An Investigation of the Influence of Tyrosine Local Interactions on Electron Hopping in a Model Protein
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lubitz, W.; Chrysina, M.; Cox, N. Water Oxidation in Photosystem II. Photosynth. Res. 2019, 142, 105–125. [Google Scholar] [CrossRef] [PubMed]
- Minnihan, E.C.; Nocera, D.G.; Stubbe, J. Reversible, Long-Range Radical Transfer in E. coli Class Ia Ribonucleotide Reductase. Acc. Chem. Res. 2013, 46, 2524–2535. [Google Scholar] [CrossRef] [PubMed]
- Smith, W.L.; Urade, Y.; Jakobsson, P.-J. Enzymes of the Cyclooxygenase Pathways of Prostanoid Biosynthesis. Chem. Rev. 2011, 111, 5821–5865. [Google Scholar] [CrossRef] [PubMed]
- Ru, X.; Crane, B.R.; Zhang, P.; Beratan, D.N. Why Do Most Aromatics Fail to Support Hole Hopping in the Cytochrome c Peroxidase–Cytochrome c Complex? J. Phys. Chem. B 2021, 125, 7763–7773. [Google Scholar] [CrossRef] [PubMed]
- Yee, E.F.; Dzikovski, B.; Crane, B.R. Tuning Radical Relay Residues by Proton Management Rescues Protein Electron Hopping. J. Am. Chem. Soc. 2019, 141, 17571–17587. [Google Scholar] [CrossRef]
- Kathiresan, M.; English, A.M. LC-MS/MS Suggests That Hole Hopping in Cytochrome c Peroxidase Protects Its Heme from Oxidative Modification by Excess H2O2. Chem. Sci. 2017, 8, 1152–1162. [Google Scholar] [CrossRef]
- Kathiresan, M.; English, A.M. LC-MS/MS Proteoform Profiling Exposes Cytochrome c Peroxidase Self-Oxidation in Mitochondria and Functionally Important Hole Hopping from Its Heme. J. Am. Chem. Soc. 2018, 140, 12033–12039. [Google Scholar] [CrossRef]
- Gray, H.B.; Winkler, J.R. Hole Hopping through Tyrosine/Tryptophan Chains Protects Proteins from Oxidative Damage. Proc. Natl. Acad. Sci. USA 2015, 112, 10920–10925. [Google Scholar] [CrossRef]
- Winkler, J.R.; Gray, H.B. Electron Flow through Biological Molecules: Does Hole Hopping Protect Proteins from Oxidative Damage? Q. Rev. Biophys. 2015, 48, 411–420. [Google Scholar] [CrossRef]
- Teo, R.D.; Wang, R.; Smithwick, E.R.; Migliore, A.; Therien, M.J.; Beratan, D.N. Mapping Hole Hopping Escape Routes in Proteins. Proc. Natl. Acad. Sci. USA 2019, 116, 15811–15816. [Google Scholar] [CrossRef]
- Cordes, M.; Köttgen, A.; Jasper, C.; Jacques, O.; Boudebous, H.; Giese, B. Influence of Amino Acid Side Chains on Long-Distance Electron Transfer in Peptides: Electron Hopping via “Stepping Stones”. Angew. Chem. Int. Ed. 2008, 47, 3461–3463. [Google Scholar] [CrossRef] [PubMed]
- Winkler, J.R.; Di Bilio, A.J.; Farrow, N.A.; Richards, J.H.; Gray, H.B. Electron Tunneling in Biological Molecules. Pure Appl. Chem. 1999, 71, 1753–1764. [Google Scholar] [CrossRef]
- Cordes, M.; Giese, B. Electron Transfer in Peptides and Proteins. Chem. Soc. Rev. 2009, 38, 892–901. [Google Scholar] [CrossRef] [PubMed]
- Nag, L.; Sournia, P.; Myllykallio, H.; Liebl, U.; Vos, M.H. Identification of the TyrOH•+ Radical Cation in the Flavoenzyme TrmFO. J. Am. Chem. Soc. 2017, 139, 11500–11505. [Google Scholar] [CrossRef] [PubMed]
- Nag, L.; Sournia, P.; Myllykallio, H.; Liebl, U.; Vos, M.H. Correction to “Identification of the TyrOH●+ Radical Cation in the Flavoenzyme TrmFO”. J. Am. Chem. Soc. 2017, 139, 15554. [Google Scholar] [CrossRef] [PubMed]
