Structure–Function Relationships and Health-Promoting Properties of the Main Nutraceuticals of the Cactus Pear (Opuntia spp.) Cladodes: A Review
Abstract
:1. Introduction
2. Structure–Function Relationships of the Major Nutraceuticals of Cactus Pear Cladodes
2.1. Polyphenols
2.2. Fatty Acids
2.3. Vitamins
2.4. Amino Acids
2.5. Natural Pigments
2.6. Phytosterols
3. Health-Promoting Properties of Cactus Pear Cladodes
3.1. Antioxidant Activity
3.2. Antidiabetic and Antiobesity Properties
3.3. Antihyperlipidemic and Anticholesterolemic Activities
3.4. Antiulcer Activity
3.5. Antimicrobial Activity
3.6. Anti-Inflammatory and Analgesic Effects
3.7. Anticancer Effect
4. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Radi, H.; Bouchiha, F.; El Maataoui, S.; Oubassou, E.-Z.; Rham, I.; Alfeddy, M.N.; Aissam, S.; Mazri, M.A. Morphological and Physio-biochemical Responses of Cactus Pear (Opuntia ficus indica (L.) Mill.) Organogenic Cultures to Salt and Drought Stresses Induced in vitro. Plant Cell Tissue Organ Cult. 2023, 154, 337–350. [Google Scholar] [CrossRef]
- Mazri, M.A. Cactus Pear (Opuntia spp.) Species and Cultivars. In Opuntia spp.: Chemistry, Bioactivity and Industrial Applications; Ramadan, M.F., Ayoub, T.E.M., Rohn, S., Eds.; Springer: Cham, Switzerland, 2021; pp. 83–107. [Google Scholar]
- Kumar, K.; Singh, D.; Singh, R.S. Cactus Pear: Cultivation and Uses; Technical Bulletin No. 73; ICAR-Central Institute for Arid Horticulture: Rajasthan, India, 2018; pp. 1–38. [Google Scholar]
- Mazri, M.A. Cactus Pear (Opuntia spp.) Breeding. In Advances in Plant Breeding Strategies: Fruits; Al-Khayri, J.M., Jain, S.M., Johnson, D.V., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 307–341. [Google Scholar]
- Lagos, J.B.; Vargas, F.C.; de Oliveira, T.G.; da Aparecida Makishi, G.L.; do Amaral Sobral, P.J. Recent Patents on the Application of Bioactive Compounds in Food: A Short Review. Curr. Opin. Food Sci. 2015, 5, 1–7. [Google Scholar] [CrossRef]
- Martirosyan, D.; Miller, E. Bioactive Compounds: The Key to Functional Foods. Bioact. Compd. Health Dis. 2018, 1, 36–39. [Google Scholar] [CrossRef]
- Ortega, A.M.M.; Campos, M.R.S. Bioactive Compounds as Therapeutic Alternatives. In Bioactive Compounds Health Benefits and Potential Applications, 1st ed.; Campos, M.R.S., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 247–264. [Google Scholar]
- Ul-Haq, I.; Butt, M.S.; Amjad, N.; Yasmin, I.; Suleria, H.A.R. Marine-Algal Bioactive Compounds: A Comprehensive Appraisal. In Handbook of Algal Technologies and Phytochemicals; CRC Press: Boca Raton, FL, USA, 2019; pp. 71–80. [Google Scholar]
- Kumar, S.; Aharwal, R.P.; Shukla, H.; Rajak, R.; Sandhu, S.S. Endophytic Fungi: As a Source of Antimicrobials Bioactive Compounds. World J. Pharm. Pharm. Sci. 2014, 3, 1179–1197. [Google Scholar]
- Bernhoft, A. A Brief Review on Bioactive Compounds in Plants. Bioact. Compd. Plants-Benefits Risks Man Anim. 2010, 50, 11–17. [Google Scholar]
- Chbani, M.; El Harkaoui, S.; Willenberg, I.; Matthäus, B. Analytical Extraction Methods, Physicochemical Properties and Chemical Composition of Cactus (Opuntia ficus-indica) Seed Oil and its Biological Activity. Food Rev. Int. 2023, 39, 4496–4512. [Google Scholar] [CrossRef]
- Kadda, S.; Belabed, A.; Conte, R.; Ouahhoud, S.; Hamdaoui, H.; Mechchate, H.; Elarbi, Z. Phytochemical Analysis for the Residues of Opuntia ficus indica L Seed Oil of Eastern Region of Morocco. Mater. Today Proc. 2023, 72, 3662–3668. [Google Scholar] [CrossRef]
- Di Napoli, M.; Badalamenti, N.; Castagliuolo, G.; Merra, R.; Varcamonti, M.; Zanfardino, A.; Bruno, M.; Sottile, F. Chemical Composition, Antimicrobial, and Antioxidant Activities of Opuntia stricta (Haw.) Haw. Mucilage Collected in Sicily, Italy. Nat. Prod. Res. 2023, 1–9. [Google Scholar] [CrossRef]
- Kussmann, M.; Abe Cunha, D.H.; Berciano, S. Bioactive Compounds for Human and Planetary Health. Front. Nutr. 2023, 10, 1193848. [Google Scholar] [CrossRef]
- Giraldo-Silva, L.; Ferreira, B.; Rosa, E.; Dias, A.C.P. Opuntia ficus-indica Fruit: A Systematic Review of its Phytochemicals and Pharmacological Activities. Plants 2023, 12, 543. [Google Scholar] [CrossRef]
- de Wit, M.; Fouché, H. Chemistry and Functionality of Opuntia spp. Nopal Cladodes. In Opuntia spp.: Chemistry, Bioactivity and Industrial Applications; Ramadan, M.F., Ayoub, T.E.M., Rohn, S., Eds.; Springer: Cham, Switzerland, 2021; pp. 259–285. [Google Scholar]
- Reda, T.A.; Mussie, E.H.; Ejigu, M.C.; Ayele, A.K.; Teame, H.B. Analysis of Chemical Composition of Cactus Pear (Opuntia ficus-indica L.) Cladode Extract as Natural Preparation for Fungal Culture Media. J. Med. Chem. 2020, 2, 1–8. [Google Scholar]
- Elshehy, H.R.; El Sayed, S.S.; Abdel-Mawla, E.M.; Agamy, N.F. Nutritional Value of Cladodes and Fruits of Prickly Pears (Opuntia ficus-indica). Alex. J. Food Sci. Technol. 2020, 17, 17–25. [Google Scholar]
- Gomes, G.M.F.; Cândido, M.J.D.; Lopes, M.N.; Maranhão, T.D.; Andrade, D.R.; Costa, J.F.M.; Silveira, W.M.; Neiva, J.N.M. Chemical Composition of Cactus Pear Cladodes Under Different Fertilization and Harvesting Managements. Pesq. Agropec. Bras. 2018, 53, 221–228. [Google Scholar] [CrossRef]
- Hernández-Becerra, E.; de los Angeles Aguilera-Barreiro, M.; Contreras-Padilla, M.; Pérez-Torrero, E.; Rodriguez-Garcia, M.E. Nopal Cladodes (Opuntia ficus indica): Nutritional Properties and Functional Potential. J. Funct. Foods 2022, 95, 105183. [Google Scholar] [CrossRef]
- Maniaci, G.; Ponte, M.; Giosuè, C.; Gannuscio, R.; Pipi, M.; Gaglio, R.; Busetta, G.; Di Grigoli, A.; Bonanno, A.; Alabiso, M. Cladodes of Opuntia ficus-indica (L.) as a Source of Bioactive Compounds in Dairy Products. J. Dairy Sci. 2024, 107, 1887–1902. [Google Scholar] [CrossRef]
- Abd El-Moaty, H.I.; Sorour, W.A.; Youssef, A.K.; Gouda, H.M. Structural Elucidation of Phenolic Compounds Isolated from Opuntia littoralis and their Antidiabetic, Antimicrobial and Cytotoxic Activity. S. Afr. J. Bot. 2020, 131, 320–327. [Google Scholar] [CrossRef]
- Ben Lataief, S.; Zourgui, M.-N.; Rahmani, R.; Najjaa, H.; Gharsallah, N.; Zourgui, L. Chemical Composition, Antioxidant, Antimicrobial and Cytotoxic Activities of Bioactive Compounds Extracted from Opuntia dillenii Cladodes. J. Food Meas. Charact. 2021, 15, 782–794. [Google Scholar] [CrossRef]
- Lahmidi, S.; Bakali, A.H.; Harrak, H. Physical and Physicochemical Characteristics, Bioactive Compounds, and Antioxidant Activity of Cladodes from Erect Prickly Pear Opuntia stricta (Haw.) Haw. J. Food Quality 2023, 2023, 3028552. [Google Scholar] [CrossRef]
- Tahir, H.E.; Xiaobo, Z.; KomLa, M.G.; Adam, M.A. Nopal Cactus (Opuntia ficus-indica (L.) Mill) as a Source of Bioactive Compounds. In Wild Fruits: Composition, Nutritional Value and Products; Mariod, A.A., Ed.; Springer: Cham, Switzerland, 2019; pp. 333–358. [Google Scholar]
- Yahia, E.M.; Sáenz, C. Cactus Pear Fruit and Cladodes. In Fruit and Vegetable Phytochemicals; Chemistry and Human Health, 2nd ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2018; pp. 941–956. [Google Scholar]
