MicroED: Unveiling the Structural Chemistry of Plant Biomineralisation
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Cultivation of A. maritima Plants
4.2. SEM Visualisation of Crystalline Material
4.3. MicroED Measurements
4.4. Determination of the Crystal Structures and Computational Studies
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baluška, F.; Mancuso, S. Plants, climate and humans: Plant intelligence changes everything. EMBO Rep. 2020, 21, e50109. [Google Scholar] [CrossRef]
- Schulze, E.-D.; Beck, E.; Müller-Hohenstein, K. Plant Ecology; Springer: New York, NY, USA, 2010. [Google Scholar]
- Schlesinger, W.H.; Bernhardt, E.S. Biogeochemistry: An Analysis of Global Change, 4th ed.; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Hudson, N. Biomineralization; Murphy and Moore Publishing: New York, NY, USA, 2023. [Google Scholar]
- He, H.; Veneklaas, E.J.; Kuo, J.; Lambers, H. Physiological and ecological significance of biomineralization in plants. Trends Plant Sci. 2014, 19, 166–174. [Google Scholar] [CrossRef]
- Franceschi, V.R.; Nakata, P.A. Calcium oxalate in plants: Formation and function. Annu. Rev. Plant Biol. 2005, 56, 41–71. [Google Scholar] [CrossRef]
- Prychid, C. Calcium oxalate crystals in monocotyledons: A review of their structure and systematics. Ann. Bot. 1999, 84, 725–739. [Google Scholar] [CrossRef]
- Cuéllar-Cruz, M.; Pérez, K.S.; Mendoza, M.E.; Moreno, A. Biocrystals in plants: A short review on biomineralization processes and the role of phototropins into the uptake of calcium. Crystals 2020, 10, 591. [Google Scholar] [CrossRef]
- Coté, G. G Diversity and distribution of idioblasts producing calcium oxalate crystals in Dieffenbachia seguine (Araceae). Am. J. Bot. 2009, 96, 1245–1254. [Google Scholar] [CrossRef]
- Ensikat, H.-J.; Weigend, M. Distribution of biominerals and mineral-organic composites in plant trichomes. Front. Bioeng. Biotechnol. 2021, 9, 763690. [Google Scholar] [CrossRef]
- Mondragón, M.; Elizalde, L.E.; Rejón, V. Biominerals in the leaves of Agave karwinskii Zucc. Results Chem. 2022, 4, 100309. [Google Scholar] [CrossRef]
- Ensikat, H.-J.; Mustafa, A.; Weigend, M. Complex patterns of multiple biomineralization in single-celled plant trichomes of the Loasaceae. Am. J. Bot. 2017, 104, 195–206. [Google Scholar] [CrossRef]
- He, H.; Bleby, T.M.; Veneklaas, E.J.; Lambers, H.; Kuo, J. Morphologies and elemental compositions of calcium crystals in phyllodes and branchlets of Acacia robeorum (Leguminosae: Mimosoideae). Ann. Bot. 2012, 109, 887–896. [Google Scholar] [CrossRef]
- Ostroumova, T.; Zakharova, E. The study of crystals in the fruits of some apiaceae species using Energy-Dispersive Spectroscopy. Int. J. Plant Biol. 2023, 14, 347–360. [Google Scholar] [CrossRef]
- Raeski, P.A.; Heiden, G.; Novatski, A.; Raman, V.; Khan, I.A.; Manfron, J. Calcium oxalate crystal macropattern and its usefulness in the taxonomy of Baccharis (Asteraceae). Microsc. Res. Tech. 2023, 86, 862–881. [Google Scholar] [CrossRef]
