Developing and Evaluating the Greenness of a Reliable, All-in-One Thin-Film Microextraction Protocol for Determining Fentanyl, Methadone, and Zolpidem in Plasma, Urine, and Oral Fluid
Abstract
:1. Introduction
2. Results and Discussion
2.1. Method Development
2.2. Method Validation
2.3. In Silico Assessment of the TFME-LC-MS/MS Protocol’s Greenness
3. Materials and Methods
3.1. Human Matrices
3.2. Chemicals
3.3. Working/Standard Solutions and Calibrators
3.4. Preparation of the Thin-Film Microextraction Blades
3.5. Sample Preparation and Extraction Protocol
3.6. LC-MS/MS Method
3.7. Validation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Health Topic. Available online: https://www.who.int/news-room/fact-sheets/detail/opioid-overdose (accessed on 16 November 2023).
- Centers for Disease Control and Prevention. Drug Overdose. Available online: https://www.cdc.gov/drugoverdose/index.html (accessed on 16 November 2023).
- National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division, Board on Health Sciences Policy; Committee on Medication-Assisted Treatment for Opioid Use Disorder. The Effectiveness of Medication-Based Treatment for Opioid Use Disorder. In Medications for Opioid Use Disorder Save Lives; Mancher, M., Leshner, A.I., Eds.; The National Academies Press: Washington, DC, USA, 2019; pp. 33–62. [Google Scholar]
- Strang, J. (Ed.) Drug Misuse and Dependence: UK Guidelines on Clinical Management; Global and Public Health 2017, Independent Expert Working Group; Taylor & Francis: London, UK, 2017; pp. 97–99, Chapter 4.4.7—Methadone Dosing. [Google Scholar]
- FDA Drug Safety Communication: FDA Warns about Serious Risks and Death when Combining Opioid Pain or Cough Medicines with Benzodiazepines; Requires Its Strongest Warning. Available online: https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-warns-about-serious-risks-and-death-when-combining-opioid-pain-or (accessed on 16 November 2023).
- Brandt, J.; Leong, C. Benzodiazepines and Z-Drugs: An Updated Review of Major Adverse Outcomes Reported on in Epidemiologic Research. Drugs R D. 2017, 17, 493–507. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.R.; Chand, R.; Kumar, S.; Mittal, N.; Srinivasamn, S.; Rajabzadeh, A.M. Recent biosensing advances in the rapid detection of illicit drugs. TrAC Trends Anal. Chem. 2020, 131, 116006. [Google Scholar] [CrossRef]
- Joosten, F.; Parrilla, M.; van Nuijs, A.L.N.; Ozoemena, K.I.; De Wael, K. Electrochemical detection of illicit drugs in oral fluid: Potential for forensic drug testing. Electrochim. Acta 2022, 436, 141309. [Google Scholar] [CrossRef]
- Farley, M.; Tran, H.; Towler, S.; Gevorkyan, J.; Pearring, S.; Rodda, L.N. A Single Method for 127 Recommended and Additional DUID Drugs in Blood and Urine by LC-MS-MS. J. Anal. Toxicol. 2022, 46, 658–669. [Google Scholar] [CrossRef]
- Trana, A.D.; Mannocchi, G.; Pirani, F.; Maida, N.; Gottardi, M.; Pichini, S.; Busardò, F.P. A Comprehensive HPLC-MS-MS Screening Method for 77 New Psychoactive Substances, 24 Classic Drugs and 18 Related Metabolites in Blood, Urine and Oral Fluid. J. Anal. Toxicol. 2020, 44, 769–783. [Google Scholar] [CrossRef] [PubMed]
- Kyriakou, C.; Marchei, E.; Scaravelli, G.; García-Algar, O.; Supervía, A.; Graziano, S. Identification and quantification of psychoactive drugs in whole blood using dried blood spot (DBS) by ultra-performance liquid chromatography tandem mass spectrometry. J. Pharm. Biomed. Anal. 2016, 128, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Pablo, A.; Breaud, A.R.; Clarke, W. Automated analysis of dried urine spot (DUS) samples for toxicology screening. Clin. Biochem. 2020, 75, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Scanferla, D.T.P.; Lini, R.S.; Marchioni, C.; Mossini, S.A.G. Drugs of abuse: A narrative review of recent trends in biological sample preparation and chromatographic techniques. Forensic Chem. 2022, 30, 100442. [Google Scholar] [CrossRef]
- D’Ovidio, C.; Bonelli, M.; Rosato, E.; Tartaglia, A.; Ulusoy, H.İ.; Samanidou, V.; Furton, K.G.; Kabir, A.; Ali, I.; Savini, F.; et al. Novel Applications of Microextraction Techniques Focused on Biological and Forensic Analyses. Separations 2022, 9, 18. [Google Scholar] [CrossRef]
