Snowflake Iron Oxide Architectures: Synthesis and Electrochemical Applications
Abstract
:1. Introduction
2. Results and Discussion
2.1. Iron Oxide Powder Characterization
2.2. Electrochemical Characterization of Obtained Materials
3. Experimental Section
3.1. Synthesis
3.2. Material Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wagner, C.; Hauffe, K. The Stationary State of Catalysts in Homogeneous Reactions. Ztschr. Elektrochem. 1938, 33, 172. [Google Scholar]
- Shervedani, R.K.; Amini, A. Direct Electrochemistry of Dopamine on Gold-Agaricus Bisporus Laccase Enzyme Electrode: Characterization and Quantitative Detection. Bioelectrochemistry 2012, 84, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Choi, J.H.; Liu, L.; Oh, B.K.; Park, S. Optical Sensitivity Comparison of Multiblock Gold-Silver Nanorods toward Biomolecule Detection: Quadrupole Surface Plasmonic Detection of Dopamine. Chem. Mater. 2013, 25, 919–926. [Google Scholar] [CrossRef]
- Saraf, N.; Woods, E.R.; Peppler, M.; Seal, S. Highly Selective Aptamer Based Organic Electrochemical Biosensor with Pico-Level Detection. Biosens. Bioelectron. 2018, 117, 40–46. [Google Scholar] [CrossRef]
- Shang, Y.; Liu, F.; Wang, Y.; Li, N.; Ding, B. Enzyme Mimic Nanomaterials and Their Biomedical Applications. ChemBioChem 2020, 21, 2408–2418. [Google Scholar] [CrossRef]
- Jing, Z.; Wu, S. Synthesis and Characterization of Monodisperse Hematite Nanoparticles Modified by Surfactants via Hydrothermal Approach. Mater. Lett. 2004, 58, 3637–3640. [Google Scholar] [CrossRef]
- Lian, J.; Duan, X.; Ma, J.; Peng, P.; Kim, T.; Zheng, W. Hematite (α-Fe2O3) with Various Morphologies: Ionic Liquid-Assisted Synthesis, Formation Mechanism, and Properties. ACS Nano 2009, 3, 3749–3761. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; Das, S.; Mandal, K.; Chaudhuri, S. Synthesis of a α-Fe2O3 Nanocrystal in Its Different Morphological Attributes: Growth Mechanism, Optical and Magnetic Properties. Nanotechnology 2007, 18, 275608. [Google Scholar] [CrossRef]
- Umek, N.; Geršak, B.; Vintar, N.; Šoštarič, M.; Mavri, J. Dopamine Autoxidation Is Controlled by Acidic PH. Front. Mol. Neurosci. 2018, 11, 467. [Google Scholar] [CrossRef]
- Salomäki, M.; Marttila, L.; Kivelä, H.; Ouvinen, T.; Lukkari, J. Effects of PH and Oxidants on the First Steps of Polydopamine Formation: A Thermodynamic Approach. J. Phys. Chem. B 2018, 122, 6314–6327. [Google Scholar] [CrossRef]
- Kujawska, M.; Bhardwaj, S.K.; Mishra, Y.K.; Kaushik, A. Using Graphene-Based Biosensors to Detect Dopamine for Efficient Parkinson’s Disease Diagnostics. Biosensors 2021, 11, 433. [Google Scholar] [CrossRef] [PubMed]
- David Adams, J., Jr. Parkinson’s Disease-Apoptosis and Dopamine Oxidation. Open J. Apoptosis 2012, 1, 18750. [Google Scholar] [CrossRef]
- Mustafa, G.; Ahmad, N.; Baboota, S.; Ali, J.; Ahuja, A. UHPLC/ESI-Q-TOF-MS Method for the Measurement of Dopamine in Rodent Striatal Tissue: A Comparative Effects of Intranasal Administration of Ropinirole Solution over Nanoemulsion. Drug Test. Anal. 2013, 5, 702–709. [Google Scholar] [CrossRef] [PubMed]
- Elizarova, S.; Chouaib, A.A.; Shaib, A.; Hill, B.; Mann, F.; Brose, N.; Kruss, S.; Daniel, J.A. A Fluorescent Nanosensor Paint Detects Dopamine Release at Axonal Varicosities with High Spatiotemporal Resolution. Proc. Natl. Acad. Sci. USA 2022, 119, e2202842119. [Google Scholar] [CrossRef]
