Comprehensive Analysis of Sulfated Flavonoids in Eclipta prostrata for Quality Evaluation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation of Sulfated Flavonoids
2.2. LC–MS Analysis of the Extracts of the E. prostrata Specimens
3. Materials and Methods
3.1. Crude Drug Specimens and Reagents
3.2. Apparatus
3.3. Extraction of Constituents from E. prostrata
3.4. Synthesis of Sulfate Conjugates
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feng, L.; Zhai, Y.Y.; Xu, J.; Yao, W.F.; Cao, Y.D.; Cheng, F.F.; Bao, B.H.; Zhang, L. A review on traditional uses, phytochemistry and pharmacology of Eclipta prostrata (L.) L. J. Ethnopharmacol. 2019, 245, 112109. [Google Scholar] [CrossRef] [PubMed]
- Jahan, R.; Al-Nahain, A.; Majumder, S.; Rahmatullah, M. Ethnopharmacological significance of Eclipta alba (L.) hassk. (Asteraceae). Int. Sch. Res. Not. 2014, 2014, 385969. [Google Scholar] [CrossRef] [PubMed]
- Timalsina, D.; Devkota, H.P. Eclipta prostrata (L.) L. (Asteraceae): Ethnomedicinal uses, chemical constituents, and biological activities. Biomolecules 2021, 11, 1738. [Google Scholar] [CrossRef] [PubMed]
- Seo, Y.J.; Kil, H.W.; Rho, T.; Yoon, K.D. A new coumestan glucoside from Eclipta prostrata. Nat. Prod. Sci. 2020, 26, 289–300. [Google Scholar] [CrossRef]
- Lee, K.Y.; Ha, N.R.; Kim, T.B.; Kim, Y.C.; Sung, S.H. Characterization of triterpenoids, flavonoids and phenolic acids in Eclipta prostrata by high-performance liquid chromatography/diode-array detector/electrospray ionization with multi-stage tandem mass spectroscopy. Nat. Prod. Sci. 2010, 16, 164–168. [Google Scholar]
- Chung, I.M.; Rajakumar, G.; Lee, J.H.; Kim, S.H.; Thiruvengadam, M. Ethnopharmacological uses, phytochemistry, biological activities, and biotechnological applications of Eclipta prostrata. Appl. Microbiol. Biotechnol. 2017, 101, 5247–5257. [Google Scholar] [CrossRef] [PubMed]
- Miao, N.J.; Xie, H.-Y.X.; Xu, D.; Yin, J.; Wang, Y.-Z.; Wang, B.; Yin, F.; Zhou, Z.L.; Cheng, Q.; Chen, P.P.; et al. Caspase-11 promotes renal fibrosis by stimulating IL-1β maturation via activating caspase-1. Acta Pharmacol. Sin. 2019, 40, 790–800. [Google Scholar] [CrossRef]
- Ha, N.M.; Hop, N.Q.; Son, N.T. Wedelolactone: A molecule of interests. Fitoterapia 2023, 164, 105355. [Google Scholar] [CrossRef]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China. Available online: https://ydz.chp.org.cn/#/item?bookId=1&entryId=596 (accessed on 29 August 2024).
