Light Emission from Fe2+-EGTA-H2O2 System Depends on the pH of the Reaction Milieu within the Range That May Occur in Cells of the Human Body
Abstract
:1. Introduction
1.1. Fenton Systems as a Tool for Determination of Anti-(•OH) Activity and Limiting Buffers Interactions
1.2. Properties of Fe2+-EGTA-H2O2 System Generating Ultra-Weak Chemiluminescence
1.3. Aims of the Study
2. Results
2.1. Effect of Singlet Oxygen (O2 (1Δg)) Generating System (H2O2-NaOCl) on the Luminescence Signal Recorded by Luminometer with Photomultiplier Spectrum from 380 nm to 630 nm
2.2. Effect of pH of Reaction Milieu on Light Emission from Fe2+-EGTA-H2O2 System
3. Discussion
3.1. Contribution of 634 nm Photons Derived from Singlet Oxygen Decay to Maximal Signal Generated by the Fe2+-EGTA-H2O2 System
3.2. Effect of pH of Phosphate Buffer on Light Emission from the Fe2+-EGTA-H2O2 System
4. Materials and Methods
4.1. Chemicals and Solutions
4.2. Effect of pH of Reaction Milieu on the Light Emission by Fe2+-EGTA-H2O2 System
4.3. Effect of H2O2–NaOCl System on the Luminescence Signal Recorded by Luminometer with Photomultiplier Spectrum from 380 nm to 630 nm
4.4. Statistical Analyses
5. Conclusions
- Enhancement and inhibition of •OH production in lower and higher pH, respectively.
- Formation of insoluble and non-reactive Fe(OH)3 at neutral and alkaline environment.
- Enhancement of •OH production by phosphates at weakly acidic and neutral environments.
- Suppression of O2•-production in acidic environment with decreased intensity of Fe2+-EGTA complex regeneration.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bergendi, L.; Benes, L.; Duracková, Z.; Ferencik, M. Chemistry, physiology and pathology of free radicals. Life Sci. 1999, 65, 1865–1874. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.; Mir, A.R.; Arfat, M.Y.; Khan, F.; Zaman, M.; Ali, A.; Moinuddin, F. Structural andimmunological characterisation of hydroxyl radical modified human IgG: Clinicalcorrelation in rheumatoid arthritis. Spectrochim. Acta A Mol. BiomolSpectrosc. 2018, 194, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Vondrakova, D.; Lawson, M.; Valko, M. Metals, oxidative stress andneurodegenerative disorders. Mol. Cell. Biochem. 2010, 345, 91–104. [Google Scholar] [CrossRef]
- Jomova, K.; Valko, M. Advances in metal-induced oxidative stress and human disease. Toxicology 2011, 283, 65–87. [Google Scholar] [CrossRef]
- Cheng, F.C.; Jen, J.F.; Tsai, T.H. Hydroxyl radical in living systems and its separation methods. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2002, 781, 481–496. [Google Scholar] [CrossRef]
- Beckman, J.S.; Beckman, T.W.; Chen, J.; Marshall, P.A.; Freeman, B.A. Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. USA 1990, 87, 1620–1624. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, B. Hydroxyl radical and its scavengers in health and disease. Oxidative Med. Cell. Longev. 2011, 2011, 809696. [Google Scholar] [CrossRef]
- Jung, Y.S.; Lim, W.T.; Park, J.Y.; Kim, Y.H. Effect of pH on Fenton and Fenton-like oxidation. Environ. Technol. 2009, 30, 183–190. [Google Scholar] [CrossRef]
- Chen, Y.; Miller, C.J.; Waite, T.D. pH dependence of hydroxyl radical, ferryl, and/or ferric peroxo species generation in the heterogeneous Fenton process. Environ. Sci. Technol. 2022, 56, 1278–1288. [Google Scholar] [CrossRef]
