Analysis of the Influence of Lactiplantibacillus plantarum and Lacticaseibacillus rhamnosus Strains on Changes in the Hexachlorobenzene Content in Fermented Mare Milk during Refrigerated Storage
Abstract
:1. Introduction
2. Results
2.1. pH and Dry Matter Content in Fermented Mare Milk
2.2. HCB in Fermented Mare Milk Beverages
2.3. Changes in HCB Content in Fermented Mare Milk Beverages
3. Discussion
4. Materials and Methods
4.1. Study Material
4.2. Analysis of pH and Dry Matter Content of Fermented Milk
4.3. Analysis of HCB Content
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, S.; Priyamvada, S.; Khan, A.S.; Khan, W.; Yusu, A. Studies of Hexachlorobenzene (HCB) Induced Toxicity and Oxidative Damage in the Kidney and Other Rat Tissues. Int. J. Drug Metab. Toxicol. 2017, 1, 001–009. [Google Scholar]
- Kumar, D.J.M.; Kumar, S.D.; Kubendran, D.; Kalaichelvan, P.T. Hexachlorobenzene—Sources, Remediation and Future Prospect. Cur. Res. Rev. 2013, 5, 1–12. [Google Scholar]
- Ji, X.; Lin, W.; Zhang, W.; Yin, F.; Zhao, X.; Wang, C.; Liu, J.; Yang, H.; Liu, S. A comprehensive review of the process on hexachlorobenzene degradation. In MATEC Web of Conferences, Proceedings of the International Conference on Engineering Technology and Application (ICETA 2015), Xiamen, China, 29–30 May 2015; EDP Sciences: Les Ulis, France, 2015; Volume 22, p. 04007. [Google Scholar] [CrossRef]
- Starek-Świechowicz, B.; Budziszewska, B.; Starek, A. Hexachlorobenzene as a persistent organic pollutant: Toxicity and molecular mechanism of action. Pharmacol. Rep. 2017, 69, 1232–1239. [Google Scholar] [CrossRef] [PubMed]
- Czarnomski, K. Trwałe Zanieczyszczenia Organiczne—Gospodarka Odpadami. Materiały Informacyjne; Instytut Ochrony Środowiska: Warszawa, Poland, 2008; pp. 15–17. [Google Scholar]
- Available online: https://www.pops.int/TheConvention/Overview/tabid/3351/Default.aspx (accessed on 21 September 2022).
- Palkovicova Murinova, L.; Wimmerova, S.; Lancz, K.; Patayova, H.; Kostiakowa, V.; Richterova, D.; Govarts, E.; Jusko, T.A. Partitioning of hexachlorobenzene between human milk and blood lipid. Environ. Poll. 2017, 229, 994–999. [Google Scholar] [CrossRef] [PubMed]
- Miret, N.V.; Pontillo, C.A.; Zárate, L.V.; Kleiman de Pisarev, D. Impact of endocrine disruptor hexachlorobenzene on the mammary gland and breast cancer: The story thus far. Environ. Res. 2019, 173, 330–341. [Google Scholar] [CrossRef]
- Dhaibar, H.A.; Patadia, H.; Mansuri, T.; Shah, R.; Khatri, L.; Makwana, H.; Master, S.; Robin, P. Hexachlorobenzene, a pollutant in hypothyroidism and reproductive aberrations: A perceptive transgenerational study. Environ. Sci. Pollut. Res. 2021, 28, 11077–11089. [Google Scholar] [CrossRef]
- Montone, R.C.; Taniguchi, S.; Boian, C.; Weber, R.R. PCBs and chlorinated pesticides (DDTs. HCHs and HCB) in the atmosphere of the southwest Atlantic and Antarctic oceans. Mar. Pollut. Bull. 2005, 50, 778–786. [Google Scholar] [CrossRef]
- Available online: https://monographs.iarc.who.int/list-of-classifications (accessed on 21 May 2023).