- Ghosh, D.; Scheepens, A. Vascular Action of Polyphenols. Mol. Nutr. Food Res. 2009, 53, 322–331. [Google Scholar] [CrossRef]
- Ayissi, V.B.O.; Ebrahimi, A.; Schluesenner, H. Epigenetic Effects of Natural Polyphenols: A Focus on SIRT1-Mediated Mechanisms. Mol. Nutr. Food Res. 2014, 58, 22–32. [Google Scholar] [CrossRef]
- Belščak-Cvitanović, A.; Durgo, K.; Huđek, A.; Bačun-Družina, V.; Komes, D. Overview of Polyphenols and their Properties. In Polyphenols: Properties, Recovery, and Applications; Galanakis, C.M., Ed.; Woodhead Publishing: Sawston, UK, 2018; pp. 3–44. [Google Scholar]
- Tsao, R. Chemistry and Biochemistry of Dietary Polyphenols. Nutrients 2010, 2, 1231–1246. [Google Scholar] [CrossRef] [PubMed]
- Karym, E.; El Kharrassi, Y.; Badreddine, A.; Andreoletti, P.; Vamecq, J.; El Kebbaj, M.S.; Latruffe, N.; Lizard, G.; Nasser, B.; Cherkaoui-Malki, M. Nopal Cactus (Opuntia ficus-indica) as a Source of Bioactive Compounds for Nutrition, Health and Disease. Molecules 2014, 19, 14879–14901. [Google Scholar] [CrossRef] [PubMed]
- Omidfar, F.; Gheybi, F.; Zareian, M.; Karimi, E. Polyphenols in food industry, nano-based technology development and biological properties: An overview. eFood 2023, 4, e88. [Google Scholar] [CrossRef]
- Ramos, M.; Laveriano, E.; Sebastián, L.S.; Perez, M.; Jiménez, A.; Lamuela-Raventos, R.M.; Garrigós, M.C.; Vallverdú-Queralt, A. Rice straw as a valuable source of cellulose and polyphenols: Applications in the food industry. Trends Food Sci. Technol. 2023, 131, 14–27. [Google Scholar] [CrossRef]
- Rathee, P.; Sehrawat, R.; Rathee, P.; Khatkar, A.; Akkol, E.K.; Khatkar, S.; Redhu, N.; Türkcanoğlu, G.; Sobarzo-Sánchez, E. Polyphenols: Natural Preservatives with Promising Applications in Food, Cosmetics and Pharma Industries; Problems and Toxicity Associated with Synthetic Preservatives; Impact of Misleading Advertisements—Recent Trends in Preservation and Legislation. Materials 2023, 16, 4793. [Google Scholar] [CrossRef]
- Ferguson, L.R. Role of Plant Polyphenols in Genomic Stability. Mut. Res. Fund. Mol. Mutagen. 2001, 475, 89–111. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food Sources and Bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef]
- Sánchez, E.; Dávila-Aviña, J.; Castillo, S.L.; Heredia, N.; Vázquez-Alvarado, R.; García, S. Antibacterial and Antioxidant Activities in Extracts of Fully Grown Cladodes of 8 Cultivars of Cactus Pear. J. Food Sci. 2014, 79, M659–M664. [Google Scholar] [CrossRef]
- Du Toit, A.; de Wit, M.; Osthoff, G.; Hugo, A. Antioxidant Properties of Fresh and Processed Cactus Pear Cladodes from Selected Opuntia ficus-indica and O. Robusta Cultivars. S. Afr. J. Bot. 2018, 118, 44–51. [Google Scholar] [CrossRef]
- Lee, Y.C.; Pyo, Y.H.; Ahn, C.K.; Kim, S.H. Food Functionality of Opuntia ficus-indica var. Cultivated in Jeju Island. J. Food Sci. Nutr. 2005, 10, 103–110. [Google Scholar] [CrossRef]
- Mena, P.; Tassotti, M.; Andreu, L.; Nuncio-Jáuregui, N.; Legua, P.; del Rio, D.; Hernández, F. Phytochemical Characterization of Different Prickly Pear (Opuntia ficus-indica (L.) Mill.) Cultivars and Botanical Parts: UHPLC-ESI-MSn Metabolomics Profiles and Their Chemometric Analysis. Food Res. Int. 2018, 108, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Haile, K.; Mehari, B.; Atlabachew, M.; Chandravanshi, B.S. Phenolic Composition and Antioxidant Activities of Cladodes of the Two Varieties of Cactus Pear (Opuntia ficus-indica) Grown in Ethiopia. Bull. Chem. Soc. Ethiop. 2016, 30, 347–356. [Google Scholar] [CrossRef]
- Andrea, B.; Dumitrița, R.; Florina, C.; Francisc, D.; Anastasia, V.; Socaci, S.; Adela, P. Comparative Analysis of Some Bioactive Compounds in Leaves of Different Aloe Species. BMC Chem. 2020, 14, 67. [Google Scholar] [CrossRef] [PubMed]
- Fauser, J.K.; Prisciandaro, L.D.; Cummins, A.G.; Howarth, G.S. Fatty Acids as Potential Adjunctive Colorectal Chemotherapeutic Agents. Cancer Biol. Ther. 2011, 11, 724–731. [Google Scholar] [CrossRef] [PubMed]
- Galloway, A.W.E.; Budge, S.M. The Critical Importance of Experimentation in Biomarker-Based Trophic Ecology. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190638. [Google Scholar] [CrossRef] [PubMed]
- Jarukas, L.; Kuraite, G.; Baranauskaite, J.; Marksa, M.; Bezruk, I.; Ivanauskas, L. Optimization and Validation of the GC/FID Method for the Quantification of Fatty Acids in Bee Products. Appl. Sci. 2021, 11, 83. [Google Scholar] [CrossRef]
- Tahuk, P.K.; Dethan, A.A.; Sio, S. The Composition of Saturated and Unsaturated Fatty Acids and Cholesterol in Meat of Bali Bull Fattened Using Greenlot System in Small Holder Farming. J. Kedokt. Hewan-Indones. J. Vet. Sci. 2018, 12, 66–70. [Google Scholar] [CrossRef]
- Tan, L.; Harper, L.R.; Armstrong, A.; Carlson, C.S.; Yammani, R.R. Dietary Saturated Fatty Acid Palmitate Promotes Cartilage Lesions and Activates the Unfolded Protein Response Pathway in Mouse Knee Joints. PLoS ONE 2021, 16, e0247237. [Google Scholar] [CrossRef]
- Legrand, P.; Rioux, V. Specific Roles of Saturated Fatty Acids: Beyond Epidemiological Data. Eur. J. Lipid Sci. Technol. 2015, 117, 1489–1499. [Google Scholar] [CrossRef]
- Xu, P.; Wang, Z.; Li, J. Progress on the Protective Effects of Maternal Fatty Acid Supplementation on Infant Asthma Risk: A Narrative Review. Ann. Palliat. Med. 2021, 10, 2323–2330. [Google Scholar] [CrossRef]
- Margina, D.; Ungurianu, A.; Purdel, C.; Nițulescu, G.M.; Tsoukalas, D.; Sarandi, E.; Thanasoula, M.; Burykina, T.I.; Tekos, F.; Buha, A.; et al. Analysis of the Intricate Effects of Polyunsaturated Fatty Acids and Polyphenols on Inflammatory Pathways in Health and Disease. Food Chem. Toxicol. 2020, 143, 111558. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, A.; Venâncio, A. The Potential of Fatty Acids and Their Derivatives as Antifungal Agents: A Review. Toxins 2022, 14, 188. [Google Scholar] [CrossRef] [PubMed]
- Martínez, A.; Magallanes, L.; Tarditto, L.; Pramparo, M.; Gayol, M. Fatty acids methyl esters from soybean oil for biobased surfactants industry: Obtention C16 C18 concentrate for use as feedstock. Ind. Crops Prod. 2022, 190, 115892. [Google Scholar] [CrossRef]
- Park, J.Y.; Yu, H.; Charalampopoulos, D.; Park, K.M.; Chang, P.S. Recent advances on erythorbyl fatty acid esters as multi-functional food emulsifiers. Food Chem. 2024, 432, 137242. [Google Scholar] [CrossRef] [PubMed]
- Andreu-Coll, L.; Cano-Lamadrid, M.; Sendra, E.; Carbonell-Barrachina, A.; Legua, P.; Hernándeza, F. Fatty Acid Profile of Fruits (Pulp and Peel) and Cladodes (Young and Old) of Prickly Pear [Opuntia ficus-indica (L.) Mill.] From Six Spanish Cultivars. J. Food Compos. Anal. 2019, 84, 103294. [Google Scholar] [CrossRef]
- Jung, B.-M.; Han, K.-A.; Shin, T.-S. Food Components of Different Parts of Cheonnyuncho (Opuntia humifusa) Harvested from Yeosu, Jeonnam in Korea. J. Korean Soc. Food Sci. Nutr. 2011, 40, 1271–1278. [Google Scholar] [CrossRef]
- Carreira, V.P.; Padró, J.; Moniardino Koch, N.; Fontanarrosa, P.; Alonso, J.I.; Soto, I.M. Nutritional Composition of Opuntia sulphurea (G. Don in Loudon) Cladodes. Haseltonia 2014, 19, 38–45. [Google Scholar] [CrossRef]
