Study on the Influence of Host–Guest Structure and Polymer Introduction on the Afterglow Properties of Doped Crystals
Abstract
:1. Introduction
2. Results and Discussion
3. Experiments
3.1. Materials
3.2. Measurement and Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kabe, R.; Adachi, C. Organic long persistent luminescence. Nature 2017, 550, 384–387. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.L.; Zhao, X.; Bai, X.; Cheng, Q.W.; Liu, Y. Thermal Activated Reversible Phosphorescence Behavior of Solid Supramolecule Mediated by β-Cyclodextrin. Adv. Funct. Mater. 2024, 34, 2400898. [Google Scholar] [CrossRef]
- Cui, J.Y.; Ali, S.H.; Shen, Z.Y.; Xu, W.S.; Liu, J.Y.; Li, P.X.; Li, Y.; Chen, L.G.; Wang, B.W. 3-Polylysine organic ultra-long room-temperature phosphorescent materials based on phosphorescent molecule doping. Chem. Sci. 2024, 15, 4171. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.-J.; Yan, S.R.; Chen, L.; Qiao, L.; Xu, S.H.; Qi, T.F.; Liu, B.; Peng, H.Q. Isomeric Engineering of Organic Luminophores for Multicolor Room Temperature Phosphorescence Including Red Afterglow. Adv. Funct. Mater. 2024, 2406888. [Google Scholar] [CrossRef]
- Chen, J.W.; Zhang, S.G.; Liu, G.Y.; Zhang, Y.F.; Xue, S.F.; Sun, Q.K.; Yang, W.J. Regulating Organic Dopant Dispersion in Polymer Matrices for Concentration-Controlled Color-Tunable Organic RTP Emissions. Adv. Opt. Mater. 2023, 11, 2301163. [Google Scholar] [CrossRef]
- Zhou, Q.; Liu, Y.X.; Ma, X.R.; Fan, W.W.; Cheng, Y.; He, R.Y.; Meng, X.; Shi, Y.G.; Cao, Q.; Zheng, L.Y. Luminophore with Multiple Emission Centers for Fluorescence/Phosphorescence Dual Ratiometric Chemical Sensing in Aqueous Solution. Adv. Opt. Mater. 2024, 12, 2303107. [Google Scholar] [CrossRef]
- Zhang, X.H.; Chong, K.C.; Xie, Z.L.; Liu, B. Color-Tunable Dual-Mode Organic Afterglow for White-Light Emission and Information Encryption Based on Carbazole Doping. Angew. Chem. Int. Ed. 2023, 62, e202310335. [Google Scholar] [CrossRef]
- Liang, Y.H.; Hu, P.T.; Zhang, H.Q.; Yang, Q.C.; Wei, H.S.; Chen, R.T.; Yu, J.H.; Liu, C.; Wang, Y.H.; Luo, S.L.; et al. Enabling Highly Robust Full-Color Ultralong Room-Temperature Phosphorescence and Stable White Organic Afterglow from Polycyclic Aromatic Hydrocarbons. Angew. Chem. Int. Ed. 2024, 63, e202318516. [Google Scholar] [CrossRef]
- Qiao, W.G.; Yao, M.; Xu, J.W.; Peng, H.Y.; Xia, J.L.; Xie, X.L.; Li, Z.A. Naphthyl Substituted Impurities Induce Efficient Room Temperature Phosphorescence. Angew. Chem. 2023, 135, e202315911. [Google Scholar] [CrossRef]
- He, Z.; Gao, H.; Zhang, S.; Zheng, S.; Wang, Y.; Zhao, Z.; Ding, D.; Yang, B.; Zhang, Y.; Yuan, W.Z. Achieving persistent, efficient, and robust room-temperature phosphorescence from pure organics for versatile applications. Adv. Mater. 2019, 31, 1807222. [Google Scholar] [CrossRef]
- Gao, M.; Tian, Y.; Li, X.; Gong, Y.; Fang, M.; Yang, J.; Li, Z. The Effect of Molecular Conformations and Simulated “Self-Doping” in Phenothiazine Derivatives on Room-Temperature Phosphorescence. Angew. Chem. Int. Ed. 2023, 62, e202214908. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Li, J.; Huang, J.; Wang, X.; Wang, G.; Chen, X.; Li, X.; Chen, X.; Ding, S.; Zhang, H.; et al. The Unexpected Mechanism of Transformation from Conventional Room-Temperature Phosphorescence to TADF-Type Organic Afterglow Triggered by Simple Chemical Modification. J. Mater. Chem. C 2023, 11, 2291–2301. [Google Scholar] [CrossRef]
- Guo, J.; Yang, C.; Zhao, Y. Long-Lived Organic Room-Temperature Phosphorescence from Amorphous Polymer Systems. Acc. Chem. Res. 2022, 55, 1160–1170. [Google Scholar] [CrossRef]