- Maner, J.; Burkard, M.; Cassano, J.C.; Bengtson-Nash, S.M.; Marc, J.; Suter, F. Hexachlorobenzene exerts genotoxic effect in a humpback whale cell line under stable exposure conditions. R. Soc. Chem. 2019, 9, 39447–39457. [Google Scholar] [CrossRef]
- Chen, H.-M.; Zhu, B.-Z.; Chen, R.-J.; Wang, B.-J.; Wang, Y.-J. The Pentachlorophenol Metabolite Tetrachlorohydroquinone Induces Massive ROS and Prolonged p-ERK Expression in Splenocytes, Leading to Inhibition of Apoptosis and Necrotic Cell Death. PLoS ONE 2014, 9, e89483. [Google Scholar] [CrossRef]
- Takagi, K. Study on the biodegradation of persistent organic pollutants (POP’s). J. Pestic. Sci. 2020, 45, 119–123. [Google Scholar] [CrossRef]
- Ito, K. Mechanisms of aerobic dechlorination of hexachlorobenzene and pentachlorophenol by Nocardioides sp. PD653. J. Pestic. Sci. 2021, 46, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Adu-Kumi, S.; Kawano, M.; Shiki, Y.; Yeboah, P.O.; Carboo, D.; Pwamang, J.; Morita, M.; Suzuki, N. Organochlorine pesticides (OCPs), dioxin-like polychlorinated biphenyls (dl-PCBs), polychlorinated dibenzo-p-dioxins and polychlorinated dibenzo furans (PCDD/Fs) in edible fish from Lake Volta, Lake Bosumtwi and Weija Lake in Ghana. Chemosphere 2010, 81, 675–684. [Google Scholar] [CrossRef]
- Ben Ameur, W.; Trabelsi, S.; El Megdiche, Y.; Ben Hassine, S.; Barhoumi, B.; Hammami, B.; Eljarrat, E.; Barceló, D.; Driss, M. Concentration of polychlorinated biphenyls and organochlorine pesticides in mullet (Mugil cephalus) and sea bass (Dicentrarchus labrax) from Bizerte Lagoon (Northern Tunisia). Chemosphere 2013, 90, 2372–2380. [Google Scholar] [CrossRef]
- Storelli, M.M.; Storelli, A.; Marcotrigiano, G.O. Polychlorinated biphenyls, hexachlorobenzene and organochlorine pesticide residues in milk from Apulia. Ital. J. Food Sci. 2001, 13, 113–117. [Google Scholar]
- Shaker, E.M.; Elsharkawy, E.E. Organochlorine and organophosphorus pesticide residues in raw buffalo milk from agroindustrial areas in Assiut, Egypt. Environ. Toxicol. Pharmacol. 2015, 39, 433–440. [Google Scholar] [CrossRef]
- Perelló, G.; Gómez-Catalán, J.; Castell, V.; Llobet, J.M.; Domingo, J.L. Estimation of the daily intake of hexachlorobenzene from food consumption by the population of Catalonia, Spain: Health risks. Food Control 2012, 23, 198–202. [Google Scholar] [CrossRef]
- Heck, M.C.; Sifuentes dos Santos, J.; Bogusz Junior, S.; Costabeber, I.; Emanuelli, T. Estimation of children exposure to organochlorine compounds through milk in Rio Grande do Sul, Brazil. Food Chem. 2007, 102, 288–294. [Google Scholar] [CrossRef]
- Medina-Pastor, P.; Triacchini, G. The 2018 European Union report on pesticide residues in food. EFSA J. 2020, 18, 6057. [Google Scholar] [CrossRef]
- Commission Regulation (EU) 2016/1866 of 17 October 2016 Amending Annexes II, III and V to Regulation (EC) No 396/2005 of the European Parliament and of the Council as Regards Maximum Residue Levels for 3-Decen-2-one, Acibenzolar-S-methyl and Hexachlorobenzene in or on Certain Products. OJ L 286, 21.10.2016, pp. 4–31. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R1866 (accessed on 22 November 2023).