- He, Z.; Liu, H.; Gui, S.; Liu, H.; Yang, J.; Guo, Q.; Ye, X.; Zhang, B. Procoagulant substances and mechanisms of hemostatic herb Eclipta alba. Process Biochem. 2022, 122, 103–114. [Google Scholar] [CrossRef]
- Barron, D.; Varin, L.; Ibrahim, R.K.; Harborne, J.B.; Williams, C.A. Sulphated flavonoids—An update. Phytochemistry 1988, 27, 2375–2395. [Google Scholar] [CrossRef]
- Correia-da-Silva, M.; Sousa, E.; Pinto, M.M.M. Emerging sulfated flavonoids and other polyphenols as drugs: Nature as an inspiration. Med. Res. Rev. 2014, 34, 223–279. [Google Scholar] [CrossRef]
- Barron, D.; Ibrahim, R.K. Synthesis of flavonoid sulfates: 1. stepwise sulfation of positions 3, 7, and 4 using N,N′-dicyclohexylcarbodiimide and tetrabutylammonium hydrogen sulfate. Tetrahedron 1987, 43, 5197–5202. [Google Scholar] [CrossRef]
- Hayasaka, N.; Shimizu, N.; Komoda, T.; Mohri, S.; Tsushida, T.; Eitsuka, T.; Miyazawa, T.; Nakagawa, K. Absorption and metabolism of luteolin in rats and humans in relation to in vitro anti-inflammatory effects. J. Agric. Food Chem. 2018, 66, 11320–11329. [Google Scholar] [CrossRef] [PubMed]
- Kleinenkuhnen, N.; Büchel, F.; Gerlich, S.C.; Kopriva, S.; Metzger, S. A novel method for identification and quantification of sulfated flavonoids in plants by neutral loss scan mass spectrometry. Front. Plant Sci. 2019, 10, 885. [Google Scholar] [CrossRef] [PubMed]
- Teles, Y.C.F.; Souza, M.S.R.; Souza, M.F.V. Sulphated flavonoids: Biosynthesis, structures, and biological activities. Molecules 2018, 23, 480. [Google Scholar] [CrossRef]
- Teles, Y.C.F.; Horta, C.; Agra, M.; Siheri, W.; Boyd, M.; Igoli, J.O.; Gray, A.I.; de Souza, M. New sulphated flavonoids from Wissadula periplocifolia (L.) C. Presl (Malvaceae). Molecules 2015, 20, 20161–20172. [Google Scholar] [CrossRef] [PubMed]
- Hirschmann, F.; Krause, F.; Papenbrock, J. The multi-protein family of sulfotransferases in plants: Composition, occurrence, substrate specificity, and functions. Front. Plant Sci. 2014, 5, 556. [Google Scholar] [CrossRef] [PubMed]
- Hashiguchi, T.; Sakakibara, Y.; Hara, Y.; Shimohira, T.; Kurogi, K.; Akashi, R.; Liu, M.C.; Suiko, M. Identification and characterization of a novel kaempferol sulfotransferase from Arabidopsis thaliana. Biochem. Biophys. Res. Commun. 2013, 434, 829–835. [Google Scholar] [CrossRef] [PubMed]
- Varin, L.; DeLuca, V.; Ibrahim, R.K.; Brisson, N. Molecular characterization of two plant flavonol sulfotransferases. Proc. Natl. Acad. Sci. USA 1992, 89, 1286–1290. [Google Scholar] [CrossRef] [PubMed]
- Varin, L. Flavonoid sulfation: Phytochemistry, enzymology and molecular biology. In Phenolic Metabolism in Plants; Springer: Boston, MA, USA, 1992; pp. 233–254. [Google Scholar]
- Grignon-Dubois, M.; Rezzonico, B.; Blanchet, H. Phenolic fingerprints of the Pacific seagrass Phyllospadix torreyi—Structural characterization and quantification of undescribed flavonoid sulfates. Phytochemistry 2022, 201, 113256. [Google Scholar] [CrossRef] [PubMed]
Position | Compound | ||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
3 | 6.73 (s) | 6.69 (s) | 6.78 (s) | 6.83 (s) | 6.85 (s) | 6.81 (s) | 6.66 (s) |
6 | 6.51 (d, 1.9) | 6.18 (d, 1.9) | 6.19 (d, 1.9) | 6.56 (d, 1.9) | 6.20 (d, 1.9) | 6.53 (d, 1.9) | 6.19 (d, 2.3) |