- Xu, Z.; Climent, C.; Brown, C.M.; Hean, D.; Bardeen, C.J.; Casanova, D.; Wolf, M.O. Controlling ultralong room temperature phosphorescence in organic compounds with sulfur oxidation state. Chem. Sci. 2021, 12, 188–195. [Google Scholar] [CrossRef]
- Alam, P.; Leung, N.L.C.; Liu, J.; Cheung, T.S.; Zhang, X.; He, Z.; Kwok, R.T.K.; Lam, J.W.Y.; Sung, H.H.Y.; Williams, I.D.; et al. Two Are Better than One: A Design principle for ultralong-persistent luminescence of pure organics. Adv. Mater. 2020, 32, 2001026. [Google Scholar] [CrossRef]
- Lin, Z.; Kabe, R.; Nishimura, N.; Jinnai, K.; Adachi, C. Organic Long-persistent luminescence from a flexible and transparent doped polymer. Adv. Mater. 2018, 30, 1803713. [Google Scholar] [CrossRef]
- Cai, S.; Shi, H.; Tian, D.; Ma, H.; Cheng, Z.; Wu, Q.; Gu, M.; Huang, L.; An, Z.; Peng, Q.; et al. Enhancing ultralong organic phosphorescence by effectiveπ-Type halogen bonding. Adv. Funct. Mater. 2018, 28, 1705045. [Google Scholar] [CrossRef]
- Zhou, W.-L.; Chen, Y.; Yu, Q.; Zhang, H.; Liu, Z.-X.; Dai, X.-Y.; Li, J.-J.; Liu, Y. Ultralong purely organic aqueous phosphorescence supramolecular polymer for targeted tumor cell imaging. Nat. Commun. 2020, 11, 4655. [Google Scholar] [CrossRef]
- Zheng, S.; Zhu, T.; Wang, Y.; Yang, T.; Yuan, W.Z. Accessing tunable afterglows from highly twisted nonaromatic organic AIEgens via effective through-space conjugation. Angew. Chem. Int. Ed. 2020, 59, 10018–10022. [Google Scholar] [CrossRef]
- Li, J.J.; Zhang, H.Y.; Zhang, Y.; Zhou, W.L.; Liu, Y. Room-temperature phosphorescence and reversible white light switch based on a cyclodextrin polypseudorotaxane xerogel. Adv. Opt. Mater. 2019, 7, 1900589. [Google Scholar] [CrossRef]
- Zhang, Z.Z.; Wang, Q.J.; Zhang, X.Y.; Mei, J.; Tian, H. Multimode Stimuli-Responsive Room-Temperature Phosphorescence Achieved by Doping Butterfly-like Fluorogens into Crystalline Small-Molecular Hosts. JACS Au 2024, 4, 1954–1965. [Google Scholar] [CrossRef] [PubMed]
- Han, J.L.; Feng, W.H.; Muleta, D.Y.; Bridgmohan, C.N.; Dang, Y.Y.; Xie, G.H.; Zhang, H.L.; Zhou, X.Q.; Li, W.; Wang, L.C.; et al. Small-Molecule-Doped Organic Crystals with Long-Persistent Luminescence. Adv. Funct. Mater. 2019, 29, 1902503. [Google Scholar] [CrossRef]
- Muleta, D.Y.; Song, J.W.; Feng, W.H.; Wu, R.T.; Zhou, X.Q.; Li, W.; Wang, L.C.; Liu, D.Z.; Wang, T.Y.; Hu, W.P. Small molecule-doped organic crystals towards long-persistent luminescence in water and air. J. Mater. Chem. C 2021, 9, 5093–5097. [Google Scholar] [CrossRef]
- Song, J.W.; Muleta, D.Y.; Feng, W.H.; Song, Y.K.; Zhou, X.Q.; Li, W.; Wang, L.C.; Liu, D.Z.; Wang, T.Y.; Hu, W. Photophysical tuning of small-molecule-doped organic crystals with long-persistent luminescence by variation of dopants. Dye. Pigments 2021, 193, 109501. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, J.; Gong, Y.; Fang, M.; Li, Z.; Tang, B.Z. Host-guest materials with room temperature phosphorescence: Tunable emission color and thermal printing patterns. SmartMat 2020, 1, e1006. [Google Scholar] [CrossRef]
- Wang, T.T.; Liu, M.; Feng, W.H.; Cao, R.; Sun, Y.L.; Wang, L.C.; Liu, D.Z.; Wang, Y.; Wang, T.Y.; Hu, W.P. Long-Lived Charge Separation Induced OrganicLong-Persistent Luminescence with Circularly Polarized Characteristic. Adv. Opt. Mater. 2023, 11, 2202613. [Google Scholar] [CrossRef]
- Wang, T.T.; Song, Y.K.; Liu, M.; Gao, C.Y.; Yang, H.; Wang, L.C.; Liu, D.Z.; Wang, T.Y.; Hu, W.P. Electrospinning enables flexibility of organic long-persistent luminescence crystals. Dye. Pigment. 2022, 207, 110734. [Google Scholar] [CrossRef]