- Fischer, W.J.; Schilter, B.; Tritscher, A.M.; Stadler, R.H. Contaminants of Milk and Dairy Products: Contamination Resulting from Farm and Dairy Practices. In Reference Module in Food Science, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–13. [Google Scholar] [CrossRef]
- Raza, M.; Kim, K.-H. Quantification techniques for important environmental contaminants in milk and dairy products. TrAC Trends Anal. Chem. 2018, 98, 79–94. [Google Scholar] [CrossRef]
- Wochner, K.F.; Becker-Algerib, T.A.; Collaa, E.; Badiale-Furlongb, E.; Drunklera, D.A. The action of probiotic microorganisms on chemical contaminants in milk. Crit. Rev. Microbiol. 2018, 44, 112–123. [Google Scholar] [CrossRef]
- Baranyi, N.; Kocsubé, S.; Varga, J. Aflatoxins: Climate change and biodegradation. Curr. Opin. Food Sci. 2015, 5, 60–66. [Google Scholar] [CrossRef]
- Alberts, J.F.; Gelderblomb, W.C.A.; Botha, A.; Van Zyl, W.H. Degradation of aflatoxin B1 by fungal laccase enzymes. Int. J. Food Microbiol. 2009, 135, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Petrova, P.; Arsov, A.; Tsvetanova, F.; Parvanova-Mancheva, T.; Vasileva, E.; Tsigoriyna, L.; Petrov, K. The Complex Role of Lactic Acid Bacteria in Food Detoxification. Nutrients 2022, 14, 2038. [Google Scholar] [CrossRef] [PubMed]
- Grzywacz, J.G.; Belden, J.B.; Robertson, A.M.; Hernandez, D.C.; Carlos Chavez, F.L.; Merten, M.J. Parenting, Pesticides and Adolescent Psychological Adjustment: A Brief Report. Int. J. Environ. Res. Public Health 2022, 19, 540. [Google Scholar] [CrossRef] [PubMed]
- Bertin, Y.; Habouzit, C.; Duniere, L.; Laurier, M.; Durand, A.; Duchez, D.; Segura, A.; Thevenot-Sergentet, D.; Baruzzi, F.; Chaucheyras-Durand, F. Lactobacillus reuteri suppresses E. coli O157:H7 in bovine ruminal fluid: Toward a pre-slaughter strategy to improve food safety? PLoS ONE 2017, 12, e0187229. [Google Scholar] [CrossRef]
- Trinder, M.; Bisanz, J.E.; Burton, J.P.; Reid, G. Probiotic lactobacilli: A potential prophylactic treatment for reducing pesticide absorption in humans and wildlife. Benef. Microbes 2015, 6, 841–847. [Google Scholar] [CrossRef]
- Zoghi, A.; Khosravi-Darani, K.; Sohrabvandi, S. Surface binding of toxins and heavy metals by probiotics. Mini Rev. Med. Chem. 2014, 14, 84–98. [Google Scholar] [CrossRef]
- Hamidi, A.; Mirnejad, R.; Yahaghi, E.; Behnod, V.; Mirhosseini, A.; Amani, S. The aflatoxin B1 isolating potential of two lactic acid bacteria. Asian Pac. J. Trop. Biomed. 2013, 3, 732–736. [Google Scholar] [CrossRef]
- Zoghi, A.; Massoud, R.; Todorov, S.D.; Chikindas, M.L.; Popov, S.; Khosravi-Darani, K. Role of the lactobacilli in food bio-decontamination: Friends with benefits. Enzym. Microb. Technol. 2021, 150, 109861. [Google Scholar] [CrossRef]
- Fidriyanto, R.; Ridwan, R.; Rohmatussolihat, R.; Astuti, W.D.; Paradisa, Y.B.; Sarwono, K.A.; Fitri, A.; Widyastuti, Y. The ability of Lactiplantibacillus plantarum TSD-10 and DR-162 to reduce aflatoxin and microbial contamination of corn. AGRIC 2023, 35, 1–12. [Google Scholar] [CrossRef]
