for adhesion and spreading of hamster fibroblasts. Exp. Cell Res. 1979, 121, 307–314. [Google Scholar] [CrossRef] [PubMed]
Secondary Structure Element | Peak Position (cm−1) |
---|---|
β sheet | 1618 |
β sheet | 1625 |
β sheet | 1630 |
β sheet | 1638 |
random coil | 1648 |
α helix | 1655 |
β turn | 1662 |
β turn | 1670 |
β sheet | 1677 |
β turn | 1685 |
β turn | 1690 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dadafarin, H.; Konkov, E.; Vali, H.; Ali, I.; Omanovic, S. Modification of 316L Stainless Steel, Nickel Titanium, and Cobalt Chromium Surfaces by Irreversible Immobilization of Fibronectin: Towards Improving the Coronary Stent Biocompatibility. Molecules 2024, 29, 4927. https://doi.org/10.3390/molecules29204927
Dadafarin H, Konkov E, Vali H, Ali I, Omanovic S. Modification of 316L Stainless Steel, Nickel Titanium, and Cobalt Chromium Surfaces by Irreversible Immobilization of Fibronectin: Towards Improving the Coronary Stent Biocompatibility. Molecules. 2024; 29(20):4927. https://doi.org/10.3390/molecules29204927
Chicago/Turabian StyleDadafarin, Hesam, Evgeny Konkov, Hojatollah Vali, Irshad Ali, and Sasha Omanovic. 2024. "Modification of 316L Stainless Steel, Nickel Titanium, and Cobalt Chromium Surfaces by Irreversible Immobilization of Fibronectin: Towards Improving the Coronary Stent Biocompatibility" Molecules 29, no. 20: 4927. https://doi.org/10.3390/molecules29204927
APA StyleDadafarin, H., Konkov, E., Vali, H., Ali, I., & Omanovic, S. (2024). Modification of 316L Stainless Steel, Nickel Titanium, and Cobalt Chromium Surfaces by Irreversible Immobilization of Fibronectin: Towards Improving the Coronary Stent Biocompatibility. Molecules, 29(20), 4927. https://doi.org/10.3390/molecules29204927