- Lawrie, N.S.; Cuetos, N.M.; Sini, F.; Salam, G.A.; Ding, H.; Vancolen, A.; Nelson, J.M.; Erkens, R.H.J.; Perversi, G. Systematic review on raphide morphotype calcium oxalate crystals in angiosperms. AoB Plants 2023, 15, plad031. [Google Scholar] [CrossRef]
- Wierzbicka, M.; Begiedzia, M.; Bodzon, K.; Bemowska-Kałabun, O.; Brzost, K.; Wróbel, M.; Trzybiński, D.; Woźniak, K. Role of the salt glands of Armeria maritima (halophyte) in removal of lead from tissues. Environ. Sci. Poll. Res. 2024, 31, 37790–37809. [Google Scholar] [CrossRef]
- Sterling, C. Crystalline silica in plants. Am. J. Bot. 1967, 54, 840–844. [Google Scholar] [CrossRef]
- Farmer, E.E. Leaf Defence; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- DiMasi, E.; Gower, L.B. Biomineralization Sourcebook: Characterization of Biominerals and Biomimetic Materials, 1st ed.; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Amato, I. The secret life of plant crystals. Chem. Eng. News 2006, 84, 26–27. [Google Scholar] [CrossRef]
- Karabourniotis, G.; Liakopoulos, G.; Bresta, P.; Nikolopoulos, D. The optical properties of leaf structural elements and their contribution to photosynthetic performance and photoprotection. Plants 2021, 10, 1455. [Google Scholar] [CrossRef]
- Trembath-Reichert, E.; Wilson, J.P.; McGlynn, S.E.; Fischer, W.W. Four hundred million years of silica biomineralization in land plants. Proc. Natl. Acad. Sci. USA 2015, 112, 5449–5454. [Google Scholar] [CrossRef]
- Brog, J.-P.; Chanez, C.-L.; Crochet, A.; Fromm, K.M. Polymorphism, what it is and how to identify it: A systematic review. RSC Adv. 2013, 3, 16905. [Google Scholar] [CrossRef]
- Sanii, R.; Patyk-Kaźmierczak, E.; Hua, C.; Darwish, S.; Pham, T.; Forrest, K.A.; Space, B.; Zaworotko, M.J. Toward an understanding of the propensity for crystalline hydrate formation by molecular compounds. Part 2. Cryst. Growth Des. 2021, 21, 4927–4939. [Google Scholar] [CrossRef]
- Waseda, Y.; Matsubara, E.; Shinoda, K. X-ray Diffraction Crystallography: Introduction, Examples and Solved Problems; Springer: New York, NY, USA, 2011. [Google Scholar]
- Shih, K. X-ray Diffraction: Structure, Principles and Applications; Nova Science Publishers Inc.: Hauppauge, NY, USA, 2013. [Google Scholar]
- Ladd, M.; Palmer, R. Structure Determination by X-ray Crystallography: Analysis by X-rays and Neutrons, 5th ed.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Gruene, T.; Mugnaioli, E. 3D Electron Diffraction for chemical analysis: Instrumentation Developments and Innovative Applications. Chem. Rev. 2021, 121, 11823–11834. [Google Scholar] [CrossRef]
- Saha, A.; Nia, S.S.; Rodríguez, J.A. Electron Diffraction of 3D molecular crystals. Chem. Rev. 2022, 122, 13883–13914. [Google Scholar] [CrossRef]
- Akase, Z.; Higo, M.; Shimada, K.; Sato, T.; Magara, H.; Shindo, D.; Ohno, N. Advanced Electron Microscopy for materials science. Mater. Trans. 2021, 62, 1589–1595. [Google Scholar] [CrossRef]
