Preclinical Pharmacokinetics and Biodistribution of LR004, a Novel Antiepidermal Growth Factor Receptor Monoclonal Antibody
Abstract
:1. Introduction
2. Results
2.1. Antibody Affinity and Kinetics Assay
2.2. PK Profiles of LR004 in Rhesus Monkeys
2.3. Radiochemical Purity Identification
2.4. In Vitro Inhibition of Tumor Cells
2.5. In Vitro Binding Activities to the EGFR Antigen
2.6. Specific Binding Affinity toward MDA-MB-468 Cells
2.7. Biodistribution in Xenograft Mice
2.8. Autoradiography Study in Xenograft Mice
2.9. NanoSPECT/CT in Xenograft Mice
3. Discussion
4. Materials and Methods
4.1. Reagents, Cells, and Animal Models
4.2. BIAcore Analysis of Antibody Affinity and Kinetics
4.3. PK of LR004 in Rhesus Monkeys
4.4. Iodination and Purification of LR004
4.5. In Vitro Inhibition of Tumor Cells
4.6. In Vitro Binding Activities with EGFR Antigen
4.7. Specific Binding Affinity of 125I-Labeled LR004 toward MDA-MB-468 Cells
4.8. Mouse Tumor Xenografts
4.9. Biodistribution Study in Xenograft Mice
4.10. Autoradiography in Xenograft Mice
4.11. NanoSPECT/CT Imaging in Xenograft Mice
4.12. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Janani, B.; Vijayakumar, M.; Priya, K.; Kim, J.H.; Prabakaran, D.S.; Shahid, M.; Al-Ghamdi, S.; Alsaidan, M.; Othman Bahakim, N.; Hassan Abdelzaher, M. EGFR-Based Targeted Therapy for Colorectal Cancer-Promises and Challenges. Vaccines 2022, 10, 499. [Google Scholar] [CrossRef]
- Xie, Y.H.; Chen, Y.X.; Fang, J.Y. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct. Target. Ther. 2020, 5, 22. [Google Scholar] [CrossRef]
- Kuipers, E.J.; Grady, W.M.; Lieberman, D.; Seufferlein, T.; Sung, J.J.; Boelens, P.G.; van de Velde, C.J.; Watanabe, T. Colorectal cancer. Nat. Rev. Dis. Primers 2015, 1, 15065. [Google Scholar] [CrossRef] [PubMed]
- Ohishi, T.; Kaneko, M.K.; Yoshida, Y.; Takashima, A.; Kato, Y.; Kawada, M. Current Targeted Therapy for Metastatic Colorectal Cancer. Int. J. Mol. Sci. 2023, 24, 1702. [Google Scholar] [CrossRef] [PubMed]
- Spano, J.P.; Fagard, R.; Soria, J.C.; Rixe, O.; Khayat, D.; Milano, G. Epidermal growth factor receptor signaling in colorectal cancer: Preclinical data and therapeutic perspectives. Ann. Oncol. 2005, 16, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Wee, P.; Wang, Z. Epidermal Growth Factor Receptor Cell Proliferation Signaling Pathways. Cancers 2017, 9, 52. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.M.; Grandis, J.R. Pharmacokinetic and pharmacodynamic properties of EGFR inhibitors under clinical investigation. Cancer Treat. Rev. 2004, 30, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Graham, J.; Muhsin, M.; Kirkpatrick, P. Cetuximab. Nat. Rev. Drug Discov. 2004, 3, 549–550. [Google Scholar] [CrossRef]
- Manzanares-Martin, B.; Cebrian Aranda, A.; Del Puerto-Nevado, L.; Gonzalez, R.; Solanes, S.; Gomez-Espana, M.A.; Garcia-Foncillas, J.; Aranda, E. Improving selection of patients with metastatic colorectal cancer to benefit from cetuximab based on KIR genotypes. J. Immunother. Cancer 2021, 9, e001705. [Google Scholar] [CrossRef]
- Liu, H.; Liang, Z.; Zhou, C.; Zeng, Z.; Wang, F.; Hu, T.; He, X.; Wu, X.; Wu, X.; Lan, P. Mutant KRAS triggers functional reprogramming of tumor-associated macrophages in colorectal cancer. Signal Transduct. Target. Ther. 2021, 6, 144. [Google Scholar] [CrossRef]
- Wadlow, R.C.; Hezel, A.F.; Abrams, T.A.; Blaszkowsky, L.S.; Fuchs, C.S.; Kulke, M.H.; Kwak, E.L.; Meyerhardt, J.A.; Ryan, D.P.; Szymonifka, J. Panitumumab in patients with KRAS wild-type colorectal cancer after progression on cetuximab. Oncologist 2012, 17, 14. [Google Scholar] [CrossRef] [PubMed]