- Pirisi, K.; Nag, L.; Fekete, Z.; Iuliano, J.N.; Tolentino Collado, J.; Clark, I.P.; Pécsi, I.; Sournia, P.; Liebl, U.; Greetham, G.M.; et al. Identification of the Vibrational Marker of Tyrosine Cation Radical Using Ultrafast Transient Infrared Spectroscopy of Flavoprotein Systems. Photochem. Photobiol. Sci. 2021, 20, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Costentin, C.; Louault, C.; Robert, M.; Savéant, J.-M. The Electrochemical Approach to Concerted Proton—Electron Transfers in the Oxidation of Phenols in Water. Proc. Natl. Acad. Sci. USA 2009, 106, 18143–18148. [Google Scholar] [CrossRef]
- Bonin, J.; Costentin, C.; Louault, C.; Robert, M.; Routier, M.; Savéant, J.-M. Intrinsic Reactivity and Driving Force Dependence in Concerted Proton–Electron Transfers to Water Illustrated by Phenol Oxidation. Proc. Natl. Acad. Sci. USA 2010, 107, 3367–3372. [Google Scholar] [CrossRef]
- Warren, J.J.; Herrera, N.; Hill, M.G.; Winkler, J.R.; Gray, H.B. Electron Flow through Nitrotyrosinate in Pseudomonas aeruginosa Azurin. J. Am. Chem. Soc. 2013, 135, 11151–11158. [Google Scholar] [CrossRef]
- Giese, B.; Napp, M.; Jacques, O.; Boudebous, H.; Taylor, A.M.; Wirz, J. Multistep Electron Transfer in Oligopeptides: Direct Observation of Radical Cation Intermediates. Angew. Chem. Int. Ed. 2005, 117, 4141–4143. [Google Scholar] [CrossRef]
- Cordes, M.; Jacques, O.; Köttgen, A.; Jasper, C.; Boudebous, H.; Giese, B. Development of a Model System for the Study of Long Distance Electron Transfer in Peptides. Adv. Synth. Catal. 2008, 350, 1053–1062. [Google Scholar] [CrossRef]
- Gao, J.; Müller, P.; Wang, M.; Eckhardt, S.; Lauz, M.; Fromm, K.M.; Giese, B. Electron Transfer in Peptides: The Influence of Charged Amino Acids. Angew. Chem. Int. Ed. 2011, 50, 1926–1930. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Kasanmascheff, M.; Huynh, M.; Quartararo, A.; Costentin, C.; Bejenke, I.; Nocera, D.G.; Bennati, M.; Tommos, C.; Stubbe, J. Properties of Site-Specifically Incorporated 3-Aminotyrosine in Proteins To Study Redox-Active Tyrosines: Escherichia coli Ribonucleotide Reductase as a Paradigm. Biochemistry 2018, 57, 3402–3415. [Google Scholar] [CrossRef] [PubMed]
- Minnihan, E.C.; Young, D.D.; Schultz, P.G.; Stubbe, J. Incorporation of Fluorotyrosines into Ribonucleotide Reductase Using an Evolved, Polyspecific Aminoacyl-tRNA Synthetase. J. Am. Chem. Soc. 2011, 133, 15942–15945. [Google Scholar] [CrossRef]
- Ravichandran, K.R.; Zong, A.B.; Taguchi, A.T.; Nocera, D.G.; Stubbe, J.; Tommos, C. Formal Reduction Potentials of Difluorotyrosine and Trifluorotyrosine Protein Residues: Defining the Thermodynamics of Multistep Radical Transfer. J. Am. Chem. Soc. 2017, 139, 2994–3004. [Google Scholar] [CrossRef] [PubMed]
- Oyala, P.H.; Ravichandran, K.R.; Funk, M.A.; Stucky, P.A.; Stich, T.A.; Drennan, C.L.; Britt, R.D.; Stubbe, J. Biophysical Characterization of Fluorotyrosine Probes Site-Specifically Incorporated into Enzymes: E. coli Ribonucleotide Reductase As an Example. J. Am. Chem. Soc. 2016, 138, 7951–7964. [Google Scholar] [CrossRef]
