Electrochemical Performance of Deposited LiPON Film/Lithium Electrode in Lithium—Sulfur Batteries
Abstract
:1. Introduction
2. Result and Discussion
2.1. The Properties of LiPON Film
2.2. Electrochemical Measurements
3. Materials and Methods
3.1. Material Preparation
3.2. Characterizations
3.3. Electrochemical Measurement
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, W.; Li, S.; Zhou, A.; Song, H.; Cui, Z.; Du, L. Recent Advances and Perspectives in Lithium−Sulfur Pouch Cells. Molecules 2021, 26, 6341. [Google Scholar] [CrossRef]
- Liu, J.; Xu, J.; Lin, Y.; Li, J.; Lai, Y.; Yuan, C.; Zhang, J.; Zhu, K. All−solid−state Lithium Ion Battery: Research and Industrial prospects. Dokl. Chem. 2013, 71, 869–878. [Google Scholar] [CrossRef]
- Wu, Y.; Wan, C.; Jiang, C. Research Progress on Lithium Metal Secondary Batteries. J. Funct. Mater. 2000, 31, 449. [Google Scholar]
- Rodger, A.R.; Kuwano, J.; West, A.R. Li+ ion conducting γ solid solutions in the systems Li4XO4−Li3YO4: X = Si, Ge, Ti; Y = P, as, V; Li4XO4−LiZO2: Z = Al, Ga, Cr and Li4GeO4−Li2CaGeO4. Solid State Ion. 1985, 15, 185–198. [Google Scholar] [CrossRef]
- Zheng, H. Lithium−Ion Battery Electrolyte; Chemical Industry Press: Beijing, China, 2007; ISBN 9787502594480. [Google Scholar]
- Padhi, A.K.; Nanjundaswamy, K.S.; Goodenough, B. Phospho−olivines as positive−electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 1997, 144, 1188–1194. [Google Scholar] [CrossRef]
- Mogi, R.; Inaba, M.; Jeong, S.K.; Iriyama, Y.; Abe, T.; Ogumi, Z. Effects of some organic additives on lithium deposition in propylene carbonate. J. Electrochem. Soc. 2002, 149, A1578–A1583. [Google Scholar] [CrossRef]
- Azmi, M.B.; Man, Z.; Maitra, S. Electrochemical Performance of Cathode LiVOPO4 Doped with Mo and W. Trans. Indian Ceram. Soc. 2013, 72, 108–112. [Google Scholar]
- Nagata, K.; Nanno, T. All solid battery with phosphate compounds made through sintering process. J. Power Sources 2007, 174, 832–837. [Google Scholar] [CrossRef]
- Rabaâ, H.; Hoffmann, R. Electronic and Structural Effects of Nitrogen Doping on the Ionic Conductivity of γ−Li3PO4. J. Solid−State Chem. 1999, 145, 619–628. [Google Scholar] [CrossRef]
- Bates, J.B.; Dudney, N.J.; Gruzalski, G.R.; Zuhr, R.A.; Choudhury, A.; Luck, C.F.; Robertson, J.D. Electrical properties of amorphous lithium electrolyte thin films. Solid State Ion. 1992, 5, 647–754. [Google Scholar] [CrossRef]
- Suzuki, N.; Inaba, T.; Shiga, T. Electrochemical properties of LiPON films made from a mixed powder target of Li3PO4 and Li2O. Thin Solid Film. 2012, 520, 1821–1825. [Google Scholar] [CrossRef]
- Lee, S.J.; Bae, J.H.; Lee, H.W.; Baik, H.K.; Lee, S.M. Electrical conductivity in Li−Si−P−O−N oxynitride thin−films. J. Power Sources 2003, 123, 61–64. [Google Scholar] [CrossRef]
- Chowdari, B.V.R.; Mok, K.F.; Xie, J.M.; Gopalakrishnan, R. Characterization of xF2: (1-X) AgPO3 and xAgF (1-x) AgPO3 Glasses. J. Electrochem. Soc. 1995, 142, 868. [Google Scholar] [CrossRef]
- Bates, J.B.; Gruzalski, G.R.; Dudney, N.J.; Luck, C.F.; Yu, X. Rechargeable thin−film lithium batteries. Solid State Ion. 1993, 36, 591. [Google Scholar]
- Arbi, K.; Lazarraga, M.G.; Ben Hassen Chehimi, D.; Ayadi−Trabelsi, M.; Rojo, J.M.; Sanz, J. Lithium mobility in Li1.2Ti1.8R0.2(PO4)3 compounds (R = Al, Ga, Sc, In) as followed by NMR and impedance spectroscopy. Chem. Mater. 2004, 16, 255–262. [Google Scholar] [CrossRef]