- Carasek, E.; Scur, R.; Bernardi, G. High-throughput analytical methods employing microextraction techniques: Towards fast analyses lasting a few seconds. Adv. Sample Prep. 2023, 8, 100095. [Google Scholar] [CrossRef]
- Silveira, G.O.; Pego, A.M.F.; Pereira, E.; Silva, J.; Yonamine, M. Green sample preparations for the bioanalysis of drugs of abuse in complex matrices. Bioanalysis 2019, 11, 295–312. [Google Scholar] [CrossRef] [PubMed]
- Mandrioli, R.; Mercolini, L.; Protti, M. Blood and Plasma Volumetric Absorptive Microsampling (VAMS) Coupled to LC-MS/MS for the Forensic Assessment of Cocaine Consumption. Molecules 2020, 25, 1046. [Google Scholar] [CrossRef]
- Mestad, I.O.; Gjelstad, A.; Pedersen-Bjergaard, S.; Øiestad, E.L. Green and sustainable drug analysis—Combining microsampling and microextraction of drugs of abuse. Sust. Chem. Pharm. 2021, 24, 100517. [Google Scholar]
- Ask, K.S.; Øiestad, E.L.; Pedersen-Bjergaard, S.; Gjelstad, A. Dried blood spots and parallel artificial liquid membrane extraction-A simple combination of microsampling and microextraction. Anal. Chim. Acta. 2018, 1009, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Garcés, N.; Bojko, B.; Hein, D.; Pawliszyn, J. Solid phase microextraction devices prepared on plastic support as potential single-use samplers for bioanalytical applications. Anal. Chem. 2015, 87, 9722–9730. [Google Scholar] [CrossRef] [PubMed]
- Boyacı, E.; Gorynski, K.; Rodriguez-Lafuente, A.; Bojko, B.; Pawliszyn, J. Introduction of solid-phase microextraction as a high-throughput sample preparation tool in laboratory analysis of prohibited substances. Anal. Chim. Acta 2014, 809, 69–81. [Google Scholar] [CrossRef]
- Bessonneau, V.; Boyaci, E.; Maciazek-Jurczyk, M.; Pawliszyn, J. In vivo solid phase microextraction sampling of human saliva for non-invasive and on-site monitoring. Anal. Chim. Acta 2015, 856, 35–45. [Google Scholar] [CrossRef]
- Vasiljevic, T.; Gómez-Ríos, G.A.; Li, F.; Liang, P.; Pawliszyn, J. High-throughput quantification of drugs of abuse in biofluids via 96-solid-phase microextraction-transmission mode and direct analysis in real time mass spectrometry. Rapid Commun. Mass Spectrom. 2019, 33, 1423–1433. [Google Scholar] [CrossRef]
- Vasiljevic, T.; Gómez-Ríos, G.A.; Pawliszyn, J. Single-Use Poly(etheretherketone) Solid-Phase Microextraction-Transmission Mode Devices for Rapid Screening and Quantitation of Drugs of Abuse in Oral Fluid and Urine via Direct Analysis in Real-Time Tandem Mass Spectrometry. Anal. Chem. 2018, 90, 952–960. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J. A new tool for the evaluation of the analytical procedure: Green Analytical Procedure Index. Talanta 2018, 181, 204–209. [Google Scholar] [CrossRef]
- Pena-Pereira, F.; Wojnowski, W.; Tobiszewski, M. AGREE-Analytical GREEnness Metric Approach and Software. Anal. Chem. 2020, 92, 10076–10082. [Google Scholar] [CrossRef]
- Plotka-Wasylka, J.; Wojnowski, W. Complementary green analytical procedure index (ComplexGAPI) and software. Green Chem. 2021, 23, 8657–8665. [Google Scholar] [CrossRef]
- Wojnowski, W.; Tobiszewski, M.; Pena-Pereira, F.; Psillakis, E. AGREEprep—Analytical greenness metric for sample preparation. TrAC Trends Anal. Chem. 2022, 149, 116553. [Google Scholar] [CrossRef]
- Sobczak, Ł.; Kołodziej, D.; Goryński, K. Modifying current thin-film microextraction (TFME) solutions for analyzing prohibited substances: Evaluating new coatings using liquid chromatography. J. Pharm. Anal. 2022, 12, 470–480. [Google Scholar] [CrossRef] [PubMed]
- Kołodziej, D.; Sobczak, Ł.; Goryński, K. PANDA Microextraction (PolyAmide Non-coated Device for Adsorption-based Microextraction) and Novel 3D Printed TFME (Thin-Film Microextraction) Supports. Anal. Chem. 2022, 94, 2764–2771. [Google Scholar] [CrossRef] [PubMed]
- Bioanalytical Method Validation Guidance for Industry. Food and Drug Administration. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/bioanalytical-method-validation-guidance-industry (accessed on 16 November 2023).