- Hicks, M.; Gebicki, J.M. Rate constants for reaction of hydroxyl radicals with Tris, Tricine and Hepes buffers. FEBS Lett. 1986, 199, 92–94. [Google Scholar] [CrossRef]
- Liao, C.; Kang, S.F.; Wu, F.A. Hydroxyl radical scavenging role of chloride and bicarbonate ions in the H2O2/UV process. Chemosphere 2001, 44, 1193–1200. [Google Scholar] [CrossRef]
- Illés, E.; Patra, S.G.; Marks, V.; Mizrahi, A.; Meyerstein, D. The FeII(citrate) Fenton reaction under physiological conditions. J. Inorg. Biochem. 2020, 206, 111018. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.Y. Why the reactive oxygen species of the Fenton reaction switches from oxoiron(IV) species to hydroxyl radical in phosphate buffer solutions? A computationalrationale. ACS Omega 2019, 4, 14105–14113. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.E.; Guyton, A.C. Textbook of Medical Physiology, 11th ed.; Elsevier Saunders: Philadelphia, PA, USA, 2006; pp. 291–306. [Google Scholar]
- Gligorovski, S.; Strekowski, R.; Barbati, S.; Vione, D. Environmental implications of hydroxyl radicals ((•)OH). Chem. Rev. 2015, 115, 13051–13092. [Google Scholar] [CrossRef] [PubMed]
- Hullar, T.; Anastasio, C. Yields of hydrogen peroxide from the reaction of hydroxyl radical with organic compounds in solution and ice. Atmos. Chem. Phys. 2011, 11, 7209–7222. [Google Scholar] [CrossRef]
- Pospíšil, P.; Prasad, A.; Rác, M. Mechanism of the formation of electronically excited species by oxidative metabolic processes: Role of reactive oxygen species. Biomolecules 2019, 9, 258. [Google Scholar] [CrossRef]
- Kobayashi, M.; Kikuchi, D.; Okamura, H. Imaging of ultraweak spontaneous photon emission from human body displaying diurnal rhythm. PLoS ONE 2009, 4, e6256. [Google Scholar] [CrossRef]
- Petrônio, M.S.; Ximenes, V.F. Light emission from tryptophan oxidation by hypobromous acid. Luminescence 2013, 28, 853–859. [Google Scholar] [CrossRef]
- Nowak, M.; Tryniszewski, W.; Sarniak, A.; Wlodarczyk, A.; Nowak, P.J.; Nowak, D. Light emission from the Fe2+-EGTA-H2O2 system: Possible application for the determination of antioxidant activity of plant phenolics. Molecules 2018, 23, 866. [Google Scholar] [CrossRef]
- Nowak, M.; Tryniszewski, W.; Sarniak, A.; Wlodarczyk, A.; Nowak, P.J.; Nowak, D. Concentration dependence of anti- and pro-oxidant activity of polyphenols as evaluated with a light-emitting Fe2+ -EGTA-H2O2 system. Molecules 2022, 27, 3453. [Google Scholar] [CrossRef]
- Nowak, M.; Tryniszewski, W.; Sarniak, A.; Wlodarczyk, A.; Nowak, P.J.; Nowak, D. Effect of physiological concentrations of vitamin C on the inhibitation of hydroxyl radical induced light emission from Fe2+-EGTA-H2O2 and Fe3+-EGTA-H2O2 systems In vitro. Molecules 2021, 26, 1993. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, S.; Martinez, G.R.; Medeiros, M.H.; Di Mascio, P. Singlet molecular oxygen generated by biological hydroperoxides. J. Photochem. Photobiol. B 2014, 139, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Salgado, P.; Melin, V.; Contreras, D.; Moreno, Y.; Mansilla, H.D.J. Fenton reaction driven by iron ligands. Chil. Chem. Soc. 2013, 58, 2096–2101. [Google Scholar] [CrossRef]
- Hu, S.; Guo, R.; Gao, Y.; Chen, F. Oxoiron(IV)-dominated heterogeneous Fenton-like mechanism of Fe-Doped-MoS2. Chem. Asian J. 2023, 18, e202201134. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative stress: A key modulator in neurodegenerative diseases. Molecules 2019, 24, 1583. [Google Scholar] [CrossRef]