- Liu, Y.L.; Xin, M.Y.; Cong, L.N.; Xie, H.M. Recent research progress of interface for polyethylene oxide based solid state battery. Acta Phys. Sin. 2020, 69, 228202. [Google Scholar] [CrossRef]
- Hameed, A.S.; Nagarathinam, M.; Reddy, M.V.; Chowdari, B.V.R.; Vittal, J.J. Synthesis and Electrochemical Studies of Layer−structured Metastable αI−LiVOPO4. J. Mater. Chem. A 2012, 22, 7206–7213. [Google Scholar] [CrossRef]
- Elmoudane, M.; Et−Tabirou, M.; Hafid, M. Glass−forming region in the system Li3PO4–Pb3 (PO4)2–BiPO4 (Li2O–PbO–Bi2O3–P2O5) and its ionic conductivity. Mater. Res. Bull. 2000, 35, 279–287. [Google Scholar] [CrossRef]
- Tang, A.P.; He, Z.Q.; Shen, J.; Xu, G.R. Synthesis and Characterization of LiVOPO4 Cathode Material by Solid State Method. Adv. Mater. Res. 2012, 554, 436–439. [Google Scholar] [CrossRef]
- Li, X.; Zhang, J.; Wei, Y.; Liu, Y. Effect of temperature on the performance of LiFePO4 Li−ion power battery. Chin. Battery Ind. 2014, 19, 66–70. [Google Scholar]
- Kerr, T.A.; Gaubicher, J.; Nazar, L.F. Highly Reversible Li Insertion at 4 V in ε−VOPO4/α−LiVOPO4 Cathodes. Electrochem. Solid−State Lett. 2000, 3, 460–462. [Google Scholar] [CrossRef]
- Peled, E. The electrochemical−behavior of alkali and alkaline−earth metals in non−aqueous battery systems—The Solid Electrolyte Interphase Model. J. Electrochem. Soc. 1979, 126, 2047–2051. [Google Scholar] [CrossRef]
- Duluard, S.; Paillassa, A.; Puech, L.; Vinatier, P.; Turq, V.; Rozier, P.; Lenormand, P.; Taberna, P.L.; Simon, P.; Ansart, F. Lithium conducting solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 obtained via solution chemistry. J. Eur. Ceram. Soc. 2013, 33, 1145–1153. [Google Scholar] [CrossRef]
- Cho, K.; Oh, J.; Lee, T.; Shin, D. Effect of P2O5 in Li2O−P2O5−B2O3 electrolyte fabricated by aerosol flame deposition. J. Power Sources 2008, 183, 431–435. [Google Scholar] [CrossRef]
- Chen, H.; Tao, H.; Wu, Q.; Zhao, X. Crystallization kinetics of superionic conductive Al (B, La)−incorporated LiTi2(PO4)3 glass−ceramics. J. Am. Ceram. Soc. 2013, 96, 801–805. [Google Scholar] [CrossRef]
- Percival, J.; Kendrick, E.; Slater, P.R. Synthesis and conductivities of the garnet−related Li ion conductors, Li5Ln3Sb2O12 (Ln = La,Pr,Nd,Sm,Eu). Solid State Ion. 2008, 179, 1666–1669. [Google Scholar] [CrossRef]
- Aurbach, D.; Zinigrad, E.; Cohen, Y.; Teller, H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ion. 2002, 148, 405–416. [Google Scholar] [CrossRef]
- Peng, H.; Xie, H.; Goodenough, B. Use of B2O3 to improve Li+ ion transport in LiTi2(PO4)3−based ceramics. J. Power Sources 2012, 197, 310–313. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Xu, R.; Wang, C.; Xiong, J. Electrochemical Performance of Deposited LiPON Film/Lithium Electrode in Lithium—Sulfur Batteries. Molecules 2024, 29, 4202. https://doi.org/10.3390/molecules29174202
Wang J, Xu R, Wang C, Xiong J. Electrochemical Performance of Deposited LiPON Film/Lithium Electrode in Lithium—Sulfur Batteries. Molecules. 2024; 29(17):4202. https://doi.org/10.3390/molecules29174202
Chicago/Turabian StyleWang, Jing, Riwei Xu, Chengzhong Wang, and Jinping Xiong. 2024. "Electrochemical Performance of Deposited LiPON Film/Lithium Electrode in Lithium—Sulfur Batteries" Molecules 29, no. 17: 4202. https://doi.org/10.3390/molecules29174202
APA StyleWang, J., Xu, R., Wang, C., & Xiong, J. (2024). Electrochemical Performance of Deposited LiPON Film/Lithium Electrode in Lithium—Sulfur Batteries. Molecules, 29(17), 4202. https://doi.org/10.3390/molecules29174202