- Li, Q.; Zeng, X.; Fu, H.; Wang, X.; Guo, X.; Wang, M. Lactiplantibacillus plantarum: A comprehensive review of its antifungal and anti-mycotoxic effects. Trends Food Sci. Technol. 2023, 136, 224–238. [Google Scholar] [CrossRef]
- Manuyakorn, W.; Tanpowpong, P. Cow milk protein allergy and other common food allergies and intolerances. Paediatr. Int. Child Health 2019, 39, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Dmytrów, I.; Włodarczyk, K. Sład i wartość odżywcza mleka klaczy i oślic w porównaniu z mlekiem krów. Żywność. Nauka. Technologia. Jakość (ŻNTJ) 2020, 27, 28–39. [Google Scholar] [CrossRef]
- Ranadheera, C.S.; Naumovski, N.; Ajlouni, S. Non-bovine milk products as emerging probiotic carriers: Recent developments and innovations. Curr. Opin. Food Sci. 2018, 22, 109–114. [Google Scholar] [CrossRef]
- Barreto, I.M.L.G.; Rangel, A.H.D.N.; Urbano, S.A.; Bezerra, J.D.S.; Olivera, C.A.D.A. Equine milk and its potential use in the human diet. Food Sci. Technol. 2019, 39, 1–7. [Google Scholar] [CrossRef]
- Barłowska, J.; Polak, G.; Janczarek, I.; Tkaczyk, E. The Influence of Selected Factors on the Nutritional Value of the Milk of Cold-Blooded Mares: The Example of the Sokólski Breed. Animals 2023, 13, 1152. [Google Scholar] [CrossRef] [PubMed]
- Narmuratova, M.K.; Cakir-Kiefer, C.; Narmuratatova, Z.B. Isolation and purification of lactoferrin from Kazakhstan mare milk. Int. J. Biol. Chem. 2019, 12, 64–69. [Google Scholar] [CrossRef]
- Nayak, C.M.; Ramachandra, C.T.; Nidoni, U.; Hiregoudar, S.; Ram, J.; Naik, N. Physico-chemical composition, minerals, vitamins, amino acids, fatty acid profile and sensory evaluation of donkey milk from Indian small grey breed. J. Food Sci. Technol. 2020, 57, 2967–2974. [Google Scholar] [CrossRef]
- Barreto, I.M.L.G.; Urbano, S.A.; Oliveira, C.A.A.; Macêdo, C.S.; Borba, L.H.F.; Chags, B.M.E.; Rangel, A.H.N. Chemical composition and lipid profile of mare colostrum and milk of the quarter horse breed. PLoS ONE 2020, 15, e0238921. [Google Scholar] [CrossRef]
- Massouras, T.; Triantaphyllopoulos, K.; Theodossiou, I. Chemical composition. protein fraction and fatty acid profile of donkey milk during lactation. Int. Dairy J. 2017, 75, 83–90. [Google Scholar] [CrossRef]
- Danków, R.; Trichert, J.; Pikul, J.; Osten-Sacken, N. Wpływ warunków przechowywania na zawartość kwasów tłuszczowych w liofilizatach mleka klaczy. Nauka Przyr. Technol. 2015, 9, 29. (In Polish) [Google Scholar] [CrossRef]
- Macedo Mota, L.F.; Pegolo, S.; Bisutti, V.; Bittante, G.; Cecchinato, A. Genomic analisis of milk protein fractions in brown swiss cattle. Animals 2020, 10, 336. [Google Scholar] [CrossRef] [PubMed]
- Kushugulova, A.; Kozhakhmetov, S.; Sattybayeva, R.; Nurgozhina, A.; Ziyat, A.; Yadav, H.; Marotta, F. Mares’ milk as a prospective functional product. Funct. Foods Health Dis. (FFHD) 2018, 8, 548–554. [Google Scholar] [CrossRef]