- Bergwitz, C.; Jüppner, H. Phosphate sensing. Adv. Chronic. Kidney Dis. 2011, 18, 132–144. [Google Scholar] [CrossRef]
- Almeida, E.A.; Miyamoto, S.; Martinez, G.R.; Medeiros, M.H.G.; Di Mascio, P. Direct evidence of singlet molecular oxygen [O2(1Δg)] production in the reaction of acetonitrile with hydrogen peroxide in alkaline solutions. Anal. Chim. Acta 2002, 482, 99–104. [Google Scholar] [CrossRef]
- Piper, L.G.; Krech, R.H.; Taylor, R.L. Generation of N3 in the thermal decomposition of NaN3. J. Chem. Phys. 1979, 71, 2099–2104. [Google Scholar] [CrossRef]
- Pan, S.; Cao, B.; Yuan, D.; Jiao, T.; Zhang, Q.; Tang, S. Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chin. Chem. Lett. 2024, 35, 109185. [Google Scholar] [CrossRef]
- Furcas, F.; Lothenbach, B.; Isgor, O.; Mundra, S.; Zhang, Z.; Angst, U. Solubility and speciation of iron in cementitious systems. Cem. Concr. Res. 2021, 151, 106620. [Google Scholar] [CrossRef]
- Stefánsson, A. Iron(iii) hydrolysis and solubility at 25 °C. Environ. Sci. Technol. 2007, 41, 6117–6123. [Google Scholar] [CrossRef] [PubMed]
- Putnam, R.W. Intracellular pH regulation. In Cell Physiology Sourcebook, 3rd.; Sperelakis, N., Ed.; Academic Press: New York, NY, USA, 2001; Volume 12, pp. 357–372. [Google Scholar]
- Ježek, P. Pitfalls of mitochondrial redox signaling research. Antioxidants 2023, 12, 1696. [Google Scholar] [CrossRef] [PubMed]
- Cadenas, E.; Davies, K.J. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic. Biol. Med. 2000, 29, 222–230. [Google Scholar]
- Harada, Y.; Suzuki, K.; Hashimoto, M.; Tsukagoshi, K.; Kimoto, H. Chemiluminescence from singlet oxygen that was detected at two wavelengths and effects of biomolecules on it. Talanta 2009, 77, 1223–1227. [Google Scholar] [CrossRef]
- Forman, H.J.; Bernardo, A.; Davies, K.J. What is the concentration of hydrogen peroxide in blood and plasma? Arch. Biochem. Biophys. 2016, 603, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Dziuba, N.; Hardy, J.; Lindahl, P.A. Low-molecular-mass iron complexes in blood plasma of iron-deficient pigs do not originate directly from nutrient iron. Metallomics 2019, 11, 1900–1911. [Google Scholar] [CrossRef]
- Huang, B.K.; Sikes, H.D. Quantifying intracellular hydrogen peroxide perturbations in terms of concentration. Redox Biol. 2014, 2, 955–962. [Google Scholar] [CrossRef]
- Reinert, A.; Morawski, M.; Seeger, J.; Arendt, T.; Reinert, T. Iron concentrations in neurons and glial cells with estimates on ferritin concentrations. BMC Neurosci. 2019, 20, 25. [Google Scholar] [CrossRef]
- Noble, R.W.; Gibson, Q.H. The reaction of ferrous horseradish peroxidase with hydrogen peroxide. J. Biol. Chem. 1970, 245, 2409–2413. [Google Scholar] [CrossRef]
- Lin, Z.; Chen, H.; Zhou, Y.; Ogawa, N.; Lin, J.M. Self-catalytic degradation of ortho-chlorophenol with Fenton’s reagent studied by chemiluminescence. J. Environ. Sci. 2012, 24, 550–557. [Google Scholar] [CrossRef]
- Ivanova, I.P.; Trofimova, S.V.; Piskarev, I.M.; Aristova, N.A.; Burhina, O.E.; Soshnikova, O.O. Mechanism of chemiluminescence in Fenton reaction. J. Biophys. Chem. 2012, 3, 88–100. [Google Scholar] [CrossRef]