- Danelius, E.; Patel, K.; Gonzalez, B.; Gonen, T. MicroED in drug discovery. Curr. Opin. Struct. Biol. 2023, 79, 102549. [Google Scholar] [CrossRef]
- Nguyen, C.; Gonen, T. Beyond protein structure determination with MicroED. Curr. Opin. Struct. Biol. 2020, 64, 51–58. [Google Scholar] [CrossRef]
- Ponce, A.; Aguilar, J.A.; Tate, J.; Yacamán, M.J. Advances in the electron diffraction characterization of atomic clusters and nanoparticles. Nanoscale Adv. 2021, 3, 311–325. [Google Scholar] [CrossRef]
- Jones, C.G.; Martynowicz, M.W.; Hattne, J.; Fulton, T.J.; Stoltz, B.M.; Rodriguez, J.A.; Nelson, H.M.; Gonen, T. The CryoEM method MicroED as a powerful tool for small molecule structure determination. ACS Cent. Sci. 2018, 4, 1587–1592. [Google Scholar] [CrossRef]
- Luo, Y.; Smeets, S.; Sun, J.; Yang, W.; Zou, X. High-throughput phase elucidation of polycrystalline materials using serial rotation electron diffraction. Nat. Chem. 2023, 15, 483–490. [Google Scholar] [CrossRef]
- Wolff, A.M.; Young, I.D.; Sierra, R.G.; Brewster, A.S.; Martynowicz, M.W.; Nango, E.; Sugahara, M.; Nakane, T.; Ito, K.; Aquila, A.; et al. Comparing serial X-ray crystallography and microcrystal electron diffraction (MicroED) as methods for routine structure determination from small macromolecular crystals. IUCrJ 2020, 7, 306–323. [Google Scholar] [CrossRef]
- Clabbers, M.T.B.; Shiriaeva, A.; Gonen, T. MicroED: Conception, practice and future opportunities. IUCrJ 2022, 9, 169–179. [Google Scholar] [CrossRef]
- Gallenito, M.J.; Gonen, T. Studying membrane proteins with MicroED. Biochem. Soc. Trans. 2022, 50, 231–239. [Google Scholar] [CrossRef]
- Wagner, A.; Merkelbach, J.; Samperisi, L.; Pinsk, N.; Kariuki, B.M.; Hughes, C.E.; Harris, K.D.M.; Palmer, B.A. Structure Determination of Biogenic Crystals Directly from 3D Electron Diffraction Data. Cryst. Growth Des. 2024, 24, 899. [Google Scholar] [CrossRef]
- Wierzbicka, M.; Abratowska, A.; Bemowska-Kałabun, O.; Panufnik-Mędrzycka, D.; Wąsowicz, P.; Wróbel, M.; Trzybiński, D.; Woźniak, K. Micro-evolutionary processes in Armeria maritima at metalliferous sites. Int. J. Mol. Sci. 2023, 24, 4650. [Google Scholar] [CrossRef]
- Purmale, L.; Jēkabsone, A.; Andersone-Ozola, U.; Ievinsh, G. Salinity tolerance, ion accumulation potential and osmotic adjustment in vitro and in planta of different Armeria maritima accessions from a dry coastal meadow. Plants 2022, 11, 2570. [Google Scholar] [CrossRef]
- Fahn, A. Structure and function of secretory cells. Adv. Botan. Res 2000, 31, 37–75. [Google Scholar]
- Dassanayake, M.; Larkin, J.C. Making plants break a sweat: The structure, function, and evolution of plant salt glands. Front. Plant Sci. 2017, 8, 406. [Google Scholar] [CrossRef]
- Abrahams, S.C.; Bernstein, J.L. Accuracy of an automatic diffractometer. Measurement of the sodium chloride structure factors. Acta Crystallogr. 1965, 18, 926–932. [Google Scholar] [CrossRef]