- Teichert, J.; Cais-Sokolińska, D.; Bielska, P.; Danków, R.; Chudy, S.; Kaczyński, Ł.K.; Biegalski, J. Milk fermentation affects amino acid and fatty acid profile of mare milk from Polish Coldblood mares. Int. Dairy J. 2021, 121, 105137. [Google Scholar] [CrossRef]
- Anonymous. Krajowy Plan Wdrażania Konwencji Sztokholmskiej w Sprawie Trwałych Zanieczyszczeń Organicznych. Aktualizacja. Warszawa 2020. [Anonimus. National Implementation Plan Stockholm Convention on Persistent Organic Pollutants. Update. Warsaw 2020]. Available online: https://bip.mos.gov.pl/fileadmin/user_upload/bip/umowy_miedzynarodowe/sztokholmska/Projekt_z_dnia_21.10.2020_r._Aktualizacji_Krajowego_Planu_Wdrazania_Konwencji_Sztokholmskiej.pdf (accessed on 10 September 2023). (In Polish)
- Yan, D.-Z.; Mao, L.-Q.; Li, C.-Z. Biodegradation of hexachlorobenzene by a constructed microbial consortium. World J. Microbiol. Biotechnol. 2015, 31, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Matheus, D.R.; Ramos Bononi, V.L.; Machado, K.M.G. Biodegradation of hexachlorobenzene by basidiomycetes in soil contaminated with industrial residues. World J. Microbiol. Biotechnol. 2000, 16, 415–421. [Google Scholar] [CrossRef]
- Cybulski, J.; Witczak, A.; Pokorska-Niewiada, K. The Effect of Water and Sewage Treatment on Reducing Residues of Selected Organochlorine Pesticides in Szczecin (Poland). Water Air Soil Pollut. 2021, 232, 310. [Google Scholar] [CrossRef]
- Witczak, A.; Mituniewicz-Małek, A. Changes in contents of PCB congeners in yoghurt and bioyoghurt. Mljekarstvo 2019, 69, 53–63. [Google Scholar] [CrossRef]
- Witczak, A.; Mituniewicz-Małek, A. Probiotic monocultures and organochlorine pesticides in fermented beverages. Mljekarstvo 2019, 69, 172–181. [Google Scholar] [CrossRef]
- Miśniakiewicz, M. Effect of the fermentation process on bread dough contamination levels. ŻYWNOŚĆ. Nauka. Technologia. Jakość 2010, 6, 67–82. [Google Scholar] [CrossRef]
- Liu, A.; Zheng, Y.; Liu, L.; Chen, S.; He, L.; Ao Yang, Y.; Liu, S. Decontamination of aflatoxins by lactic acid bacteria. Curr. Microbiol. 2020, 77, 3821–3830. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Hu, W.; Yang, H.; Chen, F.; Shu, Y.; Zhang, G.; Liu, J.; Liu, Y.; Li, H.; Guo, L. Arsenic concentrations, diversity and cooccurrence patterns of bacterial and fungal communities in the feces of mice under sub-chronic arsenic exposure through food. Environ. Int. 2020, 138, 10560. [Google Scholar] [CrossRef] [PubMed]
- Gerbino, E.; Mobili, P.; Tymczyszyn, E.; Fausto, R.; Gómez-Zavaglia, A. FTIR spectroscopy structural analysis of the interaction between Lactobacillus kefir S- layers and metal ions. J. Mol. Struct. 2011, 987, 186–192. [Google Scholar] [CrossRef]
- Ninkov, M.; Popov Aleksandrov, A.; Demenesku, J.; Mirkov, I.; Mileusnic, D.; Petrovic, A.; Grigorov, I.; Zolotarevski, D.; Tolinacki, M.; Kataranovski, D.; et al. Toxicity of oral cadmium intake: Impact on gut immunity. Toxicol. Lett. 2015, 237, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Megeed, R.M. Probiotics: A promising generation of heavy metal detoxification. Biol. Trace Elem. Res. 2021, 199, 2406–2413. [Google Scholar] [CrossRef] [PubMed]