- Chahdoura, H.; Barreira, J.C.M.; Barros, L.; Santos-Buelga, C.; Ferreira, I.C.F.R.; Achour, L. Phytochemical Characterization and Antioxidant Activity of the Cladodes of Opuntia macrorhiza (Engelm.) and Opuntia microdasys (Lehm.). Food Funct. 2014, 9, 2129–2136. [Google Scholar] [CrossRef]
- Kennedy, D.O. B Vitamins and the Brain: Mechanisms, Dose, and Efficacy—A Review. Nutrients 2016, 8, 68. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, W.E.; Yan, J.Q.; Liu, M.; Zhou, Y.; Shen, X.; Ma, Y.L.; Feng, X.S.; Yang, J.; Li, G.H. A Review of the Extraction and Determination Methods of Thirteen Essential Vitamins to the Human Body: An Update from 2010. Molecules 2018, 23, 1484. [Google Scholar] [CrossRef]
- Smith, A.G.; Croft, M.T.; Moulin, M.; Webb, M.E. Plants Need Their Vitamins Too. Curr. Opin. Plant Biol. 2007, 10, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Mamede, A.C.; Tavares, S.D.; Abrantes, A.M.; Trindade, J.; Maia, J.M.; Botelho, M.F. The Role of Vitamins in Cancer: A Review. Nutr. Cancer 2011, 63, 479–494. [Google Scholar] [CrossRef] [PubMed]
- Said, H.M. Water-Soluble Vitamins. World Rev. Nutr. Diet 2015, 111, 30–37. [Google Scholar] [PubMed]
- Ottaway, P.B. Stability of Vitamins in Food. In The Technology of Vitamins in Food; Ottaway, P.B., Ed.; Springer: Boston, MA, USA, 1993; pp. 90–113. [Google Scholar]
- Kennedy, D.O.; Haskell, C.F. Vitamins and Cognition: What is the Evidence? Drugs 2011, 71, 1957–1971. [Google Scholar] [CrossRef] [PubMed]
- Beitz, R.; Mensink, G.B.M.; Fischer, B.; Thamm, M. Vitamins—Dietary intake and intake from dietary supplements in Germany. Eur. J. Clin. Nutr. 2002, 56, 539–545. [Google Scholar] [CrossRef]
- Hill, A.; Starchl, C.; Dresen, E.; Stoppe, C.; Amrein, K. An update of the effects of vitamins D and C in critical illness. Front. Med. 2022, 9, 1083760. [Google Scholar] [CrossRef]
- Desai, S.S.; Mane, V.K. Biotechnological Advances in Cosmetic Industry. In Sustainable Production Innovations: Bioremediation and Other Biotechnologies; Patel, A.K., Sharma, A.K., Eds.; Wiley: Hoboken, NJ, USA, 2024; pp. 103–135. [Google Scholar]
- Ramírez-Moreno, E.; Córdoba-Díaz, D.; de Cortes Sánchez-Mata, M.; Díez-Marqués, C.; Honi, I. Effect of Boiling on Nutritional, Antioxidant and Physicochemical Characteristics in Cladodes (Opuntia ficus-indica). LWT Food Sci. Technol. 2013, 51, 296–302. [Google Scholar] [CrossRef]
- Lanuzza, F.; Occhiuto, F.; Monforte, M.T.; Tripodo, M.M.; D’Angelo, V.; Galati, E.M. Antioxidant Phytochemicals of Opuntia ficus-indica (L.) Mill. Cladodes with Potential Anti-Spasmodic Activity. Pharmacogn. Mag. 2017, 13, S424–S429. [Google Scholar]
- Kumar, H.; Verma, A.; Chadha, C. Synthesis and Thermodynamics Studies of Ionic Liquid 1-Methyl-3-Pentylimidazolium Bromide ([C5Mim][Br]) with Amino Acids (l-cysteine and N-acetyl-l-cysteine) at Different Temperatures. J. Chem. Thermodyn. 2017, 111, 238–249. [Google Scholar] [CrossRef]
- Guo, J.; Li, Y.; Song, Y.; Zhang, G.; Zhao, H. Comparative Metabolomic Analysis of Multi-Ovary Wheat under Heterogeneous Cytoplasm Suppression. Agronomy 2021, 11, 658. [Google Scholar] [CrossRef]
- Li, N.; de Silva, J. Theanine: Its Occurrence and Metabolism in Tea. Annu. Plant Rev. Online 2010, 42, 171–206. [Google Scholar]
- Casiday, R.; Frey, R. Iron Use and Storage in the Body: Ferritin; Department of Chemistry, Washington University: St. Louis, MO, USA, 2007; pp. 1–12. [Google Scholar]
- Goldstein, A.; Vockley, J. Clinical Trials Examining Treatments for Inborn Errors of Amino Acid Metabolism. Expert Opin. Orphan Drugs 2017, 5, 153–164. [Google Scholar] [CrossRef]
- Sauber, A.; Nasef, M.; Sakr, A.; Geba, K. An Efficient Model to Encrypt Text and Gray Image Based on Amino Acid Chains. Egypt. J. Lang. Eng. 2020, 7, 20–31. [Google Scholar]
- Kumar, H.; Kumar, V.; Sharma, S.; Katal, A.; Alothman, A.A. Volumetric and Acoustic Properties of Amino Acids L-Leucine and L-Serine in Aqueous Solution of Ammonium Dihydrogen Phosphate (ADP) at Different Temperatures and Concentrations. J. Chem. Thermodyn. 2021, 155, 106350. [Google Scholar] [CrossRef]
- Liu, Y.T.; Song, S.M.; Yin, D.W.; Chen, D. Simple, Efficient, and Selective Synthesis of Phthaloylserine and Phthaloylthreonine. Adv. Mater. Res. 2015, 1088, 363–366. [Google Scholar] [CrossRef]
- Pishchugin, F.V.; Tuleberdiev, I.T. Effect of Structure of the Amino Acids and Amines on the Rate and Mechanism of their Condensations with Pyridoxal. Russ. J. General Chem. 2010, 80, 1836–1840. [Google Scholar] [CrossRef]
- Han, N.; Li, L.; Peng, M.; Ma, H. (-)-Hydroxycitric Acid Nourishes Protein Synthesis via Altering Metabolic Directions of Amino Acids in Male Rats. Phytother. Res. 2016, 30, 1316–1329. [Google Scholar] [CrossRef]
- Tonouchi, N.; Ito, H. Present global situation of amino acids in industry. In Amino Acid Fermentation. Advances in Biochemical Engineering/Biotechnology; Yokota, A., Ikeda, M., Eds.; Springer: Tokyo, Japan, 2017; pp. 3–14. [Google Scholar]
- Mitchell, B. All about Protein. Equine Health 2018, 2018, 10–12. [Google Scholar] [CrossRef]
- Puris, E.; Gynther, M.; Auriola, S.; Huttunen, K.M. L-Type Amino Acid Transporter 1 as a Target for Drug Delivery. Pharm. Res. 2020, 37, 88. [Google Scholar] [CrossRef]
- Ren, W.; Li, Y.; Yin, Y.; Blachier, F. Structure, Metabolism and Functions of Amino Acids: An Overview. In Nutritional and Physiological Functions of Amino Acids in Pigs; Springer: Vienna, Austria, 2013; pp. 91–108. [Google Scholar]
- Hernández-Urbiola, M.I.; Contreras-Padilla, M.; Pérez-Torrero, E.; Hernández-Quevedo, G.; Rojas-Molina, J.I.; Cortes, M.E.; Rodríguez-García, M.E. Study of Nutritional Composition of Nopal (Opuntia ficus indica cv. Redonda) at Different Maturity Stages. Open Nutr. J. 2010, 4, 11–16. [Google Scholar] [CrossRef]
- Pereira, D.M.; Valentão, P.; Andrade, P.B. Marine Natural Pigments: Chemistry, Distribution and Analysis. Dye Pigment. 2014, 111, 124–134. [Google Scholar] [CrossRef]
- Muthusamy, S.; Udhayabaskar, S.; Udayakumar, G.P.; Kirthikaa, G.B.; Sivarajasekar, N. Properties and Applications of Natural Pigments Produced from Different Biological Sources—A Concise Review. In Sustainable Development in Energy and Environment; Select Proceedings of ICSDEE 2019; Springer: Singapore, 2020; pp. 105–119. [Google Scholar]
- Costantini, D.; Møller, A.P. Carotenoids Are Minor Antioxidants for Birds. Funct. Ecol. 2008, 22, 367–370. [Google Scholar] [CrossRef]
- Sandmann, G. Carotenoids of Biotechnological Importance. Adv. Biochem. Eng. Biotechnol. 2014, 148, 449–467. [Google Scholar]
- Stahl, W.; Sies, H. Antioxidant Activity of Carotenoids. Mol. Asp. Med. 2003, 24, 345–351. [Google Scholar] [CrossRef]
- Azeredo, H.M.C. Betalains: Properties, Sources, Applications, and Stability—A Review. Int. J. Food Sci. Technol. 2009, 44, 2365–2376. [Google Scholar] [CrossRef]
- Khan, M.I. Plant Betalains: Safety, Antioxidant Activity, Clinical Efficacy, and Bioavailability. Compr. Rev. Food Sci. Food Saf. 2016, 15, 316–330. [Google Scholar] [CrossRef]