- Warren, J.J.; Shafaat, O.S.; Winkler, J.R.; Gray, H.B. Proton-Coupled Electron Hopping in Ru-Modified P. aeruginosa Azurin. J. Biol. Inorg. Chem. 2016, 21, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Rayner, D.M.; Krajcarski, D.T.; Szabo, A.G. Excited State Acid–Base Equilibrium of Tyrosine. Can. J. Chem. 1978, 56, 1238–1245. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluoresence Spectroscopy, 2nd ed.; Kleuwer Academic/Plenum: New York, NY, USA, 1999. [Google Scholar]
- Pascher, T.; Karlsson, B.G.; Nordling, M.; Malmström, B.G.; Vänngård, T. Reduction Potentials and Their pH Dependence in Site-Directed-Mutant Forms of Azurin from Pseudomonas aeruginosa. Eur. J. Biochem. 1993, 212, 289–296. [Google Scholar] [CrossRef]
- St. Clair, C.S.; Ellis, W.R.; Gray, H.B. Spectroelectrochemistry of Blue Copper Proteins: pH and Temperature Dependences of the Reduction Potentials of Five Azurins. Inorg. Chim. Acta 1992, 191, 149–155. [Google Scholar] [CrossRef]
- Berry, B.W.; Martinez-Rivera, M.C.; Tommos, C. Reversible Voltammograms and a Pourbaix Diagram for a Protein Tyrosine Radical. Proc. Natl. Acad. Sci. USA 2012, 109, 9739–9743. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Rivera, M.C.; Berry, B.W.; Valentine, K.G.; Westerlund, K.; Hay, S.; Tommos, C. Electrochemical and Structural Properties of a Protein System Designed To Generate Tyrosine Pourbaix Diagrams. J. Am Chem. Soc. 2011, 133, 17786–17795. [Google Scholar] [CrossRef] [PubMed]
- Langen, R.; Chang, I.-J.; Germanas, J.P.; Richards, J.H.; Winkler, J.R.; Gray, H.B. Electron Tunneling in Proteins: Coupling Through a β Strand. Science 1995, 268, 1733–1735. [Google Scholar] [CrossRef] [PubMed]
- Regan, J.J.; Di Bilio, A.J.; Langen, R.; Skov, L.K.; Winkler, J.R.; Gray, H.B.; Onuchic, J.N. Electron Tunneling in Azurin: The Coupling across a β-Sheet. Chem. Biol. 1995, 2, 489–496. [Google Scholar] [CrossRef]
- Faham, S.; Day, M.W.; Connick, W.B.; Crane, B.R.; Bilio, A.J.D.; Schaefer, W.P.; Rees, D.C.; Gray, H.B. Structures of Ruthenium-Modified Pseudomonas Aeruginosa Azurin and [Ru(2,2′-Bipyridine)2(Imidazole)2]SO4·10H2O. Acta Crystallogr. D 1999, 55, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Chang, I.J.; Gray, H.B.; Winkler, J.R. High-Driving-Force Electron Transfer in Metalloproteins: Intramolecular Oxidation of Ferrocytochrome c by Ru(2,2’-Bpy)2(Im)(His-33)3+. J. Am. Chem. Soc. 1991, 113, 7056–7057. [Google Scholar] [CrossRef]
- Krishtalik, L.I. pH-Dependent Redox Potential: How to Use It Correctly in the Activation Energy Analysis. Biochim. Biophys. Acta 2003, 1604, 13–21. [Google Scholar] [CrossRef]
- Fedoretz-Maxwell, B.P.; Shin, C.H.; MacNeil, G.A.; Worrall, L.J.; Park, R.; Strynadka, N.C.J.; Walsby, C.J.; Warren, J.J. The Impact of Second Coordination Sphere Methionine-Aromatic Interactions in Copper Proteins. Inorg. Chem. 2022, 61, 5563–5571. [Google Scholar] [CrossRef]
- Shih, C.; Museth, A.K.; Abrahamsson, M.; Blanco-Rodriguez, A.M.; Di Bilio, A.J.; Sudhamsu, J.; Crane, B.R.; Ronayne, K.L.; Towrie, M.; Vlcek, A.; et al. Tryptophan-Accelerated Electron Flow Through Proteins. Science 2008, 320, 1760–1762. [Google Scholar] [CrossRef]