- Wyckoff, R.W.G. Rocksalt structure. In Crystal Structures, 2nd ed.; Interscience: New York, NY, USA, 1963; Volume 1. [Google Scholar]
- Nord, A.G. Refinement of the crystal structure of thenardite, Na2SO4(v). Acta Chim. Scand. 1973, 27, 814–822. [Google Scholar] [CrossRef]
- Boeyens, J.C.A.; Iccharam, V.V.H. Redetermination of the crystal structure of calcium sulphate dihydratem CaSO4*2H2O. Z. Krist. 2002, 217, 9–10. [Google Scholar]
- Khouchen, M.; Klar, P.B.; Chintakindi, H.; Suresh, A.; Palatinus, L. Optimal estimated standard uncertainties of reflection intensities for kinematical refinement from 3D electron diffraction data. Acta Crystallogr. Sect. Found. Adv. 2023, 79, 427–439. [Google Scholar] [CrossRef]
- Petříček, V.; Palatinus, L.; Plášil, J.; Dušek, M. Jana2020—A new version of the crystallographic computing system Jana. Z. Krist.-Cryst. Mater. 2023, 238, 271–282. [Google Scholar] [CrossRef]
- Palatinus, L.; Brázda, P.; Boullay, P.; Perez, O.; Klementová, M.; Petit, S.; Eigner, V.; Zaarour, M.; Mintova, S. Hydrogen positions in single nanocrystals revealed by electron diffraction. Science 2017, 355, 166–169. [Google Scholar] [CrossRef]
- Kulik, M.; Dominiak, P.M. Electron density is not spherical: The many applications of the transferable aspherical atom model. Comput. Struct. Biotechnol. J. 2022, 20, 6237–6243. [Google Scholar] [CrossRef]
- Steiger, M.; Asmussen, S. Crystallization of sodium sulfate phases in porous materials: The phase diagram Na2SO4–H2O and the generation of stress. Geochim. Cosmochim. Acta 2008, 72, 4291–4306. [Google Scholar] [CrossRef]
- Reginato, M.; Luna, V.; Papenbrock, J. Current knowledge about Na2SO4 effects on plants: What is different in comparison to NaCl? J. Plant Res. 2021, 134, 1159–1179. [Google Scholar] [CrossRef]
- Ferri, A.; Lancilli, C.; Maghrebi, M.; Lucchini, G.; Sacchi, G.A.; Nocito, F.F. The sulfate supply maximizing arabidopsis shoot growth is higher under long- than short-term exposure to cadmium. Front. Plant Sci. 2017, 8, 854. [Google Scholar] [CrossRef]
- Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 125–132. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Neese, F. The ORCA program system. WIREs Comput. Mol. Sci. 2012, 2, 73–78. [Google Scholar] [CrossRef]
- Neese, F. Software update: The ORCA program system—Version 5.0. WIREs Comput. Mol. Sci. 2022, 12, e1606. [Google Scholar] [CrossRef]
- Pritchard, B.P.; Altarawy, D.; Didier, B.; Gibson, T.D.; Windus, T.L. New basis set exchange: An open, up-to-date resource for the molecular sciences community. J. Chem. Inf. Model. 2019, 59, 4814–4820. [Google Scholar] [CrossRef]
- Chai, J.-D.; Head-Gordon, M. Systematic optimization of long-range corrected hybrid density functionals. J. Chem. Phys. 2008, 128, 084106. [Google Scholar] [CrossRef]
- Helmich-Paris, B. A trust-region augmented Hessian implementation for restricted and unrestricted Hartree–Fock and Kohn–Sham methods. J. Chem. Phys. 2021, 154, 164104. [Google Scholar] [CrossRef]