- Hussain, E.A.; Sadiq, Z.; Zia-Ul-Haq, M. Betalains: Biomolecular Aspects, 1st ed.; Springer International Publishing, AG: Cham, Switzerland, 2018; pp. 1–187. [Google Scholar]
- Gengatharan, A.; Dykes, G.A.; Chzouoo, W.S. Betalains: Natural Plant Pigments with Potential Application in Functional Foods. LWT J. Food Sci. Technol. 2015, 64, 645–649. [Google Scholar] [CrossRef]
- Stintzing, F.C.; Herbach, K.M.; Mosshammer, M.R.; Carle, R.; Yi, W.; Sellappan, S.; Akoh, C.C.; Bunch, R.; Felker, P. Color, Betalain Pattern, and Antioxidant Properties of Cactus Pear (Opuntia spp.) Clones. J. Agric. Food Chem. 2005, 53, 442–451. [Google Scholar] [CrossRef]
- Madadi, E.; Mazloum-Ravasan, S.; Yu, J.S.; Ha, J.W.; Hamishehkar, H.; Kim, K.H. Therapeutic Application of Betalains: A Review. Plants 2020, 9, 1219. [Google Scholar] [CrossRef]
- Aberoumand, A. A review article on edible pigments properties and sources as natural biocolorants in foodstuff and food industry. World J. Dairy Food Sci. 2011, 6, 71–78. [Google Scholar]
- Da Silva, W.P.; Nunes, J.S.; Gomes, J.P.; Diniz Pereira da Silva e Silva, C.M. Obtaining Anthocyanin from Jambolan Fruit: Kinetics, Extraction Rate, and Prediction of Process Time for Different Agitation Frequencies. Food Sci. Nut. 2018, 6, 1664–1669. [Google Scholar] [CrossRef] [PubMed]
- Azmin, M.S.N.H.; Sulaiman, N.S.; Mat Nor, M.S.; Abdullah, P.S.; Abdul Kari, Z.; Pati, S. A Review on Recent Advances on Natural Plant Pigments in Foods: Functions, Extraction, Importance and Challenges. Appl. Biochem. Biotechnol. 2022, 194, 4655–4672. [Google Scholar] [CrossRef] [PubMed]
- Di Salvo, E.; Lo Vecchio, G.; De Pasquale, R.; De Maria, L.; Tardugno, R.; Vadalà, R.; Cicero, N. Natural Pigments Production and Their Application in Food, Health and Other Industries. Nutrients 2023, 15, 1923. [Google Scholar] [CrossRef] [PubMed]
- Betancourt-Domínguez, M.A.; Hernández-Pérez, T.; García-Saucedo, P.; Cruz-Hernández, A.; Paredes-López, O. Physico-Chemical Changes in Cladodes (Nopalitos) from Cultivated and Wild Cacti (Opuntia spp.). Plant Foods Hum. Nutr. 2006, 61, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Jaramillo-Flores, M.E.; González-Cruz, L.; Cornejo-Mazón, M.; Dorantes-álvarez, L.; Gutiérrez-López, G.F.; Hernández-Sánchez, H. Effect of Thermal Treatment on the Antioxidant Activity and Content of Carotenoids and Phenolic Compounds of Cactus Pear Cladodes (Opuntia ficus-indica). Food Sci. Technol. Int. 2003, 9, 271–278. [Google Scholar] [CrossRef]
- Ostlund, R.E. Phytosterols in Human Nutrition. Annu. Rev. Nutr. 2002, 22, 533–549. [Google Scholar] [CrossRef]
- Lagarda, M.J.; Garcia-Llatas, G.; Farré, R. Analysis of Phytosterols in Foods. J. Pharm. Biomed. Anal. 2006, 41, 1486–1496. [Google Scholar] [CrossRef]
- Fernandes, P.; Cabral, J.M.S. Phytosterols: Applications and Recovery Methods. Bioresour. Technol. 2007, 98, 2335–2350. [Google Scholar] [CrossRef]
- Shahzad, N.; Khan, W.; Shadab, M.D.; Ali, A.; Saluja, S.S.; Sharma, S.; Al-Allaf, F.A.; Abdujaleel, Z.; Ibrahim, A.A.; Abdel-Wahab, A.F.; et al. Phytosterols as a Natural Anticancer Agent: Current Status and Future Perspective. Biomed. Pharmacother. 2017, 88, 786–794. [Google Scholar] [CrossRef]
- Ling, W.H.; Jones, P.J.H. Dietary Phytosterols: A Review of Metabolism, Benefits and Side Effects. Life Sci. 1995, 57, 195–206. [Google Scholar] [CrossRef]
- Shen, M.; Yuan, L.; Zhang, J.; Wang, X.; Zhang, M.; Li, H.; Jing, Y.; Zeng, F.; Xie, J. Phytosterols: Physiological Functions and Potential Application. Foods 2024, 13, 1754. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, M.F.; Mörsel, J.-T. Oil cactus pear (Opuntia ficus-indica L.). Food Chem. 2003, 82, 339–345. [Google Scholar] [CrossRef]
- El Mannoubi, I.; Barrek, S.; Skanji, T.; Casabianca, H.; Zarrouk, H. Characterization of Opuntia ficus indica Seed Oil from Tunisia. Chem. Nat. Compd. 2009, 45, 616–620. [Google Scholar] [CrossRef]
- Regalado-Rentería, E.; Aguirre-Rivera, J.R.; González-Chávez, M.M.; Sánchez-Sánchez, R.; Martínez-Gutiérrez, F.; Juárez-Flores, B.I. Assessment of Extraction Methods and Biological Value of Seed Oil from Eight Variants of Prickly Pear Fruit (Opuntia spp.). Waste Biomass Valoriz. 2020, 11, 1181–1189. [Google Scholar] [CrossRef]
- Brahmi, F.; Haddad, S.; Bouamara, K.; Yalaoui-Guellal, D.; Prost-Camus, E.; Barros, J.P.; Prost, M.; Atanasov, A.; Madani, K.; Boulekbache-Makhlouf, L.; et al. Comparison of Chemical Composition and Biological Activities of Algerian Seed Oils of Pistacia lentiscus L., Opuntia ficus indica (L.) mill. and Argania spinosa L. Skeels. Ind. Crops Prod. 2020, 151, 112456. [Google Scholar] [CrossRef]
- Msaddak, L.; Abdelhedi, O.; Kridene, A.; Rateb, M.; Belbahri, L.; Ammar, E.; Nasri, M.; Zouari, N. Opuntia ficus-indica Cladodes as a Functional Ingredient: Bioactive Compounds Profile and their Effect on Antioxidant Quality of Bread. Lipids Health Dis. 2017, 16, 32. [Google Scholar] [CrossRef]
- Figueroa-Pérez, M.G.; Pérez-Ramírez, I.F.; Paredes-López, O.; Mondragón-Jacobo, C.; Reynoso-Camacho, R. Phytochemical Composition and in vitro Analysis of Nopal (O. ficus-indica) Cladodes at Different Stages of Maturity. Int. J. Food Prop. 2018, 21, 1728–1742. [Google Scholar] [CrossRef]
- Ayadi, M.A.; Abdelmaksoud, W.; Ennouri, M.; Attia, H. Cladodes from Opuntia ficus indica as a Source of Dietary Fiber: Effect on Dough Characteristics and Cake Making. Ind. Crops Prod. 2009, 30, 40–47. [Google Scholar] [CrossRef]
- Rocchetti, G.; Pellizzoni, M.; Montesano, D.; Lucini, L. Italian Opuntia ficus-indica Cladodes as Rich Source of Bioactive Compounds with Health-Promoting Properties. Foods 2018, 7, 24. [Google Scholar] [CrossRef]
- Barba, F.J.; Garcia, C.; Fessard, A.; Munekata, P.E.S.; Lorenzo, J.M.; Aboudia, A.; Ouadia, A.; Remize, F. Opuntia ficus indica Edible Parts: A Food and Nutritional Security Perspective. Food Rev. Int. 2022, 38, 930–952. [Google Scholar] [CrossRef]
- Mabotja, M.B.; Venter, S.L.; Du Plooy, C.P.; Kudanga, T.; Amoo, S.O. Phytochemical Content, Antioxidant, Alpha-Glucosidase Inhibitory and Antibacterial Activities of Spineless Cactus Pear Cultivars. Plants 2021, 10, 1312. [Google Scholar] [CrossRef] [PubMed]
- Rasoulpour, R.; Afsharifar, A.; Izadpanah, K.; Aminlari, M. Purification and Characterization of an Antiviral Protein from Prickly Pear (Opuntia ficus-indica (L.) Miller) Cladode. Crop Prot. 2017, 93, 33–42. [Google Scholar] [CrossRef]
- Rasoulpour, R.; Afsharifar, A.; Izadpanah, K. Antiviral Activity of Prickly Pear (Opuntia ficus-indica (L.) Miller) Extract: Opuntin B, a Second Antiviral Protein. Crop Prot. 2018, 112, 1–9. [Google Scholar] [CrossRef]
- Rodriguez-Felix, A.; Cantwell, M. Developmental Changes in Composition and Quality of Prickly Pear Cactus Cladodes (Nopalitos). Plant Foods Hum. Nutr. 1988, 38, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Truong, X.T.; Nguyen, T.; Kang, M.J.; Jung, C.H.; Lee, S.; Moon, C.; Moon, J.H.; Jeon, T.I. Pear Extract and Malaxinic Acid Reverse Obesity, Adipose Tissue Inflammation, and Hepatosteatosis in Mice. Mol. Nutr. Food Res. 2019, 63, e1801347. [Google Scholar] [CrossRef]