- Ameen, F.; Hamdan, A.; El-Naggar, M. Assessment of the heavy metal bioremediation efficiency of the novel marine lactic acid bacterium, Lactobacillus plantarum MF042018. Sci. Rep. 2020, 10, 314–325. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.; Levin, R.E.; Riaz, M.; Akhtar, S.; Gong, Y.Y.; Oliveira, C.A.F. Effect of different microbial concentrations on binding of aflatoxin M1 and stability testing. Food Control 2017, 73, 492–496. [Google Scholar] [CrossRef]
- Bovo, F.; Corassin, C.H.; Rosim, R.E.; de Oliveira, C.A.F. Efficiency of lactic acid bacteria strains for decontamination of aflatoxin M1 in phosphate buffer saline solution and in skimmed milk. Food Bioproc. Technol. 2012, 6, 2230–2234. [Google Scholar] [CrossRef]
- Diep, P.; Mahadevan, R.; Yakunin, A.F. Heavy metal removal by bioaccumulation using genetically engineered microorganisms. Front. Bioeng. Biotechnol. 2018, 6, 157. [Google Scholar] [CrossRef]
- Mrvcic, J.; Stanzer, D.; Solic, E.; Stehlik-Tomas, V. Interaction of lactic acid bacteria with metal ions: Opportunities for improving food safety and quality. World J. Microbiol. Biotechnol. 2012, 28, 2771–2782. [Google Scholar] [CrossRef]
- Polak-Berecka, M.; Szwajgier, D.; Wasko, A. Biosorption of Al(+3) and Cd(+2) by an exopolysaccharide from Lactobacillus rhamnosus. J. Food Sci. 2014, 11, 404–408. [Google Scholar] [CrossRef] [PubMed]
- Tsuda, H.; Hara, K.T.; Miyamoto, T. Binding of mutagens to exopolysaccharide produced by Lactobacillus plantarum mutant strain 301102S. J. Dairy Sci. 2008, 8, 2960–2966. [Google Scholar] [CrossRef] [PubMed]
- Czyżak-Runowska, G.; Wójtowski, J.A.; Łęska, B.; Bielińska-Nowak, S.; Pytlewski, J.; Antkowiak, I.; Stanisławski, D. Lactose Content and Selected Quality Parameters of Sheep Milk Fermented Beverages during Storage. Animals 2022, 12, 3105. [Google Scholar] [CrossRef] [PubMed]
- Biletska, Y.; Bakirov, M.; Polupan, V. Influence of Different Concentrations of Legume Flour on the Volume of Extracted Whey in Sour Milk Product. Technol. Audit. Prod. Reserves 2020, 4/3, 50–52. [Google Scholar] [CrossRef]
- Shu, G.; Yang, H.; Chen, H.; Zhang, Q.; Tian, Y. Effect of incubation time, inoculum size, temperature, pasteurization time, goat milk powder and whey powder on ACE inhibitory activity in fermented milk by L. plantarum LP69. Acta Sci. Pol. Technol. Aliment. 2015, 14, 107–116. [Google Scholar] [CrossRef]
- Cisło, K.; Szostak, K.; Wolanciuk, A.; Kędzierska-Matysek, M.; Patrycja Dopieralska, P. Characteristics of fermented milk on the example of yoghurt. In Bioeconomy and Environment; Nowakowicz-Dębek, B., Chabuz, W., Eds.; University of Life Sciences in Lublin: Lublin, Poland, 2018; pp. 26–32. [Google Scholar]
- PN-ISO 2446:2010; Milk—Determination of Fat Content. Ed. Polish Committee for Standardization: Warsaw, Poland, 2010.