- Warren, J.J.; Ener, M.E.; Vlček, A.; Winkler, J.R.; Gray, H.B. Electron Hopping through Proteins. Coord. Chem. Rev. 2012, 256, 2478–2487. [Google Scholar] [CrossRef]
- Warren, J.J.; Winkler, J.R.; Gray, H.B. Hopping Maps for Photosynthetic Reaction Centers. Coord. Chem. Rev. 2013, 257, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.B.; Cho, M.P.; Wishart, J.F.; Emge, T.J.; Isied, S.S. Cis-Bis(Bipyridine)Ruthenium Imidazole Derivatives: A Spectroscopic, Kinetic, and Structural Study. Inorg. Chem. 1996, 35, 7241–7245. [Google Scholar] [CrossRef] [PubMed]
- Marcus, R.A.; Sutin, N. Electron Transfers in Chemistry and Biology. Biochim. Biophys. Acta 1985, 811, 265–322. [Google Scholar] [CrossRef]
- Gibbs, C.A.; Fedoretz-Maxwell, B.P.; MacNeil, G.A.; Walsby, C.J.; Warren, J.J. Proximal Methionine Amino Acid Residue Affects the Properties of Redox-Active Tryptophan in an Artificial Model Protein. ACS Omega 2023, 8, 19798–19806. [Google Scholar] [CrossRef]
- Tommos, C. Insights into the Thermodynamics and Kinetics of Amino-Acid Radicals in Proteins. Annu. Rev. Biophys. 2022, 51, 453–471. [Google Scholar] [CrossRef] [PubMed]
- Tommos, C.; Skalicky, J.J.; Pilloud, D.L.; Wand, A.J.; Dutton, P.L. De Novo Proteins as Models of Radical Enzymes. Biochemistry 1999, 38, 9495–9507. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Baumann, U.; Reymond, J.-L. An Efficient One-Step Site-Directed and Site-Saturation Mutagenesis Protocol. Nucleic Acids Res. 2004, 32, e115. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chakraborty, S.; Hosseinzadeh, P.; Yu, Y.; Tian, S.; Petrik, I.; Bhagi, A.; Lu, Y. Metalloproteins Containing Cytochrome, Iron–Sulfur, or Copper Redox Centers. Chem. Rev. 2014, 114, 4366–4469. [Google Scholar] [CrossRef]
- Wang, M.; Gao, J.; Müller, P.; Giese, B. Electron Transfer in Peptides with Cysteine and Methionine as Relay Amino Acids. Angew. Chem. Int. Ed. 2009, 48, 4232–4234. [Google Scholar] [CrossRef]
- Brunelle, P.; Rauk, A. One-Electron Oxidation of Methionine in Peptide Environments: The Effect of Three-Electron Bonding on the Reduction Potential of the Radical Cation. J. Phys. Chem. A 2004, 108, 11032–11041. [Google Scholar] [CrossRef]
- Brunelle, P.; Schöneich, C.; Rauk, A. One-Electron Oxidation of Methionine Peptides—Stability of the Three-Electron S—N(Amide) Bond. Can. J. Chem. 2006, 84, 893–904. [Google Scholar] [CrossRef]
- Beratan, D.N. Why Are DNA and Protein Electron Transfer So Different? Annu. Rev. Phys. Chem. 2019, 70, 71–97. [Google Scholar] [CrossRef] [PubMed]
- Beratan, D.N.; Liu, C.; Migliore, A.; Polizzi, N.F.; Skourtis, S.S.; Zhang, P.; Zhang, Y. Charge Transfer in Dynamical Biosystems, or The Treachery of (Static) Images. Acc. Chem. Res. 2015, 48, 474–481. [Google Scholar] [CrossRef]
- Beratan, D.N.; Skourtis, S.S.; Balabin, I.A.; Balaeff, A.; Keinan, S.; Venkatramani, R.; Xiao, D. Steering Electrons on Moving Pathways. Acc. Chem. Res. 2009, 42, 1669–1678. [Google Scholar] [CrossRef] [PubMed]
- Zahler, C.T.; Shaw, B.F. What Are We Missing by Not Measuring the Net Charge of Proteins? Chem. Eur. J. 2019, 25, 7581–7590. [Google Scholar] [CrossRef] [PubMed]