- Gutteridge, J.M.; Maidt, L.; Poyer, L. Superoxide dismutase and Fenton chemistry. Reaction of ferric-EDTA complex and ferric-bipyridyl complex with hydrogen peroxide without the apparent formation of iron(II). Biochem. J. 1990, 269, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Kirk, T.K.; Nakatsubo, F.; Reid, I.D. Further study discounts role for singlet oxygen in fungal degradation of lignin model compounds. Biochem. Biophys. Res. Commun. 1983, 111, 200–204. [Google Scholar] [CrossRef] [PubMed]
No. | Sample | pH of Reaction Milieu (10 mmol/L PB) pH = 6.8 | pH of Reaction Milieu (10 mmol/L PB) pH = 6.6 |
---|---|---|---|
1. | Complete system H2O2-NaOCl | 926 ± 245 (878; 218) * | 809 ± 124 (827; 105) *,† |
2. | Complete system with O2 (1Δg) scavenger-H2O2-NaN3-NaOCl | 1073 ± 105 (1102; 96) | 930 ± 93 (974; 161) |
3. | Incomplete system I H2O2-NaCl | 628 ± 74 (651; 120) | 641 ± 78 (653; 129) |
4. | Incomplete system II H2O-NaOCl | 651 ± 80 (695; 133) | 654 ± 85 (669; 131) |
5. | H2O-NaN3-NaCl | 640 ± 46 (648; 50) | 636 ± 54 (643; 84) |
6. | H2O-NaCl | 609 ± 60 (630; 107) | 661 ± 104 (659; 101) |
7. | NaCl | 640 ± 47 (649; 65) | 635 ± 56 (653; 121) |
No. | Sample | Working Solutions Added to Luminometer Tube (µL) | ||||
---|---|---|---|---|---|---|
A-PB | B-EGTA | C-FeSO4 | D-H2O | E-H2O | ||
1. | Complete system | 940 | 20 | 20 | 100 | 0 |
2. | Incomplete system I | 960 | 0 | 20 | 100 | 0 |
3. | Incomplete system II | 960 | 20 | 0 | 100 | 0 |
4. | H2O2 alone | 980 | 0 | 0 | 100 | 0 |
5. | Fe2+ + EGTA without H2O2 | 940 | 20 | 20 | 0 | 100 |
6. | Medium alone | 980 | 0 | 0 | 0 | 100 |
No. | Sample | Volumes of Working Solutions Added to Luminometer Tube (μL) | |||||
---|---|---|---|---|---|---|---|
A-PB | B-H2O2 | C-H2O | D-NaN3 | E-NaOCl | F-NaCl | ||
1. | Complete system | 880 | 100 | 0 | 0 | 100 | 0 |
2. | Incomplete system I | 880 | 0 | 100 | 0 | 100 | 0 |
3. | Complete system + NaN3 | 780 | 100 | 0 | 100 | 100 | 0 |
Additional control | |||||||
4. | Incomplete system II | 880 | 100 | 0 | 0 | 0 | 100 |
5. | Medium alone | 880 | 0 | 100 | 0 | 0 | 100 |
6. | Medium + NaN3 | 780 | 0 | 100 | 100 | 0 | 100 |
7. | PB alone | 980 | 0 | 0 | 0 | 0 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sasak, K.; Nowak, M.; Wlodarczyk, A.; Sarniak, A.; Tryniszewski, W.; Nowak, D. Light Emission from Fe2+-EGTA-H2O2 System Depends on the pH of the Reaction Milieu within the Range That May Occur in Cells of the Human Body. Molecules 2024, 29, 4014. https://doi.org/10.3390/molecules29174014
Sasak K, Nowak M, Wlodarczyk A, Sarniak A, Tryniszewski W, Nowak D. Light Emission from Fe2+-EGTA-H2O2 System Depends on the pH of the Reaction Milieu within the Range That May Occur in Cells of the Human Body. Molecules. 2024; 29(17):4014. https://doi.org/10.3390/molecules29174014
Chicago/Turabian StyleSasak, Krzysztof, Michal Nowak, Anna Wlodarczyk, Agata Sarniak, Wieslaw Tryniszewski, and Dariusz Nowak. 2024. "Light Emission from Fe2+-EGTA-H2O2 System Depends on the pH of the Reaction Milieu within the Range That May Occur in Cells of the Human Body" Molecules 29, no. 17: 4014. https://doi.org/10.3390/molecules29174014
APA StyleSasak, K., Nowak, M., Wlodarczyk, A., Sarniak, A., Tryniszewski, W., & Nowak, D. (2024). Light Emission from Fe2+-EGTA-H2O2 System Depends on the pH of the Reaction Milieu within the Range That May Occur in Cells of the Human Body. Molecules, 29(17), 4014. https://doi.org/10.3390/molecules29174014