- Wang, T.; Weerasinghe, K.C.; Liu, D.; Li, W.; Yan, X.; Zhou, X.; Wang, L. Ambipolar organic semiconductors with cascades of energy levels for generating long-lived charge separated states: A donor–acceptor1–acceptor2 architectural triarylamine dye. J. Mater. Chem. C 2014, 2, 5466–5470. [Google Scholar] [CrossRef]
- Song, W.; Chen, X.; Wu, F. Characterization of band structure of organic polymer material systems. Chem. J. Chin. Univ. 2000, 21, 1422–1426. [Google Scholar]
- Sun, H.; Liu, D.; Wang, T.; Lu, T.; Li, W.; Ren, S.; Hu, W.; Wang, L.; Zhou, X. Enhanced Internal Quantum Efficiency in Dye-Sensitized Solar Cells: Effect of Long-Lived Charge-Separated State of Sensitizers. ACS Appl. Mater. Interfaces 2017, 9, 9880–9891. [Google Scholar] [CrossRef]
- Wang, T.; Weerasinghe, K.C.; Sun, H.; Hu, X.; Lu, T.; Liu, D.; Hu, W.; Li, W.; Zhou, X.; Wang, L. Effect of triplet state on the life time of charge separation in ambipolar D-A1-A2 organic semiconductors. J. Phys. Chem. C 2016, 120, 11338–11349. [Google Scholar] [CrossRef]
- Wang, T.; Zhao, C.; Zhang, L.; Lu, T.; Sun, H.; Bridgmohan, C.N.; Weerasinghe, K.C.; Liu, D.; Hu, W.; Li, W.; et al. Enhancing photoinduced charge separation through donor moiety in donor-acceptor organic semiconductors. J. Phys. Chem. C 2016, 120, 25263–25275. [Google Scholar] [CrossRef]
- Leijtens, T.; Ding, I.K.; Giovenzana, T.; Bloking, J.T.; McGehee, M.D.; Sellinger, A. Hole transport materials with low glass transition temperatures and high solubility for application in solid-state dye-sensitized solar cells. ACS Nano 2012, 6, 1455–1462. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Zheng, A.; Ren, M.; Xie, X.; Wang, P. Unraveling the structure-property relationship of molecular hole-transporting materials for perovskite solar cells. ACS Appl. Mater. Interfaces 2019, 11, 39001–39009. [Google Scholar] [CrossRef] [PubMed]
- Sun, N.; Meng, S.; Chao, D.; Zhou, Z.; Du, Y.; Wang, D.; Zhao, X.; Zhou, H.; Chen, C. Highly stable electrochromic and electrofluorescent dual-switching polyamide containing bis (diphenylamino)-fluorene moieties. Polym. Chem. 2016, 7, 6055–6063. [Google Scholar] [CrossRef]
Compounds | Eonset (V) | Eonset (V) | E gop (eV) | EHOMO a (eV) | ELUMO b (eV) |
---|---|---|---|---|---|
MODPA | - | 0.77 | 3.55 | −5.70 | −2.15 |
DDF-O | - | 0.17 | 3.22 | −5.10 | −1.88 |
DDF-CHO | - | 0.27 | 3.06 | −5.20 | −2.14 |
DDF-Br | - | 0.37 | 3.15 | −5.30 | −2.15 |
DDF-TRC | −1.14 | 0.40 | 403 | −5.33 | −3.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, W.; Lou, Z.; Zhao, X.; Zhao, M.; Xu, Y.; Gao, Y. Study on the Influence of Host–Guest Structure and Polymer Introduction on the Afterglow Properties of Doped Crystals. Molecules 2024, 29, 4537. https://doi.org/10.3390/molecules29194537
Feng W, Lou Z, Zhao X, Zhao M, Xu Y, Gao Y. Study on the Influence of Host–Guest Structure and Polymer Introduction on the Afterglow Properties of Doped Crystals. Molecules. 2024; 29(19):4537. https://doi.org/10.3390/molecules29194537
Chicago/Turabian StyleFeng, Wenhui, Zongyong Lou, Xiaoqiang Zhao, Mingming Zhao, Yaqin Xu, and Yide Gao. 2024. "Study on the Influence of Host–Guest Structure and Polymer Introduction on the Afterglow Properties of Doped Crystals" Molecules 29, no. 19: 4537. https://doi.org/10.3390/molecules29194537
APA StyleFeng, W., Lou, Z., Zhao, X., Zhao, M., Xu, Y., & Gao, Y. (2024). Study on the Influence of Host–Guest Structure and Polymer Introduction on the Afterglow Properties of Doped Crystals. Molecules, 29(19), 4537. https://doi.org/10.3390/molecules29194537