- Zahler, C.T.; Zhou, H.; Abdolvahabi, A.; Holden, R.L.; Rasouli, S.; Tao, P.; Shaw, B.F. Direct Measurement of Charge Regulation in Metalloprotein Electron Transfer. Angew. Chem. Int. Ed. 2018, 57, 5364–5368. [Google Scholar] [CrossRef] [PubMed]
- Markle, T.F.; Tronic, T.A.; DiPasquale, A.G.; Kaminsky, W.; Mayer, J.M. Effect of Basic Site Substituents on Concerted Proton-Electron Transfer in Hydrogen-Bonded Pyridyl-Phenols. J. Phys. Chem. A 2012, 116, 12249–12259. [Google Scholar] [CrossRef]
- Markle, T.F.; Tenderholt, A.L.; Mayer, J.M. Probing Quantum and Dynamic Effects in Concerted Proton-Electron Transfer Reactions of Phenol-Base Compounds. J. Phys. Chem. B 2011, 116, 571–584. [Google Scholar] [CrossRef]
- Irebo, T.; Reece, S.Y.; Sjoedin, M.; Nocera, D.G.; Hammarström, L. Proton-Coupled Electron Transfer of Tyrosine Oxidation: Buffer Dependence and Parallel Mechanisms. J. Am. Chem. Soc. 2007, 129, 15462–15464. [Google Scholar] [CrossRef]
- Wenger, O.S. Proton-Coupled Electron Transfer with Photoexcited Metal Complexes. Acc. Chem. Res. 2013, 46, 1517–1526. [Google Scholar] [CrossRef]
pH = | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
---|---|---|---|---|---|---|---|---|
His107Tyr109Met122 | 313 | 313 | 314 | 313 | 314 | 314 | 314 | 315 |
His107Tyr109Gln122 | 316 | 316 | 316 | 317 | 317 | 318 | 319 | 340 |
His107Tyr109Arg122 | 317 | 317 | 318 | 319 | 321 | 321 | 324 | 341 |
pH = | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|
Cu | 0.348 | 0.339 | 0.312 | 0.292 | 0.288 |
Tyr109Met122 | 1.04 | 0.975 | 0.930 | 0.877 | 0.876 |
Tyr109Gln122 | 1.02 | 0.962 | 0.927 | 0.898 | 0.893 |
Tyr109Arg122 | 1.02 | 0.980 | 0.912 | 0.880 | 0.876 |
pH | Met122 | Gln122 | Arg122 | Lys122 b |
---|---|---|---|---|
6 | (6.8 ± 0.5) × 103 3.83 | (6.3 ± 0.6) × 103 3.80 | (5.4 ± 1.1) × 103 3.73 | (5.7 ± 0.3) × 103 3.76 |
7 | (1.2 ± 0.1) × 104 4.09 | (1.1 ± 0.1) × 104 4.03 | (1.1 ± 0.1) × 104 4.05 | (1.2 ± 0.2) × 104 4.08 |
8 | (1.8 ± 0.1) × 104 4.26 | (1.6 ± 0.1) × 104 4.19 | (1.6 ± 0.1) × 104 4.19 | (1.7 ± 0.2) × 104 4.23 |
9 | (2.6 ± 0.1) × 104 4.42 | (2.1 ± 0.1) × 104 4.33 | (2.2 ± 0.1) × 104 4.32 | (1.8 ± 0.2) × 104 4.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gibbs, C.A.; Ghazi, N.; Tao, J.; Warren, J.J. An Investigation of the Influence of Tyrosine Local Interactions on Electron Hopping in a Model Protein. Molecules 2024, 29, 350. https://doi.org/10.3390/molecules29020350
Gibbs CA, Ghazi N, Tao J, Warren JJ. An Investigation of the Influence of Tyrosine Local Interactions on Electron Hopping in a Model Protein. Molecules. 2024; 29(2):350. https://doi.org/10.3390/molecules29020350
Chicago/Turabian StyleGibbs, Curtis A., Nikta Ghazi, Jody Tao, and Jeffrey J. Warren. 2024. "An Investigation of the Influence of Tyrosine Local Interactions on Electron Hopping in a Model Protein" Molecules 29, no. 2: 350. https://doi.org/10.3390/molecules29020350
APA StyleGibbs, C. A., Ghazi, N., Tao, J., & Warren, J. J. (2024). An Investigation of the Influence of Tyrosine Local Interactions on Electron Hopping in a Model Protein. Molecules, 29(2), 350. https://doi.org/10.3390/molecules29020350