- Klein Herenbrink, C.; Støier, J.F.; Reith, W.D.; Dagra, A.; Gregorek, M.A.C.; Cola, R.B.; Patriarchi, T.; Li, Y.; Tian, L.; Gether, U.; et al. Multimodal Detection of Dopamine by Sniffer Cells Expressing Genetically Encoded Fluorescent Sensors. Commun. Biol. 2022, 5, 578. [Google Scholar] [CrossRef]
- Vázquez-Guardado, A.; Barkam, S.; Peppler, M.; Biswas, A.; Dennis, W.; Das, S.; Seal, S.; Chanda, D. Enzyme-Free Plasmonic Biosensor for Direct Detection of Neurotransmitter Dopamine from Whole Blood. Nano Lett. 2019, 19, 449–454. [Google Scholar] [CrossRef]
- Ouellette, M.; Mathault, J.; Niyonambaza, S.D.; Miled, A.; Boisselier, E. Electrochemical Detection of Dopamine Based on Functionalized Electrodes. Coatings 2019, 9, 496. [Google Scholar] [CrossRef]
- Kim, D.S.; Kang, E.S.; Baek, S.; Choo, S.S.; Chung, Y.H.; Lee, D.; Min, J.; Kim, T.H. Electrochemical Detection of Dopamine Using Periodic Cylindrical Gold Nanoelectrode Arrays. Sci. Rep. 2018, 8, 14049. [Google Scholar] [CrossRef]
- Manbohi, A.; Ahmadi, S.H. Sensitive and Selective Detection of Dopamine Using Electrochemical Microfluidic Paper-Based Analytical Nanosensor. Sens. Biosensing Res. 2019, 23, 100270. [Google Scholar] [CrossRef]
- Reddy, S.; Kumara Swamy, B.E.; Jayadevappa, H. CuO Nanoparticle Sensor for the Electrochemical Determination of Dopamine. Electrochim. Acta 2012, 61, 78–86. [Google Scholar] [CrossRef]
- Bacil, R.P.; Chen, L.; Serrano, S.H.P.; Compton, R.G. Dopamine Oxidation at Gold Electrodes: Mechanism and Kinetics near Neutral PH. Phys. Chem. Chem. Phys. 2020, 22, 607–614. [Google Scholar] [CrossRef] [PubMed]
- Sherwood, J.; Xu, Y.; Lovas, K.; Qin, Y.; Bao, Y. Surface Functionalization of Dopamine Coated Iron Oxide Nanoparticles for Various Surface Functionalities. J. Magn. Magn. Mater. 2017, 427, 220–224. [Google Scholar] [CrossRef]
- Chi, X.; Wang, X.; Hu, J.; Wang, L.; Gao, J.; Zhang, B.; Zhang, X. Dopamine Serves as a Stable Surface Modifier for Iron Oxide Nanoparticles. J. Mol. Eng. Mater. 2013, 01, 1350001. [Google Scholar] [CrossRef]
- Abrantes, M.; Rodrigues, D.; Domingues, T.; Nemala, S.S.; Monteiro, P.; Borme, J.; Alpuim, P.; Jacinto, L. Ultrasensitive Dopamine Detection with Graphene Aptasensor Multitransistor Arrays. J. Nanobiotechnol. 2022, 20, 495. [Google Scholar] [CrossRef] [PubMed]
- Khot, G.; Shirtcliffe, N.; Celikel, T. Simultaneous Detection of Dopamine and Serotonin with Carbon-Based Electrodes. bioRxiv 2021. [Google Scholar] [CrossRef]
- Rahman, M.M.; Lee, J.J. Electrochemical Dopamine Sensors Based on Graphene. J. Electrochem. Sci. Technol. 2019, 10, 185–195. [Google Scholar] [CrossRef]
- Lei, Y.; Butler, D.; Lucking, M.C.; Zhang, F.; Xia, T.; Fujisawa, K.; Granzier-Nakajima, T.; Cruz-Silva, R.; Endo, M.; Terrones, H.; et al. Single-Atom Doping of MoS2 with Manganese Enables Ultrasensitive Detection of Dopamine: Experimental and Computational Approach. Sci. Adv. 2020, 6, eabc4250. [Google Scholar] [CrossRef]
- Kusior, A.; Synowiec, M.; Zakrzewska, K.; Radecka, M. Surface-Controlled Photocatalysis and Chemical Sensing of TiO2, α-Fe2O3, and Cu2O Nanocrystals. Crystals 2019, 9, 163. [Google Scholar] [CrossRef]
- Kusior, A.; Michalec, K.; Jelen, P.; Radecka, M. Shaped Fe2O3 Nanoparticles—Synthesis and Enhanced Photocatalytic Degradation towards RhB. Appl. Surf. Sci. 2019, 476, 342–352. [Google Scholar] [CrossRef]