- Douez, E.; D’Atri, V.; Guillarme, D.; Antier, D.; Guerriaud, M.; Beck, A.; Watier, H.; Foucault-Fruchard, L. Why is there no biosimilar of Erbitux®? J. Pharm. Biomed. Anal. 2023, 34, 115544. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.Y.; Wang, R.; Jin, J.; Liu, X.J.; Cui, A.L.; Sun, L.Q.; Li, Y.P.; Li, Y.; Wang, Y.C.; Zhen, Y.S.; et al. An EGFR-targeting antibody-drug conjugate LR004-VC-MMAE: Potential in esophageal squamous cell carcinoma and other malignancies. Mol. Oncol. 2019, 13, 246–263. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.C.; Chiang, P.F.; Kuo, Y.J.; Peng, C.L.; Chen, I.C.; Huang, C.Y.; Chen, C.A.; Chiang, Y.C. Develop companion radiopharmaceutical YKL40 antibodies as potential theranostic agents for epithelial ovarian cancer. Biomed. Pharmacother. 2022, 155, 113668. [Google Scholar] [CrossRef] [PubMed]
- Wall, J.S.; Richey, T.; Stuckey, A.; Donnell, R.; Oosterhof, A.; van Kuppevelt, T.H.; Smits, N.C.; Kennel, S.J. SPECT imaging of peripheral amyloid in mice by targeting hyper-sulfated heparan sulfate proteoglycans with specific scFv antibodies. Nucl. Med. Biol. 2012, 39, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Migotto, M.A.; Mardon, K.; Orian, J.; Weckbecker, G.; Kneuer, R.; Bhalla, R.; Reutens, D.C. Efficient Distribution of a Novel Zirconium-89 Labeled Anti-cd20 Antibody Following Subcutaneous and Intravenous Administration in Control and Experimental Autoimmune Encephalomyelitis-Variant Mice. Front. Immunol. 2019, 10, 2437. [Google Scholar] [CrossRef] [PubMed]
- Nagayasu, M.; Ozeki, K. Combination of cassette-dosing and microsampling for reduced animal usage for antibody pharmacokinetics in cynomolgus monkeys, wild-type mice, and human FcRn transgenic mice. Pharm. Res. 2021, 38, 583–592. [Google Scholar] [CrossRef]
- Cetuximab (Erbitux) New Drug Application (NDA). PMDA (Pharmaceuticals and Medical Devices Agency). 2008. Available online: https://www.pmda.go.jp/drugs/2008/P200800039/index.html (accessed on 10 January 2024).
- Liu, L. Pharmacokinetics of monoclonal antibodies and Fc-fusion proteins. Protein Cell 2018, 9, 15–32. [Google Scholar] [CrossRef]
- Bapat, P.; Goswami Sewel, D.; Boylan, M.; Sharma, A.K.; Spallholz, J.E. In Vitro Cytotoxicity of Trastuzumab (Tz) and Se-Trastuzumab (Se-Tz) against the Her/2 Breast Cancer Cell Lines JIMT-1 and BT-474. Int. J. Mol. Sci. 2021, 22, 4655. [Google Scholar] [CrossRef]
- Vorobyeva, A.; Schulga, A.; Rinne, S.S.; Günther, T.; Orlova, A.; Deyev, S.; Tolmachev, V. Indirect Radioiodination of DARPin G3 Using N-succinimidyl-Para-Iodobenzoate Improves the Contrast of HER2 Molecular Imaging. Int. J. Mol. Sci. 2019, 20, 3047. [Google Scholar] [CrossRef]
- Štulhofer Buzina, D.; Martinac, I.; Ledić Drvar, D.; Čeović, R.; Bilić, I.; Marinović, B. The Most Common Cutaneous Side Effects of Epidermal Growth Factor Receptor Inhibitors and Their Management. Acta Dermatovenerol. Croat. ADC 2015, 23, 282–288. [Google Scholar]
- Sinclair, R. Anticipating and managing the cutaneous side effects of epidermal growth factor receptor inhibitors. Asia Pac. J. Clin. Oncol. 2014, 10 (Suppl. S1), 11–17. [Google Scholar] [CrossRef]
- Zhou, Y.; Zong, H.; Han, L.; Xie, Y.; Jiang, H.; Gilly, J.; Zhang, B.; Lu, H.; Chen, J.; Sun, R.; et al. A novel bispecific antibody targeting CD3 and prolactin receptor (PRLR) against PRLR-expression breast cancer. J. Exp. Clin. Cancer Res. 2020, 39, 87. [Google Scholar] [CrossRef]
- Liu, Z.; Yu, Z.; He, W.; Ma, S.; Sun, L.; Wang, F. In-vitro internalization and in-vivo tumor uptake of anti-EGFR monoclonal antibody LA22 in A549 lung cancer cells and animal model. Cancer Biother. Radiopharm. 2009, 24, 15–24. [Google Scholar] [CrossRef]
- Yu, Q.; Zhu, X.; Wang, D.; Meng, Z.; Gan, H.; Gu, R.; Wu, Z.; Zheng, Y.; Li, J.; Dou, G. Tissue distribution and metabolism of 125I-rAncrod in Wistar rats. J. Isot. 2015, 28, 1191–1195. [Google Scholar] [CrossRef]