Summary Formula | Structural Formula | Molar Mass (g/mol) | Melting Point (°C) | Boiling Point (°C) | Solubility in Water (mg/L) | Log KOW * | Bioconcentration Factor (BCF) |
---|---|---|---|---|---|---|---|
C6Cl6 | 284.78 | 231.0 | 322 | 0.006 | 5.73 | 35,000 |
Sample Variant | Storage Time (Days) | ||||
---|---|---|---|---|---|
1 | 7 | 14 | 21 | ||
pH 1 | |||||
without added HCB | LP | 4.63 ± 0.01 aA | 4.63 ± 0.01 aA | 4.50 ± 0.01 bA | 4.48 ± 0.02 cA |
LC | 4.60 ± 0.02 aA | 4.60 ± 0.01 aA | 4.47 ± 0.02 bA | 4.44 ± 0.01 cA | |
Mix | 4.58 ± 0.02 aA | 4.54 ± 0.01 bA | 4.52 ± 0.01 cA | 4.51 ± 0.01 dA | |
with added HCB | LPHCB | 4.58 ± 0.02 aA | 4.53 ± 0.01 bA | 4.50 ± 0.01 cA | 4.48 ± 0.01 dA |
LCHCB | 4.60 ± 0.01 aA | 4.58 ± 0.01 bA | 4.30 ± 0.01 dA | 4.47 ± 0.02 cA | |
MixHCB | 4.64 ± 0.02 aA | 4.62 ± 0.01 bA | 4.30 ± 0.02 dA | 4.47 ± 0.01 cA | |
Dry weight (%) 1 | |||||
without added HCB | LP | 9.11 ± 0.01 aA | 9.10 ± 0.01 aA | 9.11 ± 0.01 aA | 9.13 ± 0.01 aA |
LC | 8.79 ± 0.02 aA | 8.82 ± 0.01 aA | 8.80 ± 0.01 aA | 8.79 ± 0.01 aA | |
Mix | 9.56 ± 0.02 aA | 9.51 ± 0.01 aA | 9.52 ± 0.01 aA | 9.56 ± 0.01 aA | |
with added HCB | LPHCB | 9.62 ± 0.01 aA | 9.62 ± 0.02 aA | 9.62 ± 0.01 aA | 9.62 ± 0.01 aA |
LCHCB | 8.44 ± 0.02 aA | 8.44 ± 0.01 aA | 8.44 ± 0.02 aA | 8.44 ± 0.02 aA | |
MixHCB | 9.52 ± 0.02 aA | 9.54 ± 0.02 aA | 9.49 ± 0.02 aA | 9.51 ± 0.02 aA |
Refrigerated Storage Period | Sample Variant | HCB Content in Beverages to Which HCB Was Not Added | HCB Content in Beverages to Which HCB Was Added (93.5 ng/mL) | Recovery of Added HCB, ng/mL | Average HCB Reduction, % | |
---|---|---|---|---|---|---|
HCB Concentration, ng/mL | ||||||
day 1 | L. plantarum (LP) | x 1 | 0.099 bB | 80.83 aB | 80.73 | 13.67% |
SD 2 | 0.0029 | 1.144 | 1.499 | |||
Me 3 | 0.099 | 80.18 | 80.71 | |||
CV 4 | 2.89 | 1.415 | 1.86 | |||
L. rhamnosus (LC) | x | 0.144 bA | 82.31 aA | 82.16 | 12.13% | |
SD | 0.0025 | 1.426 | 1.712 | |||
Me | 0.145 | 82.29 | 81.29 | |||
CV | 1.73 | 1.732 | 2.09 | |||
Mix | x | 0.113 bB | 83.44 aA | 83.33 | 10.88% | |
SD | 0.003 | 1.892 | 3.398 | |||
Me | 0.114 | 82.88 | 82.00 | |||
CV | 2.20 | 2.27 | 4.08 | |||
day 7 | L. plantarum (LP) | x | 0.090 bB | 73.72 bB | 73.63 | 21.25% |
SD | 0.006 | 2.117 | 2.732 | |||
Me | 0.089 | 72.64 | 73.96 | |||
CV | 6.88 | 2.87 | 3.71 | |||
L. rhamnosus (LC) | x | 0.121 bA | 76.67 bA | 70.55 | 24.55% | |
SD | 0.0059 | 2.676 | 3.371 | |||
Me | 0.119 | 75.83 | 71.02 | |||
CV | 4.87 | 3.49 | 4.78 | |||
Mix | x | 0.107 bA | 78.79 bA | 78.68 | 15.85% | |
SD | 0.0062 | 1.769 | 2.617 | |||
Me | 0.108 | 78.90 | 80.00 | |||
CV | 5.76 | 2.25 | 3.33 | |||
day 14 | L. plantarum (LP) | x | 0.056 cA | 50.94 cA | 50.89 | 45.57% |
SD | 0.0037 | 1.821 | 2.831 | |||
Me | 0.055 | 51.29 | 51.79 | |||
CV | 6.68 | 3.58 | 3.56 | |||