- Cao, M.; Liu, T.; Gao, S.; Sun, G.; Wu, X.; Hu, C.; Wang, Z.L. Single-Crystal Dendritic Micro-Pines of Magnetic α-Fe2O3: Large-Scale Synthesis, Formation Mechanism, and Properties. Angew. Chem. Int. Ed. 2005, 44, 4197–4201. [Google Scholar] [CrossRef]
- Bharathi, S.; Nataraj, D.; Seetha, M.; Mangalaraj, D.; Ponpandian, N.; Masuda, Y.; Senthil, K.; Yong, K. Controlled Growth of Single-Crystalline, Nanostructured Dendrites and Snowflakes of α-Fe2O3: Influence of the Surfactant on the Morphology and Investigation of Morphology Dependent Magnetic Properties. CrystEngComm 2010, 12, 373–382. [Google Scholar] [CrossRef]
- Cornell, R.M.; Schwertmann, U. The Iron Oxides. Structure, Properties, Reactions, Occurrences and Uses, 2nd ed.; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2003; ISBN 3527302743. [Google Scholar]
- Chernyshova, I.V.; Hochella, M.F., Jr.; Madden, A.S. Size-Dependent Structural Transformations of Hematite Nanoparticles. 1. Phase Transition. Phys. Chem. Chem. Phys. 2007, 9, 1736. [Google Scholar] [CrossRef]
- Hanesch, M. Raman Spectroscopy of Iron Oxides and (Oxy)Hydroxides at Low Laser Power and Possible Applications in Environmental Magnetic Studies. Geophys. J. Int. 2009, 177, 941–948. [Google Scholar] [CrossRef]
- Gialanella, S.; Girardi, F.; Ischia, G.; Lonardelli, I.; Mattarelli, M.; Montagna, M. On the Goethite to Hematite Phase Transformation. J. Therm. Anal. Calorim. 2010, 102, 867–873. [Google Scholar] [CrossRef]
- Zhang, X.; Sui, C.; Gong, J.; Su, Z.; Qu, L. Preparation and Formation Mechanism of Different α-Fe2O3 Morphologies from Snowflake to Paired Microplates, Dumbbell, and Spindle Microstructures. J. Phys. Chem. C 2007, 111, 9049–9054. [Google Scholar] [CrossRef]
- Hoar, B.B.; Zhang, W.; Xu, S.; Deeba, R.; Costentin, C.; Gu, Q.; Liu, C. Electrochemical Mechanistic Analysis from Cyclic Voltammograms Based on Deep Learning. ACS Meas. Sci. Au 2022, 2, 595–604. [Google Scholar] [CrossRef]
- Sandford, C.; Edwards, M.A.; Klunder, K.J.; Hickey, D.P.; Li, M.; Barman, K.; Sigman, M.S.; White, H.S.; Minteer, S.D. A Synthetic Chemist’s Guide to Electroanalytical Tools for Studying Reaction Mechanisms. Chem. Sci. 2019, 10, 6404–6422. [Google Scholar] [CrossRef]
- Maloy, J.T. Factors Affecting the Shape of Current-Potential Curves. J. Chem. Educ. 1983, 60, 285. [Google Scholar] [CrossRef]
- Abid, K.; Foti, A.; Khaskhoussi, A.; Celesti, C.; D’Andrea, C.; Polykretis, P.; Matteini, P.; Iannazzo, D.; Maalej, R.; Gucciardi, P.G.; et al. A Study of Screen-Printed Electrodes Modified with MoSe2 and AuNPs-MoSe2 Nanosheets for Dopamine Sensing. Electrochim. Acta 2024, 475, 143371. [Google Scholar] [CrossRef]
- Pan, D.; Rong, S.; Zhang, G.; Zhang, Y.; Zhou, Q.; Liu, F.; Li, M.; Chang, D.; Pan, H. Amperometric Determination of Dopamine Using Activated Screen-Printed Carbon Electrodes. Electrochemistry 2015, 83, 725–729. [Google Scholar] [CrossRef]
- Dokur, E.; Uruc, S.; Kurteli, R.; Gorduk, O.; Sahin, Y. Designing Disposable Hand-Made Screen-Printed Electrode Using Conductive Ink for Electrochemical Determination of Dopamine. Ionics 2023, 29, 5465–5480. [Google Scholar] [CrossRef]
- Chelly, S.; Chelly, M.; Zribi, R.; Gdoura, R.; Bouaziz-Ketata, H.; Neri, G. Electrochemical Detection of Dopamine and Riboflavine on a Screen-Printed Carbon Electrode Modified by AuNPs Derived from Rhanterium suaveolens Plant Extract. ACS Omega 2021, 6, 23666–23675. [Google Scholar] [CrossRef]