- Mula, J.; Chiara, F.; Manca, A.; Palermiti, A.; Maiese, D.; Cusato, J.; Simiele, M.; Giuseppe De Rosa, F.; Di Perri, G.; De Nicolò, A.; et al. Analytical validation of a novel UHPLC-MS/MS method for 19 antibiotics quantification in plasma: Implementation in a LC-MS/MS Kit. Biomed. Pharmac. 2023, 163, 114790. [Google Scholar] [CrossRef] [PubMed]
- Kahl, K.W.; Seither, J.Z.; Reidy, L.J. LC-MS-MS vs ELISA: Validation of a Comprehensive Urine Toxicology Screen by LC-MS-MS and a Comparison of 100 Forensic Specimens. J. Anal. Toxicol. 2019, 43, 734–745. [Google Scholar] [CrossRef] [PubMed]
- Matuszewski, B.K.; Constanzer, M.L.; Chavez-Eng, C.M. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal. Chem. 2003, 75, 3019–3030. [Google Scholar] [CrossRef] [PubMed]
- De Nicolò, A.; Cantù, M.; D’Avolio, A. Matrix effect management in liquid chromatography mass spectrometry: The internal standard normalized matrix effect. Bioanalysis 2017, 9, 1093–1105. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.N.; Pawliszyn, J. Effect of Binding Components in Complex Sample Matrices on Recovery in Direct Immersion Solid-Phase Microextraction: Friends or Foe? Anal. Chem. 2018, 90, 2430–2433. [Google Scholar] [CrossRef]
- Reyes-Garcés, N.; Bojko, B.; Pawliszyn, J. High throughput quantification of prohibited substances in plasma using thin film solid phase microextraction. J. Chromatogr. A 2014, 1374, 40–49. [Google Scholar] [CrossRef]
- Galuszka, A.; Migaszewski, Z.M.; Konieczka, P.; Namiesnik, J. Analytical Eco-Scale for assessing the greenness of analytical procedures. TrAC Trends Anal. Chem. 2012, 37, 61–72. [Google Scholar] [CrossRef]
- Manousi, N.; Wojnowski, W.; Płotka-Wasylka, J.; Samanidou, V. Blue applicability grade index (BAGI) and software: A new tool for the evaluation of method practicality. Green Chem. 2023, 25, 7598–7604. [Google Scholar] [CrossRef]
- Reyes-Garcés, N.; Gionfriddo, E.; Gómez-Ríos, G.A.; Alam, M.N.; Boyacı, E.; Bojko, B.; Singh, V.; Grandy, J.; Pawliszyn, J. Advances in Solid Phase Microextraction and Perspective on Future Directions. Anal. Chem. 2018, 90, 302–360. [Google Scholar] [CrossRef]
- Zhou, W.; Wieczorek, M.N.; Jiang, R.W.; Pawliszyn, J. Comparison of different approaches for direct coupling of solid-phase microextraction to mass spectrometry for drugs of abuse analysis in plasma. J. Pharm. Anal. 2023, 13, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Mirnaghi, F.S.; Chen, Y.; Sidisky, L.M.; Pawliszyn, J. Optimization of the coating procedure for a high-throughput 96-blade solid phase microextraction system coupled with LC-MS/MS for analysis of complex samples. Anal. Chem. 2011, 83, 6018–6025. [Google Scholar] [CrossRef]
- Goryński, K.; Bojko, B.; Kluger, M.; Jerath, A.; Wąsowicz, M.; Pawliszyn, J. Development of SPME method for concomitant sample preparation of rocuronium bromide and tranexamic acid in plasma. J. Pharm. Biomed. Anal. 2014, 92, 183–192. [Google Scholar] [CrossRef]