- Li, Y.; Xu, B.; Ren, X.; Wang, L.; Xu, Y.; Zhao, Y.; Yang, C.; Yuan, C.; Li, H.; Tong, X.; et al. Inhibition of CISD2 promotes ferroptosis through ferritinophagy-mediated ferritin turnover and regulation of p62-Keap1-NRF2 pathway. Cell. Mol. Biol. Lett. 2022, 27, 81. [Google Scholar] [CrossRef]
- Liu, Y.; Watabe, T.; Kaneda-Nakashima, K.; Shirakami, Y.; Naka, S.; Ooe, K.; Toyoshima, A.; Nagata, K.; Haberkorn, U.; Kratochwil, C.; et al. Fibroblast activation protein targeted therapy using [177Lu] FAPI-46 compared with [225Ac] FAPI-46 in a pancreatic cancer model. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 871–880. [Google Scholar] [CrossRef]
- Zhong, W.; Lu, Y.; Ma, Z.; He, Y.; Ding, Y.; Yao, G.; Zhou, Z.; Dong, J.; Fang, Y.; Jiang, W.; et al. Development of a Humanized VHH Based Recombinant Antibody Targeting Claudin 18.2 Positive Cancers. Front. Immunol. 2022, 13, 885424. [Google Scholar] [CrossRef] [PubMed]
- Zboralski, D.; Hoehne, A.; Bredenbeck, A.; Schumann, A.; Nguyen, M.; Schneider, E.; Ungewiss, J.; Paschke, M.; Haase, C.; von Hacht, J.L.; et al. Preclinical evaluation of FAP-2286 for fibroblast activation protein targeted radionuclide imaging and therapy. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 3651–3667. [Google Scholar] [CrossRef] [PubMed]
- Fan, Q.; Cai, H.; Yang, H.; Li, L.; Yuan, C.; Lu, X.; Wan, L. Biological evaluation of 131I- and CF750-labeled Dmab(scFv)-Fc antibodies for xenograft imaging of CD25-positive tumors. Biomed Res. Int. 2014, 2014, 459676. [Google Scholar] [CrossRef] [PubMed]
- Shao, F.; Pan, Z.; Long, Y.; Zhu, Z.; Wang, K.; Ji, H.; Zhu, K.; Song, W.; Song, Y.; Song, X.; et al. Nectin-4-targeted immunoSPECT/CT imaging and photothermal therapy of triple-negative breast cancer. J. Nanobiotechnol. 2022, 20, 243. [Google Scholar] [CrossRef] [PubMed]
Parameters | 6 mg/kg | 18 mg/kg | 54 mg/kg |
---|---|---|---|
Cmax (µg/mL) | 148.38 ± 25.66 | 352.71 ± 40.40 | 985.25 ± 31.68 |
Tmax (h) | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 |
AUClast (mg·h/L) | 6900.24 ± 1243.11 | 25,398.82 ± 4774.38 | 72,301.13 ± 16,411.89 |
MRT (h) | 62.23 ± 4.98 | 103.93 ± 10.35 | 127.46 ± 23.48 |
CL [mL/(h·kg)] | 0.86 ± 0.18 | 0.72 ± 0.12 | 0.79 ± 0.22 |
Vd (mL/kg) | 62.56 ± 8.78 | 106.51 ± 9.37 | 139.83 ± 20.81 |
t1/2 (h) | 51.60 ± 8.36 | 104.62 ± 13.42 | 130.72 ± 39.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Y.; Dou, G.; Liu, S.; Meng, Z.; Tsao, E.I.; Yu, G.; Zhu, X.; Gu, R.; Wu, Z.; Sun, Y.; et al. Preclinical Pharmacokinetics and Biodistribution of LR004, a Novel Antiepidermal Growth Factor Receptor Monoclonal Antibody. Molecules 2024, 29, 545. https://doi.org/10.3390/molecules29020545
Zheng Y, Dou G, Liu S, Meng Z, Tsao EI, Yu G, Zhu X, Gu R, Wu Z, Sun Y, et al. Preclinical Pharmacokinetics and Biodistribution of LR004, a Novel Antiepidermal Growth Factor Receptor Monoclonal Antibody. Molecules. 2024; 29(2):545. https://doi.org/10.3390/molecules29020545
Chicago/Turabian StyleZheng, Ying, Guifang Dou, Shuchen Liu, Zhiyun Meng, Eric I. Tsao, Gang Yu, Xiaoxia Zhu, Ruolan Gu, Zhuona Wu, Yunbo Sun, and et al. 2024. "Preclinical Pharmacokinetics and Biodistribution of LR004, a Novel Antiepidermal Growth Factor Receptor Monoclonal Antibody" Molecules 29, no. 2: 545. https://doi.org/10.3390/molecules29020545
APA StyleZheng, Y., Dou, G., Liu, S., Meng, Z., Tsao, E. I., Yu, G., Zhu, X., Gu, R., Wu, Z., Sun, Y., Han, P., & Gan, H. (2024). Preclinical Pharmacokinetics and Biodistribution of LR004, a Novel Antiepidermal Growth Factor Receptor Monoclonal Antibody. Molecules, 29(2), 545. https://doi.org/10.3390/molecules29020545