- Kashif, R.R.; D’Cunha, N.M.; Mellor, D.D.; Alexopoulos, N.I.; Sergi, D.; Naumovski, N. Prickly Pear Cacti (Opuntia spp.) Cladodes as a Functional Ingredient for Hyperglycemia Management: A Brief Narrative Review. Medicina 2022, 58, 300. [Google Scholar] [CrossRef]
- Galati, E.M.; Tripodo, M.M.; Trovato, A.; D’Aquino, A.; Monforte, M.T. Biological Activity of Opuntia ficus indica Cladodes II: Effect on Experimental Hypercholesterolemia in Rats. Pharm. Biol. 2003, 41, 175–179. [Google Scholar] [CrossRef]
- Bañuelos, G.S.; Stushnoff, C.; Walse, S.S.; Zuber, T.; Yang, S.I.; Pickering, I.; Freeman, J.L. Biofortified, Selenium Enriched, Fruit and Cladode from Three Opuntia Cactus Pear Cultivars Grown on Agricultural Drainage Sediment for Use in Nutraceutical Foods. Food Chem. 2012, 135, 9–16. [Google Scholar] [CrossRef]
- Heikal, A.; Elsebai, M.; Salama, A.; Taha, H. Comparative Study Between in vivo- and in vitro-Derived Extracts of Cactus (Opuntis ficus-indica L. Mill) against Prostate and Mammary Cancer Cell Lines. Heliyon 2021, 7, e08016. [Google Scholar] [CrossRef]
- Patel, S. Opuntia cladodes (nopal): Emerging functional food and dietary supplement. Mediterr. J. Nutr. Metab. 2014, 7, 11–19. [Google Scholar] [CrossRef]
- Ondarza, M.A. Cactus Mucilages: Nutritional, Health Benefits and Clinical Trials. J. Med. Biol. Sci. Res. 2016, 2, 87–103. [Google Scholar]
- de Albuquerque, J.G.; de Souza Aquino, J.; de Albuquerque, J.G.; de Farias, T.G.S.; Escalona-Buendía, H.B.; Bosquez-Molina, E.; Azoubel, P.M. Consumer Perception and Use of Nopal (Opuntia Ficus-Indica): A Cross-Cultural Study between Mexico and Brazil. Food Res. Int. 2019, 124, 101–108. [Google Scholar] [CrossRef] [PubMed]
- De Santiago, E.; Dominguez, M.; Cid, C.; De Peña, M. Impact of cooking process on nutritional composition and antioxidants of cactus cladodes (Opuntia ficus-indica). Food Chem. 2018, 240, 1055–1062. [Google Scholar] [CrossRef] [PubMed]
- Filannino, P.; Cavoski, I.; Thlien, N.; Vincentini, O.; De Angelis, M.; Silano, M.; Gobbetti, M.; Di Cagno, R. Lactic Acid Fermentation of Cactus Cladodes (Opuntia ficus-indica L.) Generates Flavonoid Derivatives with Antioxidant and Anti-Inflammatory Properties. PLoS ONE 2016, 11, e0152575. [Google Scholar]
- Beyá-Marshall, V.; Apablaza, E.; Dias, A.; Sáenz, C. Physical and chemical characteristics of cladodes powder (Opuntia ficus-indica Mill.) of different maturation stages and drying temperatures. Acta Hortic. 2022, 1343, 519–524. [Google Scholar] [CrossRef]
- Koufan, M.; Mazri, M.A.; Essatte, A.; Moussafir, S.; Belkoura, I.; El Rhaffari, L.; Toufik, I. A novel regeneration system through micrografting for Argania spinosa (L.) Skeels, and confirmation of successful rootstock-scion union by histological analysis. Plant Cell Tissue Organ Cult. 2020, 142, 369–378. [Google Scholar] [CrossRef]
- Sabtain, B.; Farooq, R.; Shafique, B.; Modassar, M.; Ranjha, A.N. A Narrative Review on the Phytochemistry, Nutritional Profile and Properties of Prickly Pear Fruit. Open Access J. Biog. Sci. Res. 2021, 7. [Google Scholar] [CrossRef]
- Koufan, M.; Belkoura, I.; Mazri, M.A. In Vitro Propagation of Caper (Capparis spinosa L.): A Review. Horticulturae 2022, 8, 737. [Google Scholar] [CrossRef]
- Tahiri, A.; Mazri, M.A.; Karra, Y.; Ait Aabd, N.; Bouharroud, R.; Mimouni, A. Propagation of saffron (Crocus sativus L.) through tissue culture: A review. J. Hortic. Sci. Biotechnol. 2023, 98, 10–30. [Google Scholar] [CrossRef]
- Tesoriere, L.; Butera, D.; Pintaudi, A.M.; Allegra, M.; Livrea, M.A. Supplementation with Cactus Pear (Opuntia ficus-indica) Fruit Decreases Oxidative Stress in Healthy Humans: A Comparative Study with Vitamin C. Am. J. Clin. Nutr. 2004, 80, 391–395. [Google Scholar] [CrossRef]
- Koufan, M.; Belkoura, I.; Mazri, M.A.; Amarraque, A.; Essatte, A.; Elhorri, H.; Zaddoug, F.; Alaoui, T. Determination of Antioxidant Activity, Total Phenolics and Fatty Acids in Essential Oils and Other Extracts from Callus Culture, Seeds and Leaves of Argania spinosa (L.) Skeels. Plant Cell Tissue Organ Cult. 2020, 141, 217–227. [Google Scholar] [CrossRef]
- Osorio-Esquivel, O.; Alicia-Ortiz-Moreno Alvarez, V.B.; Dorantes-Alvarez, L.; Giusti, M.M. Phenolics, Betacyanins and Antioxidant Activity in Opuntia joconostle Fruits. Food Res. Int. 2011, 44, 2160–2168. [Google Scholar] [CrossRef]
- Slimen, I.B.; Najar, T.; Abderrabba, M. Opuntia ficus-indica as a Source of Bioactive and Nutritional Phytochemicals. J. Food Nutr. Sci. 2016, 4, 162–169. [Google Scholar]
- Barba, F.J.; Putnik, P.; Bursać Kovačević, D.; Poojary, M.M.; Roohinejad, S.; Lorenzo, J.M.; Koubaa, M. Impact of Conventional and Non-Conventional Processing on Prickly Pear (Opuntia spp.) and their Derived Products: From Preservation of Beverages to Valorization of By-Products. Trends Food Sci. Technol. 2017, 67, 260–270. [Google Scholar] [CrossRef]
- Paiz, R.C.; Juárez-Flores, B.I.; Aguirre, R.J.R.; Cárdenas, O.C.; Reyes, A.J.A.; García, C.E.; Álvarez, F.G. Glucose-Lowering Effect of Xoconostle (Opuntia joconostle A. Web. Cactaceae) in Diabetic Rats. J. Med. Plants Res. 2010, 4, 2326–2333. [Google Scholar]
- De Santiago, E.; Pereira-Caro, G.; Moreno-Rojas, J.M.; Cid, C.; de Peña, M.-P. Digestibility of (Poly)phenols and Antioxidant Activity in Raw and Cooked Cactus Cladodes (Opuntia ficus-indica). J. Agric. Food Chem. 2018, 66, 5832–5844. [Google Scholar] [CrossRef] [PubMed]
- Maiuolo, J.; Nucera, S.; Serra, M.; Caminiti, R.; Oppedisano, F.; Macrì, R.; Scarano, F.; Ragusa, S.; Muscoli, C.; Palma, E.; et al. Cladodes of Opuntia ficus-indica (L.) Mill. Possess Important Beneficial Properties Dependent on Their Different Stages of Maturity. Plants 2024, 13, 1365. [Google Scholar] [CrossRef]
- Nawaz, H.; Shad, M.; Rehman, N.; Andaleeb, H.; Ullah, N. Effect of Solvent Polarity on Extraction Yield and Antioxidant Properties of Phytochemicals from Bean (Phaseolus Vulgaris) Seeds. Braz. J. Pharm. Sci. 2020, 56, e17129. [Google Scholar] [CrossRef]
- Wang, Y.; Su, Y.; Shehzad, Q.; Yu, L.; Tian, A.; Wang, S.; Ma, L.; Zheng, L.; Xu, L. Comparative Study on Quality Characteristics of Bischofia polycarpa Seed Oil by Different Solvents: Lipid Composition, Phytochemicals, and Antioxidant Activity. Food Chem. X 2023, 17, 100588. [Google Scholar] [CrossRef]
- Nguyen, A.L.; Le, N.L. Effects of Enzymatic Treatment on the Chemical Composition, Antioxidant and Rheological Properties of Cactus Cladode Juice. IOP Conf. Ser. Earth Environ. Sci. 2021, 947, 012043. [Google Scholar] [CrossRef]
- Jakobek, L. Interactions of Polyphenols with Carbohydrates, Lipids and Proteins. Food Chem. 2015, 175, 556–567. [Google Scholar] [CrossRef] [PubMed]
- Budinsky, A.; Wolfram, R.; Oguogho, A.; Efthimiou, Y.; Stamatopoulos, Y.; Sinzinger, H. Regular Ingestion of Opuntia robusta Lowers Oxidation Injury. Prostagland. Leukotr. Essent. Fatty Acids 2001, 65, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Butera, D.; Tesoriere, L.; di Gaudio, F.; Bongiorno, A.; Allegra, M.; Pintaudi, A.M.; Kohen, R.; Livrea, M.A. Antioxidant Activities of Sicilian Prickly Pear (Opuntia ficus indica) Fruit Extracts and Reducing Properties of its Betalains: Betanin and Indicaxanthin. J. Agric. Food Chem. 2002, 50, 6895–6901. [Google Scholar] [CrossRef] [PubMed]