Matrix | Drugs of Abuse | Linearity Range ng mL−1 | R2 | Slope (m) | Intercept (q) | LOD ng mL−1 | LOQ ng mL−1 | |
---|---|---|---|---|---|---|---|---|
Urine | Zolpidem | 3–100 | 0.971 | 62,645 | 28,338 | 11.44 | 1 | 3 |
Fentanyl | 1–100 | 0.991 | 97,278 | 70,241 | 8.00 | 0.4 | 1 | |
Methadone | 3–100 | 0.998 | 126,872 | −8901 | 5.44 | 1 | 3 | |
Plasma | Zolpidem | 3–100 | 0.996 | 19,998 | −17,490 | 12.13 | 1 | 3 |
Fentanyl | 1–100 | 0.996 | 104,063 | −9263 | 6.67 | 0.4 | 1 | |
Methadone | 1–100 | 0.998 | 169,015 | −59,173 | 6.78 | 0.4 | 1 | |
Oral fluid | Zolpidem | 1–100 | 0.995 | 46,848 | −4588 | 9.13 | 0.3 | 1 |
Fentanyl | 3–100 | 0.995 | 74,614 | −51,954 | 5.01 | 1 | 3 | |
Methadone | 3–100 | 0.998 | 75,469 | −16,221 | 3.89 | 1 | 3 |
Matrix | Drugs of Abuse | Matrix Effect (%) | Extraction Efficiency (%) | Precision Intra-Day (%) QC-LOQ | Precision Inter-Day (%) QC-LOQ | Accuracy (%) | Stability | |||
---|---|---|---|---|---|---|---|---|---|---|
RT (%) | F/T (%) | FR (%) | AS (%) | |||||||
Urine | Zolpidem | 97.4 | 42.8 | 7.4 | 6.2 | 89 | 9 | 7 | 11 | 2 |
Fentanyl | 96.0 | 62.7 | 4.9 | 5.5 | 99 | 10 | 11 | 4 | 3 | |
Methadone | 96.0 | 76.2 | 4.0 | 8.8 | 104 | 9 | 5 | 3 | 0 | |
Plasma | Zolpidem | 93.6 | 34.3 | 8.3 | 7.8 | 102 | −13 | −11 | 15 | −9 |
Fentanyl | 93.3 | 34.5 | 4.3 | 8.1 | 104 | 5 | 4 | 13 | −1 | |
Methadone | 92.2 | 62.4 | 4.7 | 11.1 | 99 | 5 | 2 | 15 | −2 | |
Oral fluid | Zolpidem | 85.5 | 26.7 | 9.6 | 11.8 | 103 | −15 | 7 | 7 | 15 |
Fentanyl | 87.4 | 38.0 | 4.8 | 12.0 | 101 | −5 | 3 | 3 | −9 | |
Methadone | 87.7 | 36.7 | 2.7 | 12.0 | 102 | −9 | −11 | 9 | −5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goryński, K.; Sobczak, Ł.; Kołodziej, D. Developing and Evaluating the Greenness of a Reliable, All-in-One Thin-Film Microextraction Protocol for Determining Fentanyl, Methadone, and Zolpidem in Plasma, Urine, and Oral Fluid. Molecules 2024, 29, 335. https://doi.org/10.3390/molecules29020335
Goryński K, Sobczak Ł, Kołodziej D. Developing and Evaluating the Greenness of a Reliable, All-in-One Thin-Film Microextraction Protocol for Determining Fentanyl, Methadone, and Zolpidem in Plasma, Urine, and Oral Fluid. Molecules. 2024; 29(2):335. https://doi.org/10.3390/molecules29020335
Chicago/Turabian StyleGoryński, Krzysztof, Łukasz Sobczak, and Dominika Kołodziej. 2024. "Developing and Evaluating the Greenness of a Reliable, All-in-One Thin-Film Microextraction Protocol for Determining Fentanyl, Methadone, and Zolpidem in Plasma, Urine, and Oral Fluid" Molecules 29, no. 2: 335. https://doi.org/10.3390/molecules29020335
APA StyleGoryński, K., Sobczak, Ł., & Kołodziej, D. (2024). Developing and Evaluating the Greenness of a Reliable, All-in-One Thin-Film Microextraction Protocol for Determining Fentanyl, Methadone, and Zolpidem in Plasma, Urine, and Oral Fluid. Molecules, 29(2), 335. https://doi.org/10.3390/molecules29020335