- Kleemiss, F.; Dolomanov, O.; Bodensteiner, M.; Peyerimhoff, N.; Midgley, L.; Bourhis, L.J.; Genoni, A.; Malaspina, L.A.; Jayatilaka, D.; Spencer, J.L.; et al. Accurate crystal structures and chemical properties from NoSpherA2. Chem. Sci. 2021, 12, 1675–1692. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
Compound | Sodium Chloride | Sodium Sulphate | Calcium Sulphate Dihydrate |
---|---|---|---|
Empirical formula | NaCl | Na2SO4 | CaH4O6S |
Formula weight | 58.44 | 142.04 | 172.17 |
Temperature/K | 80 | 80 | 80 |
Crystal system | cubic | orthorhombic | monoclinic |
Space group | Fm-3m | Fddd | C2/c |
a/Å | 5.50(10) | 5.600(10) | 6.10(10) |
b/Å | 5.50(10) | 9.600(10) | 14.70(10) |
c/Å | 5.50(10) | 12.000(10) | 5.60(10) |
α/° | 90 | 90 | 90 |
β/° | 90 | 90 | 114.30 |
γ/° | 90 | 90 | 90 |
Volume/Å3 | 166(9) | 645.1(14) | 458(12) |
Z | 4 | 8 | 4 |
ρcalcg/cm3 | 2.333 | 2.925 | 2.499 |
μ/mm−1 | 0.000 | 0.000 | 0.000 |
F(000) | 38.0 | 181.0 | 115.0 |
Radiation | λ = 0.0251 Å | λ = 0.0251 Å | λ = 0.0251 Å |
2Θ range for data collection/° | 0.452 to 1.734 | 0.32 to 2.542 | 0.31 to 2.526 |
Index ranges | −5 ≤ h ≤ 5, −6 ≤ k ≤ 6, −6 ≤ l ≤ 6 | −9 ≤ h ≤ 9, −16 ≤ k ≤ 16, −19 ≤ l ≤ 19 | −10 ≤ h ≤ 10, −25 ≤ k ≤ 25, −9 ≤ l ≤ 9 |
Reflections collected | 219 | 2194 | 3084 |
Independent reflections | 21 [Rint = 0.3562, Rsigma = 0.2103] | 428 [Rint = 0.2203, Rsigma = 0.1617] | 995 [Rint = 0.2357, Rsigma = 0.2551] |
Data/restraints/parameters | 21/0/4 | 428/0/19 | 995/2/47 |
Goodness-of-fit on F2 | 1.597 | 1.294 | 1.117 |
Final R indices [I ≥ 2σ (I)] | R1 = 0.1341, wR2 = 0.3094 | R1 = 0.1247, wR2 = 0.3762 | R1 = 0.1510, wR2 = 0.3920 |
Final R indices [all data] | R1 = 0.2009, wR2 = 0.4069 | R1 = 0.1634, wR2 = 0.4066 | R1 = 0.2418, wR2 = 0.4551 |
Largest diff. peak/hole/Å−2 | 0.20/−0.41 | 0.27/−0.19 | 0.28/−0.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trzybiński, D.; Ziemniak, M.; Olech, B.; Sutuła, S.; Góral, T.; Bemowska-Kałabun, O.; Brzost, K.; Wierzbicka, M.; Woźniak, K. MicroED: Unveiling the Structural Chemistry of Plant Biomineralisation. Molecules 2024, 29, 4916. https://doi.org/10.3390/molecules29204916
Trzybiński D, Ziemniak M, Olech B, Sutuła S, Góral T, Bemowska-Kałabun O, Brzost K, Wierzbicka M, Woźniak K. MicroED: Unveiling the Structural Chemistry of Plant Biomineralisation. Molecules. 2024; 29(20):4916. https://doi.org/10.3390/molecules29204916
Chicago/Turabian StyleTrzybiński, Damian, Marcin Ziemniak, Barbara Olech, Szymon Sutuła, Tomasz Góral, Olga Bemowska-Kałabun, Krzysztof Brzost, Małgorzata Wierzbicka, and Krzysztof Woźniak. 2024. "MicroED: Unveiling the Structural Chemistry of Plant Biomineralisation" Molecules 29, no. 20: 4916. https://doi.org/10.3390/molecules29204916
APA StyleTrzybiński, D., Ziemniak, M., Olech, B., Sutuła, S., Góral, T., Bemowska-Kałabun, O., Brzost, K., Wierzbicka, M., & Woźniak, K. (2024). MicroED: Unveiling the Structural Chemistry of Plant Biomineralisation. Molecules, 29(20), 4916. https://doi.org/10.3390/molecules29204916