- Iturriaga, L.; Nazareno, M. Functional Components and Medicinal Properties of Cactus Products. In Functional Properties of Traditional Foods, 1st ed.; Kristbergsson, K., Otles, S., Eds.; Springer: New York, NY, USA, 2016. [Google Scholar]
- Hfaiedh, N.; Allagui, M.S.; Hfaiedh, M.; Feki, A.E.; Zourgui, L.; Croute, F. Protective Effect of Cactus (Opuntia ficus indica) Cladode Extract upon Nickel-Induced Toxicity in Rats. Food Chem. Toxicol. 2008, 46, 3759–3763. [Google Scholar] [CrossRef] [PubMed]
- Giuntini, E.B.; Sardá, F.A.H.; de Menezes, E.W. The Effects of Soluble Dietary Fibers on Glycemic Response: An Overview and Futures Perspectives. Foods 2022, 11, 3934. [Google Scholar] [CrossRef] [PubMed]
- Madrigal-Santillán, E.; Portillo-Reyes, J.; Madrigal-Bujaidar, E.; Sánchez-Gutiérrez, M.; Mercado-Gonzalez, P.E.; Izquierdo-Vega, J.A.; Vargas-Mendoza, N.; Álvarez-González, I.; Fregoso-Aguilar, T.; Delgado-Olivares, L.; et al. Opuntia Genus in Human Health: A Comprehensive Summary on its Pharmacological, Therapeutic and Preventive Properties. Part 1. Horticulturae 2022, 8, 88. [Google Scholar] [CrossRef]
- Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.; Rahu, N. Oxidative Stress and Inflammation: What Polyphenols Can Do for Us? Oxid. Med. Cell. Longev. 2016, 2016, 7432797. [Google Scholar] [CrossRef]
- Habtemariam, S.; Varghese, G.K. The antidiabetic therapeutic potential of dietary polyphenols. Curr. Pharm. Biotechnol. 2014, 15, 391–400. [Google Scholar] [CrossRef]
- Solayman, M.; Ali, Y.; Alam, F.; Islam, M.A.; Alam, N.; Khalil, M.I.; Gan, S.H. Polyphenols: Potential Future Arsenals in the Treatment of Diabetes. Curr. Pharm. Des. 2016, 22, 549–565. [Google Scholar] [CrossRef]
- Frati, A.C.; Jiménez, E.; Ariza, C.R. Hypoglycemic Effect of Opuntia ficus indica in Non Insulin—Dependent Diabetes Mellitus Patients. Phytother. Res. 1990, 4, 195–197. [Google Scholar] [CrossRef]
- Bwititi, P.; Musabayane, C.; Nhachi, C. Effects of Opuntia megacantha on Blood Glucose and Kidney Function in Streptozotocin Diabetic Rats. J. Ethnopharmacol. 2000, 69, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Nazareno, M.A. Propriétés Nutritionnelles et Médicinales Dérivées des Fruits et des Cladodes. In Ecologie, Culture et Utilisations du Figuier de Barbarie; ICARDA: Rome, Italy, 2018; pp. 155–163. [Google Scholar]
- Yang, N.; Zhao, M.; Zhu, B.; Yang, B.; Chen, C.; Cui, C.; Jiang, Y. Anti-Diabetic Effects of Polysaccharides from Opuntia monacantha Cladode in Normal and Streptozotocin-Induced Diabetic Rats. Innov. Food Sci. Emerg. Technol. 2008, 9, 570–574. [Google Scholar] [CrossRef]
- Barbagallo, M.; Dominguez, L.J. Magnesium Metabolism in Type 2 Diabetes Mellitus; Springer eBooks: New York, NY, USA, 2013; pp. 1277–1281. [Google Scholar]
- Han, G.; Takahashi, H.; Murao, N.; Gheni, G.; Yokoi, N.; Hamamoto, Y.; Asahara, S.I.; Seino, Y.; Kido, Y.; Seino, S. Glutamate is an Essential Mediator in Glutamine-Amplified Insulin Secretion. J. Diabetes Investig. 2021, 12, 920–930. [Google Scholar] [CrossRef] [PubMed]
- Uebelhack, R.; Busch, R.; Alt, F.; Beah, Z.-M.; Chong, P.-W. Effects of Cactus Fiber on the Excretion of Dietary Fat in Healthy Subjects: A Double Blind, Randomized, Placebo-Controlled, Crossover Clinical Investigation. Curr. Ther. Res. 2014, 76, 39–44. [Google Scholar] [CrossRef]
- Aboura, I.B. Effet Anti-Inflammatoire et Anti Obésité des Extraits Polyphénoliques de Feuilles de Caroube “Ceratonia siliqua” et Cladode de Figuier de Barbarie “Opuntia ficus-indica”. Doctoral Dissertation, Abou Bekr Belkaid University, Tlemcen, Algeria, 2018. [Google Scholar]
- Héliès-Toussaint, C.; Fouché, E.; Naud, N.; Blas-Y-Estrada, F.; Del Socorro Santos-Diaz, M.; Nègre-Salvayre, A.; Barba de la Rosa, A.P.; Guéraud, F. Opuntia Cladode Powders Inhibit Adipogenesis in 3 T3-F442A Adipocytes and a High-Fat-Diet Rat Model by Modifying Metabolic Parameters and Favouring Faecal Fat Excretion. BMC Complement. Med. Ther. 2020, 20, 33. [Google Scholar] [CrossRef]
- Wanders, A.J.; van den Borne, J.J.; de Graaf, C.; Hulshof, T.; Jonathan, M.C.; Kristensen, M.; Mars, M.; Schols, H.A.; Feskens, E.J. Effects of Dietary Fibre on Subjective Appetite, Energy Intake and Body Weight: A Systematic Review of Randomized Controlled Trials. Obes. Rev. 2011, 12, 724–739. [Google Scholar] [CrossRef]
- Torres-Fuentes, C.; Schellekens, H.; Dinan, T.G.; Cryan, J.F. A Natural Solution for Obesity: Bioactives for the Prevention and Treatment of Weight Gain. A Review. Nutr. Neurosci. 2015, 18, 49–65. [Google Scholar] [CrossRef]
- Cronin, P.; Joyce, S.A.; O’Toole, P.W.; O’Connor, E.M. Dietary Fibre Modulates the Gut Microbiota. Nutrients 2021, 13, 1655. [Google Scholar] [CrossRef]
- Giglio, R.V.; Carruba, G.; Cicero, A.F.G.; Banach, M.; Patti, A.M.; Nikolic, D.; Cocciadiferro, L.; Zarcone, M.; Montalto, G.; Stoian, A.P.; et al. Pasta Supplemented with Opuntia ficus-indica Extract Improves Metabolic Parameters and Reduces Atherogenic Small Dense Low-Density Lipoproteins in Patients with Risk Factors for the Metabolic Syndrome: A Four-Week Intervention Study. Metabolites 2020, 10, 428. [Google Scholar] [CrossRef]
- Li, X.; Xin, Y.; Mo, Y.; Marozik, P.; He, T.; Guo, H. The Bioavailability and Biological Activities of Phytosterols as Modulators of Cholesterol Metabolism. Molecules 2022, 27, 523. [Google Scholar] [CrossRef]
- Wolfram, R.M.; Kritz, H.; Efthimiou, Y.; Stomatopoulos, J.; Sinzinger, H. Effect of Prickly Pear (Opuntia robusta) on Glucose- and Lipid-Metabolism in Non-Diabetics with Hyperlipidemia—A Pilot Study. Wien. Klin. Wochenschr. 2002, 114, 840–846. [Google Scholar] [PubMed]
- Padilla-Camberos, E.; Flores-Fernandez, J.M.; Fernandez-Flores, O.; Gutierrez-Mercado, Y.; Carmona-de la Luz, J.; Sandoval-Salas, F.; Mendez-Carreto, C.; Allen, K. Hypocholesterolemic Effect and in vitro Pancreatic Lipase Inhibitory Activity of an Opuntia ficus-indica Extract. Biomed Res. Int. 2015, 2015, 837452. [Google Scholar] [CrossRef] [PubMed]
- Wolfram, R.; Budinsky, A.; Efthimiou, Y.; Stomatopoulos, J.; Oguogho, A.; Sinzinger, H. Daily Prickly Pear Consumption Improves Platelet Function. Prostaglandins Leukot. Essent. Fat. Acids 2003, 69, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Galati, E.M.; Monforte, M.T.; Tripodo, M.M.; D’Aquino, A.; Mondello, M.R. Antiulcer Activity of Opuntia ficus indica (L.) Mill. (Cactaceae): Ultrastructural Study. J. Ethnopharmacol. 2001, 76, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Pei, R.; Liu, X.; Bolling, B.W. Flavonoids and Gut Health. Curr. Opin. Biotechnol. 2020, 61, 153–159. [Google Scholar] [CrossRef]
- da Silva, K.S.; da Silveira, B.C.; Bueno, L.R.; da Silva, L.C.M.; da Silva Fonseca, L.; Fernandes, E.S.; Maria-Ferreira, D. Beneficial Effects of Polysaccharides on the Epithelial Barrier Function in Intestinal Mucositis. Front. Physiol. 2021, 12, 714846. [Google Scholar] [CrossRef]