8 | 7.02 (d, 1.9) | 6.46 (d, 1.9) | 6.48 (d, 1.9) | 7.01 (d, 1.9) | 6.50 (d, 1.9) | 7.03 (d, 1.9) | 6.43 (d, 2.3) |
2′ | 7.45 (d, 2.2) | 7.88 (d, 2.3) | 7.46 (d, 2.0) | 7.95 (d, 8.8) | 7.99 (d, 9.0) | 7.47 (d, 2.3) | 8.07 (d, 2.3) |
3′ | - | - | - | 6.92 (d, 8.8) | 7.34 (d, 9.0) | - | - |
4′-OMe | - | - | - | - | - | 3.86 (s) | 3.84 (s) |
5′ | 6.88 (d, 8.0) | 6.97 (d, 8.6) | 7.42 (d, 9.0) | 6.92 (d, 8.8) | 7.34 (d, 9.0) | 7.08 (d, 8.8) | 7.13 (d, 8.8) |
6′ | 7.44 (dd, 2.2, 8.0) | 7.68 (dd, 2.3, 8.6) | 7.47 (d, 2.0, 9.0) | 7.95 (d, 8.8) | 7.99 (d, 9.0) | 7.56 (dd, 2.3, 8.8) | 7.74 (dd, 2.3, 8.8) |
Position | Compound | ||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
2 | 164.3 | 163.3 | 163.2 | 164.2 | 163.3 | 163.9 | 163.4 |
3 | 103.0 | 103.2 | 104.2 | 102.9 | 104.0 | 103.6 | 103.5 |
4 | 182.0 | 181.6 | 181.7 | 182.0 | 181.7 | 182.0 | 181.5 |
5 | 160.5 | 161.4 | 161.4 | 160.4 | 161.4 | 159.6 | 161.4 |
6 | 102.1 | 98.8 | 98.8 | 102.2 | 98.8 | 102.1 | 98.9 |
7 | 159.5 | 164.1 | 164.2 | 159.5 | 164.2 | 160.4 | 164.2 |
8 | 97.6 | 93.8 | 93.9 | 97.7 | 94.0 | 97.6 | 93.8 |
4a | 105.6 | 103.7 | 103.8 | 105.6 | 103.7 | 105.6 | 103.7 |
8a | 156.3 | 157.2 | 157.3 | 156.3 | 157.3 | 156.3 | 157.2 |
1′ | 121.3 | 121.5 | 126.2 | 120.9 | 124.6 | 122.8 | 122.2 |
2′ | 113.3 | 120.6 | 114.5 | 128.5 | 127.5 | 112.9 | 118.6 |
3′ | 145.7 | 141.4 | 148.8 | 116.0 | 120.0 | 146.9 | 142.9 |
4′ | 149.8 | 152.9 | 144.6 | 161.3 | 156.9 | 151.2 | 153.8 |
4′-OMe | - | - | - | - | - | 55.7 | 55.8 |
5′ | 116.1 | 117.5 | 122.1 | 116.3 | 120.0 | 112.2 | 112.7 |
6′ | 119.1 | 123.4 | 118.0 | 128.5 | 127.5 | 118.7 | 122.4 |
Compounds | Contents (% of Dry Plant) | |||||
---|---|---|---|---|---|---|
Sample 1 | Sample 2 | Sample 3 | Sample 4 | Sample 5 | Sample 6 | |
Luteolin 7-sulfate (1) | 0.168 ± 0.002 | 0.214 ± 0.024 | 0.059 ± 0.008 | 0.084 ± 0.013 | 0.144 ± 0.009 | 0.072 ± 0.007 |
Luteolin 3′-sulfate (2) | - | 0.036 ± 0.005 | - | 0.016 ± 0.005 | 0.014 ± 0.005 | 0.026 ± 0.005 |
Apigenin 7-sulfate (4) | 0.237 ± 0.011 | 0.047 ± 0.005 | 0.119 ± 0.008 | 0.074 ± 0.005 | 0.055 ± 0.008 | 0.037 ± 0.005 |
Diosmetin 7-sulfate (6) | 0.004 ± 0.001 | 0.013 ± 0.002 | 0.005 ± 0.001 | 0.037 ± 0.005 | 0.027 ± 0.006 | 0.016 ± 0.003 |
Diosmetin 3′-sulfate (7) | 0.006 ± 0.001 | 0.004 ± 0.002 | 0.013 ± 0.001 | 0.016 ± 0.001 | 0.005 ± 0.001 | 0.021 ± 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sato, R.; Nishidono, Y.; Tanaka, K. Comprehensive Analysis of Sulfated Flavonoids in Eclipta prostrata for Quality Evaluation. Molecules 2024, 29, 4888. https://doi.org/10.3390/molecules29204888
Sato R, Nishidono Y, Tanaka K. Comprehensive Analysis of Sulfated Flavonoids in Eclipta prostrata for Quality Evaluation. Molecules. 2024; 29(20):4888. https://doi.org/10.3390/molecules29204888
Chicago/Turabian StyleSato, Ryunosuke, Yuto Nishidono, and Ken Tanaka. 2024. "Comprehensive Analysis of Sulfated Flavonoids in Eclipta prostrata for Quality Evaluation" Molecules 29, no. 20: 4888. https://doi.org/10.3390/molecules29204888
APA StyleSato, R., Nishidono, Y., & Tanaka, K. (2024). Comprehensive Analysis of Sulfated Flavonoids in Eclipta prostrata for Quality Evaluation. Molecules, 29(20), 4888. https://doi.org/10.3390/molecules29204888