- Yang, F.; Han, X.; Ai, Y.; Shao, B.; Ding, W.; Tang, K.; Sun, W. A Portable Electrochemical Dopamine Detector Using a Fish Scale-Derived Graphitized Carbon-Modified Screen-Printed Carbon Electrode. Molecules 2024, 29, 744. [Google Scholar] [CrossRef]
- Merli, D.; Cutaia, A.; Hallulli, I.; Bonanni, A.; Alberti, G. Molecularly Imprinted Polypyrrole-Modified Screen-Printed Electrode for Dopamine Determination. Polymers 2024, 16, 2528. [Google Scholar] [CrossRef]
- Ranku, M.N.; Uwaya, G.E.; Fayemi, O.E. Electrochemical Detection of Dopamine at Fe3O4/SPEEK Modified Electrode. Molecules 2021, 26, 5357. [Google Scholar] [CrossRef]
- Fayemi, O.E.; Elugoke, S.E.; Dina, O.; Mwanza, M.; Fayemi, P.O. Harnessing Fe3O4 Screen-Printed Modified Electrode Sensor for Detecting Epinephrine in Buff Orpington Rooster and Rhodes Island White Broiler. Front. Sens. 2022, 3, 850316. [Google Scholar] [CrossRef]
Series | Sample | Shape | Hematite | Goethite | ||
---|---|---|---|---|---|---|
Raman Shift [cm−1] | Intensity [a.u] | Raman Shift [cm−1] | Intensity [a.u] | |||
series S (pH = 8.5) | S1 | snowflake | 225 | 88.86 | 244 | 55.59 |
S2 | snowflake +cubes | 223 | 33.16 | 243 | 99.32 | |
S3 | snowflake +cubes | 224 | 59.52 | 244 | 47.21 | |
series P (pH = 12) | P1 | nanoplates | 220 | 92.43 | ||
P2 | snowflakes +nanoplates | 220 | 64.19 | 242 | 38.84 | |
P3 | nanoplates +branches | 218 | 22.10 |
Electrode Material | LOD | LOQ | Linear Range | Ref. 1 |
---|---|---|---|---|
AuNps@MoS2 2 | 0.21 µM | - | 3–20 µM | [40] |
activated SPE | 0.067 µM | - | 0.2–30 µM | [41] |
hand-made SPE | 1.25 μM | 4.17 μM | 5–100 μM | [42] |
Au | 0.22 μM | - | 2–100 μM | [43] |
alkali-activated graphitized carbon | 0.25 μM | - | 1–150 μM 150–1000 μM | [44] |
molecularly imprinted polymers | 0.8 μM | 2.0 μM | 0.8–45 μM | [45] |
SPCE-Fe3O4/SPEEK 3 | 7.1 μM | - | 5–50 μM | [46] |
Co3O4:Fe2O3 | 0.24 μM | - | - | [46] |
Fe3O4 | 19.3 μM | 10–61 μM | [47] | |
Fe2O3 snowflakes | 0.26 μM | 0.78 μM | 1–10 μM | this work |
Fe2O3 snowflakes + cubes | 0.42 μM | 1.28 μM | 1–7 μM | this work |
Fe2O3 snowflakes + cubes | 0.29 μM | 0.87 μM | 1–6 μM | this work |
Synthesis Parameter | S Series | P Series | |||||
---|---|---|---|---|---|---|---|
S1 | S2 | S3 | P1 | P2 | P3 | ||
chemical reagent | K3[Fe(CN)6] | 1.06 g | 0.59 g | ||||
DIW 1 | 160 mL | 120 mL | |||||
pH | 8.5 | 12.0 | |||||
reaction time (h) | 24 | 45 | 72 | 24 | 48 | 72 | |
temperature (°C) | 180 | 180 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kusior, A.; Waś, O.; Liczberska, Z.; Łacic, J.; Jeleń, P. Snowflake Iron Oxide Architectures: Synthesis and Electrochemical Applications. Molecules 2024, 29, 4859. https://doi.org/10.3390/molecules29204859
Kusior A, Waś O, Liczberska Z, Łacic J, Jeleń P. Snowflake Iron Oxide Architectures: Synthesis and Electrochemical Applications. Molecules. 2024; 29(20):4859. https://doi.org/10.3390/molecules29204859
Chicago/Turabian StyleKusior, Anna, Olga Waś, Zuzanna Liczberska, Julia Łacic, and Piotr Jeleń. 2024. "Snowflake Iron Oxide Architectures: Synthesis and Electrochemical Applications" Molecules 29, no. 20: 4859. https://doi.org/10.3390/molecules29204859
APA StyleKusior, A., Waś, O., Liczberska, Z., Łacic, J., & Jeleń, P. (2024). Snowflake Iron Oxide Architectures: Synthesis and Electrochemical Applications. Molecules, 29(20), 4859. https://doi.org/10.3390/molecules29204859