- Ben Saad, A.; Dalel, B.; Rjeibi, I.; Smida, A.; Ncib, S.; Zouari, N.; Zourgui, L. Phytochemical, Antioxidant and Protective Effect of Cactus Cladodes Extract against Lithium-Induced Liver Injury in Rats. Pharm. Biol. 2017, 55, 516–525. [Google Scholar] [CrossRef]
- Meziani, R.; Mazri, M.A.; Essarioui, A.; Alem, C.; Diria, G.; Gaboun, F.; El Idrissy, H.; Laaguidi, M.; Jaiti, F. Towards a New Approach of Controlling Endophytic Bacteria Associated with Date Palm Explants Using Essential Oils, Aqueous and Methanolic Extracts from Medicinal and Aromatic Plants. Plant Cell Tissue Organ Cult. 2019, 137, 285–295. [Google Scholar] [CrossRef]
- Jeldi, L.; Ouled Taarabt, K.; Mazri, M.A.; Ouahmane, L.; Alfeddy, M.N. Chemical Composition, Antifungal and Antioxidant Activities of Wild and Cultivated Origanum compactum Essential Oils from the Municipality of Chaoun, Morocco. S. Afr. J. Bot. 2022, 147, 852–858. [Google Scholar] [CrossRef]
- Razzouk, S.; Mazri, M.A.; Jeldi, L.; Mnasri, B.; Ouahmane, L.; Alfeddy, M.N. Chemical Composition and Antimicrobial Activity of Essential Oils from Three Mediterranean Plants against Eighteen Pathogenic Bacteria and Fungi. Pharmaceutics 2022, 14, 1608. [Google Scholar] [CrossRef]
- Mazri, M.A.; Meziani, R.; El Kharrassi, Y.; Anjarne, M.; El Mzouri, E.H.; Nasser, B.; Alfeddy, M.N.; Bouchiha, F. Effects of the methanolic extracts of six cactus pear species (Opuntia spp.) on tissue browning and endophytic bacteria of date palm (Phoenix dactylifera L.). Afr. Mediterr. Agric. J. Al Awamia 2021, 130, 17–33. [Google Scholar]
- Borges, A.; Ferreira, C.; Saavedra, M.J.; Simões, M. Antibacterial Activity and Mode of Action of Ferulic and Gallic Acids against Pathogenic Bacteria. Microb. Drug Resist. 2013, 19, 256–265. [Google Scholar] [CrossRef] [PubMed]
- Iftikhar, K.; Siddique, F.; Ameer, K.; Arshad, M.; Kharal, S.; Mohamed Ahmed, I.A.; Yasmin, Z.; Aziz, N. Phytochemical Profiling, Antimicrobial, and Antioxidant Activities of Hydroethanolic Extracts of Prickly Pear (Opuntia Ficus Indica) Fruit and Pulp. Food Sci. Nutr. 2023, 11, 1916–1930. [Google Scholar] [CrossRef] [PubMed]
- Nam, D.-G.; Yang, H.-S.; Bae, U.-J.; Park, E.; Choi, A.-J.; Choe, J.-S. The Cactus (Opuntia ficus-indica) Cladodes and Callus Extracts: A Study Combined with LC-MS Metabolic Profiling, In-Silico, and In-Vitro Analyses. Antioxidants 2023, 12, 1329. [Google Scholar] [CrossRef] [PubMed]
- Ennouri, M.; Ammar, I.; Khemakhem, B.; Attia, H. Chemical Composition and Antibacterial Activity of Opuntia Ficus-Indica F. inermis (Cactus Pear) Flowers. J. Med. Food 2014, 17, 908–914. [Google Scholar] [CrossRef] [PubMed]
- R’bia, O.; Chkioua, C.; Hellal, R.; Herchi, W.; Smiti, S.A. Antioxidant and Antibacterial Activities of Opuntia ficus indica Seed Oil Fractions and Their Bioactive Compounds Identification. Turk. J. Biochem. 2017, 42, 481–491. [Google Scholar] [CrossRef]
- Katanić, J.; Yousfi, F.; Caruso, M.C.; Matić, S.; Monti, D.M.; Loukili, E.H.; Boroja, T.; Mihailović, V.; Galgano, F.; Imbimbo, P. Characterization of Bioactivity and Phytochemical Composition with Toxicity Studies of Different Opuntia dillenii Extracts from Morocco. Food Biosci. 2019, 30, 100410. [Google Scholar] [CrossRef]
- Abbas, E.Y.; Ezzat, M.I.; El Hefnawy, H.M.; Abdel-Sattar, E. An Overview and Update on the Chemical Composition and Potential Health Benefits of Opuntia ficus-indica (L.) Miller. J. Food Biochem. 2022, 46, e14310. [Google Scholar] [CrossRef]
- Bergaoui, A.; Boughalleb, N.; Harzallah-Shiric, F.; El Mahjoub, M.; Mighri, Z. Chemical Composition and Antifungal Activity of Volatiles from Three Opuntia Species Growing in Tunisia. Pak. J. Biol. Sci. 2007, 10, 2485–2489. [Google Scholar] [CrossRef]
- Martins, M.; Ribeiro, M.H.; Almeida, C.M.M. Physicochemical, Nutritional, and Medicinal Properties of Opuntia ficus-indica (L.) Mill. and its Main Agro-Industrial Use: A Review. Plants 2023, 12, 1512. [Google Scholar] [CrossRef]
- Ahmad, A.; Davies, J.; Randall, S.; Skinner, G.R.B. Antiviral Properties of Extract of Opuntia streptacantha. Antivir. Res. 1996, 30, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Galati, E.M.; Monforte, M.T.; Tripodo, M.M.; Trovato, A. Antiinflammatory activity of Opuntia ficus indica (L.) Mill. cladodes. In Proceedings of the X Congress of the Italian Society of Pharmacognosy, Assisi, Italy, 19 September 2000. [Google Scholar]
- Park, E.H.; Kahng, J.H.; Lee, S.H.; Shin, K.H. An Anti-Inflammatory Principle from Cactus. Fitoterapia 2001, 72, 288–290. [Google Scholar] [CrossRef] [PubMed]
- Allegra, M.; Ianaro, A.; Tersigni, M.; Panza, E.; Tesoriere, L.; Livrea, M.A. Indicaxanthin from Cactus Pear Fruit Exerts Anti-Inflammatory Effects in Carrageenin-Induced Rat Pleurisy. J. Nutr. 2014, 144, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Zeghbib, W.; Boudjouan, F.; Vasconcelos, V.; Lopes, G. Phenolic Compounds’ Occurrence in Opuntia Species and their Role in the Inflammatory Process: A Review. Molecules 2022, 27, 4763. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.Y.; Sang, L.X.; Jiang, M. Catechins and their Therapeutic Benefits to Inflammatory Bowel Disease. Molecules 2017, 22, 484. [Google Scholar] [CrossRef]
- Hwang, S.J.; Kim, Y.-W.; Park, Y.; Lee, H.-J.; Kim, K.-W. Anti-Inflammatory Effects of Chlorogenic Acid in Lipopolysaccharide-Stimulated RAW 264.7 Cells. Inflamm. Res. 2014, 63, 81–90. [Google Scholar] [CrossRef]
- Kheiry, M.; Dianat, M.; Badavi, M.; Mard, S.A.; Bayati, V. p-Coumaric Acid Attenuates Lipopolysaccharide-Induced Lung Inflammation in Rats by Scavenging ROS Production: An in vivo and in vitro Study. Inflammation 2019, 42, 1939–1950. [Google Scholar] [CrossRef]
- Aleebrahim-Dehkordi, E.; Soveyzi, F.; Arian, A.S.; Hamedanchi, N.F.; Hasanpour-Dehkordi, A.; Rafieian-Kopaei, M. Quercetin and its Role in Reducing the Expression of Pro-Inflammatory Cytokines in Osteoarthritis. Anti-Inflamm. Anti-Allergy Agents Med. Chem. 2022, 21, 153–165. [Google Scholar] [CrossRef]
- Alam, W.; Khan, H.; Shah, M.A.; Cauli, O.; Saso, L. Kaempferol as a Dietary Anti-Inflammatory Agent: Current Therapeutic Standing. Molecules 2020, 25, 4073. [Google Scholar] [CrossRef]
- Gong, G.; Guan, Y.-Y.; Zhang, Z.-L.; Rahman, K.; Wang, S.-J.; Zhou, S.; Luan, X.; Zhang, H. Isorhamnetin: A Review of Pharmacological Effects. Biomed. Pharmacother. 2020, 128, 110301. [Google Scholar] [CrossRef]
- Shahidi, F.; De Camargo, A.C. Tocopherols and Tocotrienols in Common and Emerging Dietary Sources: Occurrence, Applications, and Health Benefits. Int. J. Mol. Sci. 2016, 17, 1745. [Google Scholar] [CrossRef] [PubMed]
- Harrabi, B.; Nasr, H.B.; Amri, Z.; Brahmi, F.; Feki, A.E.; Zeghal, K.; Ghozzi, H.; Siddiqui, A.J.; Adnan, M.; Aloufi, B.; et al. Chemical Composition, Nutritional Value, Antioxidative, and in vivo Anti-Inflammatory Activities of Opuntia stricta Cladode. ACS Omega 2024, 9, 26724–26734. [Google Scholar] [CrossRef] [PubMed]