L. rhamnosus (LC) | x | 0.039 cB | 44.48 cB | 44.44 | 52.47% | |
SD | 0.003 | 2.365 | 4.118 | |||
Me | 0.0372 | 43.81 | 45.11 | |||
CV | 9.49 | 5.32 | 9.27 | |||
Mix | x | 0.032 cB | 44.75 cB | 44.72 | 52.17% | |
SD | 0.0036 | 3.695 | 0.880 | |||
Me | 0.030 | 45.04 | 44.25 | |||
CV | 11.12 | 8.26 | 1.97 | |||
day 21 | L. plantarum (LP) | x | 0.061 dA | 24.57 dA | 24.51 | 73.79% |
SD | 0.0016 | 1.919 | 1.693 | |||
Me | 0.061 | 25.04 | 24.29 | |||
CV | 2.68 | 7.81 | 6.87 | |||
L. rhamnosus (LC) | x | 0.039 dB | 20.41 dB | 20.37 | 78.22% | |
SD | 0.0030 | 1.744 | 1.125 | |||
Me | 0.038 | 20.21 | 20.57 | |||
CV | 7.55 | 8.55 | 5.53 | |||
Mix | x | 0.014 dC | 19.86 dB | 19.85 | 78.77% | |
SD | 0.0014 | 1.590 | 0.803 | |||
Me | 0.013 | 20.47 | 20.14 | |||
CV | 10.10 | 8.01 | 4.04 |
Sample Code | Sample Description | |
---|---|---|
Beverages without added HCB | LP | Mare milk fermented with a culture of Lactiplantibacillus plantarum |
LC | Mare milk fermented with a culture of Lacticaseibacillus rhamnosus | |
Mix | Mare milk fermented with a mixed culture of L. plantarum and Lacticaseibacillus rhamnosus at a ratio of 1:1 | |
Beverages with added HCB | LPHCB | Mare milk with added HCB fermented with a culture of Lactiplantibacillus plantarum |
LCHCB | Mare milk with added HCB fermented with a culture of Lacticaseibacillus rhamnosus | |
MixHCB | Mare milk with added HCB fermented with a mixed culture of Lactiplantibacillus plantarum and Lacticaseibacillus rhamnosus at a ratio of 1:1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Witczak, A.; Mituniewicz-Małek, A.; Dmytrów, I. Analysis of the Influence of Lactiplantibacillus plantarum and Lacticaseibacillus rhamnosus Strains on Changes in the Hexachlorobenzene Content in Fermented Mare Milk during Refrigerated Storage. Molecules 2024, 29, 528. https://doi.org/10.3390/molecules29020528
Witczak A, Mituniewicz-Małek A, Dmytrów I. Analysis of the Influence of Lactiplantibacillus plantarum and Lacticaseibacillus rhamnosus Strains on Changes in the Hexachlorobenzene Content in Fermented Mare Milk during Refrigerated Storage. Molecules. 2024; 29(2):528. https://doi.org/10.3390/molecules29020528
Chicago/Turabian StyleWitczak, Agata, Anna Mituniewicz-Małek, and Izabela Dmytrów. 2024. "Analysis of the Influence of Lactiplantibacillus plantarum and Lacticaseibacillus rhamnosus Strains on Changes in the Hexachlorobenzene Content in Fermented Mare Milk during Refrigerated Storage" Molecules 29, no. 2: 528. https://doi.org/10.3390/molecules29020528
APA StyleWitczak, A., Mituniewicz-Małek, A., & Dmytrów, I. (2024). Analysis of the Influence of Lactiplantibacillus plantarum and Lacticaseibacillus rhamnosus Strains on Changes in the Hexachlorobenzene Content in Fermented Mare Milk during Refrigerated Storage. Molecules, 29(2), 528. https://doi.org/10.3390/molecules29020528