- Park, E.-H.; Kahng, J.-H.; Paek, E.-A. Studies on the Pharmacological Action of Cactus: Identification of its Anti-Inflammatory Effect. Arch. Pharmacal Res. 1998, 21, 30–34. [Google Scholar] [CrossRef]
- Mouhaddach, A.; El-Hadi, A.; Taghzouti, K.; Bendaou, M.; Hassikou, R. Assessment of Opuntia ficus-indica in vivo Following Ethnobotanical Survey: Confirmation of its Analgesic Activity. Phytothérapie 2018, 16, S191–S196. [Google Scholar] [CrossRef]
- Ammam, A.; Zemour, H.; Kaid, M.; Villemin, D.; Soufan, W.; Belhouadjeb, F.A. Assessment of the Anti-Inflammatory and Analgesic Effects of Opuntia ficus indica L. Cladodes Extract. Libyan J. Med. 2023, 18, 2275417. [Google Scholar] [CrossRef]
- Sahbani, S.K. Protective Effect of Opuntia ficus indica Cladode Extract against Gamma Radiation-Induced DNA Strand Breaks and Base Damage. J. Radiat. Res. Appl. Sci. 2023, 16, 100734. [Google Scholar]
- Behl, T.; Upadhyay, T.; Singh, S.; Chigurupati, S.; Alsubayiel, A.M.; Mani, V.; Vargas-De-La-Cruz, C.; Uivarosan, D.; Bustea, C.; Sava, C.; et al. Polyphenols Targeting MAPK Mediated Oxidative Stress and Inflammation in Rheumatoid Arthritis. Molecules 2021, 26, 6570. [Google Scholar] [CrossRef]
- Zinov’Eva, V.N.; Spasov, A.A. Mechanisms of the anticancer effects of plant polyphenols. II. Suppression of tumor growth. Biochem. (Mosc.) Suppl. Ser. B Biomed. Chem. 2011, 5, 231–240. [Google Scholar] [CrossRef]
- Zou, D.M.; Brewer, M.; Garcia, F.; Feugang, J.M.; Wang, J.; Zang, R.; Liu, H.; Zou, C. Cactus Pear: A Natural Product in Cancer Chemoprevention. Nutr. J. 2005, 4, 25. [Google Scholar] [CrossRef]
- Chavez-Santoscoy, R.A.; Gutierrez-Uribe, J.A.; Serna-Saldívar, S.O. Phenolic Composition, Antioxidant Capacity and In Vitro Cancer Cell Cytotoxicity of Nine Prickly Pear (Opuntia spp.) Juices. Plant Food Hum. Nutr. 2009, 64, 146–152. [Google Scholar] [CrossRef]
Species | Cultivar/Genotype | Geographic Origin | Polyphenols | Fatty Acids | Vitamins | Amino Acids | Natural Pigments | Phytosterols | Reference | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Flavonoids | Linolenic Acid | Linoleic Acid | Oleic Acid | Vitamin C/ Ascorbic Acid | Vitamin E/Tocopherols | Glutamic Acid | Betacyanins + Betaxanthins | β-Carotene | |||||
O. ficus indica | Copena F1 | Mexico | 18.1 mg QE/g DW | - | - | - | - | - | - | - | - | - | [37] |
O. ficus indica | Jalpa | Mexico | 36.6 mg QE/g DW | - | - | - | - | - | - | - | - | - | [37] |
O. ficus indica | Copena V1 | Mexico | 16.0 mg QE/g DW | - | - | - | - | - | - | - | - | - | [37] |
O. ficus indica | Villanueva | Mexico | 24.7 mg QE/g DW | - | - | - | - | - | - | - | - | - | [37] |
O. ficus indica | Real de Catorce | Mexico | 15.4 mg QE/g DW | - | - | - | - | - | - | - | - | - | [37] |
O. ficus indica | Cristalino | Mexico | 22.5 mg QE/g DW | - | - | - | - | - | - | - | - | - | [37] |
O. ficus indica | Forrajero Mina | Mexico | 18.9 mg QE/g DW | - | - | - | - | - | - | - | - | - | [37] |
O. streptacantha | Cardon Blanco | Mexico | 17.9 mg QE/g DW | - | - | - | - | - | - | - | - | - | [37] |
O. ficus indica | Gymno-Carpo | South Africa | - | - | - | - | 77.40 mg/100 g ascorbic acid | - | - | 5.40 mg/kg | - | - | [38] |
O. ficus indica | Meyers | South Africa | - | - | - | - | 67.25 mg/100 g ascorbic acid | - | - | 12.82 mg/kg | - | - | [38] |
O. ficus indica | Nepgen | South Africa | - | - | - | - | 26.78 mg/100 g ascorbic acid | - | - | 8.07 mg/kg | - | - | [38] |
O. ficus indica | Ofer | South Africa | - | - | - | - | 58.74 mg/100 g ascorbic acid | - | - | 20.15 mg/kg | - | - | [38] |
O. robusta | Robusta | South Africa | - | - | - | - | 24.04 mg/100 g ascorbic acid | - | - | 29.20 mg/kg | - | - | [38] |
O. ficus indica | Milpa Alta | Mexico | 11.2–18.6 mg CE/g | - | - | - | - | - | - | - | - | 18.7–33.2 mM equivalents/g | [113] |
O. ficus indica | - | Egypt | - | 20.19% | 24.81% | 10.39% | - | - | - | - | 57.51 μg/100 g | - | [18] |
O. ficus indica | - | South Korea | 1.29 mg/g | - | - | - | 71.2 mg% vitamin C | - | 1543.15 mg% | - | - | - | [39] |
O. ficus indica | - | Ethiopia | 6.44–25 mg CE/g DW | - | - | - | - | - | - | - | - | - | [41] |
O. ficus indica | NT | Spain | - | 8.85–16.4% | 12.8–34.7% | 8.52–16.3% | - | - | - | - | - | - | [54] |
O. ficus indica | NO | Spain | - | 15.9–20.4% | 27.9–33.9% | 9.22–14.2% | - | - | - | - | - | - | [54] |
O. ficus indica | NE | Spain | - | 5.31–16.3% | 20.3–37.6% | 10.7–23.7% | - | - | - | - | - | - | [54] |
O. ficus indica | NA | Spain | - | 11.5–19.7% | 19.8–27.7% | 15.0–21.1% | - | - | - | - | - | - | [54] |
O. ficus indica | FR | Spain | - | 1.69–8.68% | 16.3–53.8% | 22.3–24.8% | - | - | - | - | - | - | [54] |
O. ficus indica | NJ | Spain | - | 10.5–13.4% | 25.1–25.8% | 21.6–36.3% | - | - | - | - | - | - | [54] |
- | Blanco sin Espinas | Mexico | - | - | - | - | - | - | - | - | 26.0–32.5 µg/g FW | - | [100] |
- | Blanco con Espinas | Mexico | - | - | - | - | - | - | - | - | 14.5–16.0 µg/g FW | - | [100] |
- | Verde Valtierrilla | Mexico | - | - | - | - | - | - | - | - | 26.0–32.5 µg/g FW | - | [100] |
O. ficus indica | - | Mexico | - | - | - | - | - | - | - | - | 76–119 µg/g dry basis | - | [101] |
O. ficus indica | Milpa Alta | Mexico | - | - | - | - |
| - | - | - | 61.32 mg/100 g dry matter | - | [68] |
O. ficus indica | Atlixco | Mexico | - | - | - | - |
| - | - | - | 66.85 mg/100 g dry matter | - | [68] |
O. ficus indica | Redonda | Mexico | - | - | - | - | - | - | 1.29–2.22 g/100 g of protein | - | - | - | [84] |
O. humifusa | - | South Korea | - | 17.20% | 38.88% | 8.42% | 17.33 mg% vitamin C | - | 609.90 mg/100 g | - | - | - | [55] |
O. microdasys | - | Tunisia | - | 12.2% | 20% | 5.7% | 0.0061 g/100 g DW ascorbic acid | 6.9 mg/100 g DW total tocopherols | - | - | - | - | [57] |
O. macrorhiza | - | Tunisia | - | 10.9% | 24% | 5.9% | 0.017 g/100 g DW ascorbic acid | 5.1 mg/100 g DW total tocopherols | - | - | - | - | [57] |
O. Sulphurea | - | Argentina | - | 27.41% | 25.58% | 11.40% | - | - | - | - | - | - | [56] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koufan, M.; Choukrane, B.; Mazri, M.A. Structure–Function Relationships and Health-Promoting Properties of the Main Nutraceuticals of the Cactus Pear (Opuntia spp.) Cladodes: A Review. Molecules 2024, 29, 4732. https://doi.org/10.3390/molecules29194732
Koufan M, Choukrane B, Mazri MA. Structure–Function Relationships and Health-Promoting Properties of the Main Nutraceuticals of the Cactus Pear (Opuntia spp.) Cladodes: A Review. Molecules. 2024; 29(19):4732. https://doi.org/10.3390/molecules29194732
Chicago/Turabian StyleKoufan, Meriyem, Basma Choukrane, and Mouaad Amine Mazri. 2024. "Structure–Function Relationships and Health-Promoting Properties of the Main Nutraceuticals of the Cactus Pear (Opuntia spp.) Cladodes: A Review" Molecules 29, no. 19: 4732. https://doi.org/10.3390/molecules29194732
APA StyleKoufan, M., Choukrane, B., & Mazri, M. A. (2024). Structure–Function Relationships and Health-Promoting Properties of the Main Nutraceuticals of the Cactus Pear (Opuntia spp.) Cladodes: A Review. Molecules, 29(19), 4732. https://doi.org/10.3390/molecules29194732