Artemisinin and Its Derivatives as Potential Anticancer Agents
Abstract
:1. Introduction
2. Chemical Features of Artemisinin and Its Representative Derivatives
3. Anticancer Effects of Artemisinin and Its Derivatives
3.1. Anticancer Effects of Artemisinin and Its Derived Monomers
3.1.1. Anticancer Effects on Breast Cancer
3.1.2. Anticancer Effects on Lung Cancer
3.1.3. Anticancer Effects on Liver Cancer
3.1.4. Anticancer Effects on Colorectal Cancer
3.1.5. Anticancer Effects on Melanoma
3.1.6. Anticancer Effects on Esophageal Cancer
3.1.7. Anticancer Effects on Other Cancers
3.2. Anticancer Effects of Artemisinin-Derived Dimers
3.3. Combination Therapy with Artemisinin and Its Derivatives against Cancer
3.4. Nanomedicine in Anticancer Therapy Using Artemisinin and Its Derivatives
4. Anticancer Mechanisms of Artemisinin and Its Derivatives
4.1. Cancer Proliferation and Metastasis
4.2. Angiogenesis
4.3. Cell Cycle
4.4. Cell Death
4.4.1. Apoptosis
4.4.2. Autophagy
4.4.3. Ferroptosis
4.4.4. Pyroptosis
4.4.5. Oncosis
4.5. Immunomodulation in Cancer
4.6. Glucose Metabolism
4.7. STAT3
4.8. Cancer Stem Cells
5. Clinical Trials of Artemisinin and Its Derivatives
6. Conclusion and Prospective
Author Contributions
Funding
Conflicts of Interest
References
- Ma, L.; Zhang, M.M.; Zhao, R.; Wang, D.; Ma, Y.R.; Ai, L. Plant natural products: Promising resources for cancer chemoprevention. Molecules 2021, 26, 933. [Google Scholar] [CrossRef]
- Sonkin, D.; Thomas, A.; Teicher, B.A. Cancer treatments: Past, present, and future. Cancer Genet. 2024, 286, 18–24. [Google Scholar] [CrossRef]
- Guo, M.; Jin, J.; Zhao, D.; Rong, Z.; Cao, L.Q.; Li, A.H.; Sun, X.Y.; Jia, L.Y.; Wang, Y.D.; Huang, L.; et al. Research advances on anti-cancer natural products. Front. Oncol. 2022, 12, 866154. [Google Scholar] [CrossRef] [PubMed]
- van Agtmael, M.A.; Eggelte, T.A.; van Boxtel, C.J. Artemisinin drugs in the treatment of malaria: From medicinal herb to registered medication. Trends Pharmacol. Sci. 1999, 20, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.W.; Chen, D.; Chen, L.; He, B.; Li, Y. A comprehensive overview of artemisinin and its derivatives as anticancer agents. Eur. J. Med. Chem. 2023, 247, 115000. [Google Scholar] [CrossRef]
- Marchesi, E.; Perrone, D.; Navacchia, M.L. Molecular hybridization as a strategy for developing artemisinin-derived anticancer candidates. Pharmaceutics 2023, 15, 2185. [Google Scholar] [CrossRef] [PubMed]
- Nahar, L.; Guo, M.; Sarker, S.D. A review on the latest advances in extraction and analysis of artemisinin. Phytochem. Anal. 2020, 31, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhu, Y.H.; Jia, H.Y.; Han, Y.G.; Zheng, X.K.; Wang, M.; Feng, W.S. From plant to yeast-advances in biosynthesis of artemisinin. Molecules 2022, 27, 6888. [Google Scholar] [CrossRef]
- Li, Y.; Yu, P.; Chen, Y.X.; Li, L.Q.; Gai, D.S.; Wang, Y.P.Z. Synthesis of some derivatives of artemisinine. Chin. Sci. Bull. 1979, 24, 667–669. [Google Scholar]
- Presser, A.; Feichtinger, A.; Buzzi, S. A simplified and scalable synthesis of artesunate. Monatsh. Chem. 2017, 148, 63–68. [Google Scholar] [CrossRef]
- Li, Q.G.; Peggins, J.O.; Fleckenstein, L.L.; Masonic, K.; Heiffer, M.H.; Brewer, T.G. The pharmacokinetics and bioavailability of dihydroartemisinin, arteether, artemether, artesunic acid and artelinic acid in rats. J. Pharm. Pharmacol. 1998, 50, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Ericsson, T.; Blank, A.; von Hagens, C.; Ashton, M.; Äbelö, A. Population pharmacokinetics of artesunate and dihydroartemisinin during long-term oral administration of artesunate to patients with metastatic breast cancer. Eur. J. Clin. Pharmacol. 2014, 70, 1453–1463. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Q.; Xu, G.W.; Zhang, S.Q.; Wang, D.; Prabha, P.S.; Zuo, Z.L. Antitumor research on artemisinin and its bioactive derivatives. Nat. Product. Bioprosp. 2018, 8, 303–319. [Google Scholar] [CrossRef]
- Wilkinson, L.; Gathani, T. Understanding breast cancer as a global health concern. Brit. J. Radiol. 2022, 95, 20211033. [Google Scholar] [CrossRef]
- Song, Y.Y.; Xia, K.; Wu, X.Q.; Zeng, C.G.; Tang, S.A.; Yuan, Y.; Gui, Y.T.; Zhang, X.H.; Zhong, H. Design, synthesis, and anti-breast cancer activity evaluation of endoperoxide-type pyrido/pyrrolo[2,3-d]pyrimidine derivatives. J. Heterocycl. Chem. 2023, 60, 1138–1149. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, X.Y.; Liu, J.L.; Gao, N.; Yang, R.H.; Wang, Q.; Ji, J.; Ma, L.; He, Q. Dihydroartemisinin inhibits the tumorigenesis and metastasis of breast cancer via downregulating CIZ1 expression associated with TGF-β1 signaling. Life Sci. 2020, 248, 117454. [Google Scholar] [CrossRef]
- Dong, J.; Chen, Y.L.; Yang, W.H.; Zhang, X.; Li, L. Antitumor and anti-angiogenic effects of artemisinin on breast tumor xenografts in nude mice. Res. Vet. Sci. 2020, 129, 66–69. [Google Scholar] [CrossRef]
- Cui, J.M.; Cai, X.X.; Qian, R.; Wu, L.; Qi, X.Y.; Cao, J.; Shen, S. Tween 80 micelles loaded with Fe3O4 nanoparticles and artemisinin for combined oxygen-independent ferroptosis therapy of cancer. Pharmaceutics 2024, 16, 639. [Google Scholar] [CrossRef] [PubMed]
- Rao, Q.; Yu, H.; Li, R.C.; He, B.; Wang, Y.X.; Guo, X.H.; Zhao, G.; Wu, F.H. Dihydroartemisinin inhibits angiogenesis in breast cancer via regulating VEGF and MMP-2/-9. Fund. Clin. Pharmacol. 2024, 38, 113–125. [Google Scholar] [CrossRef]
- Chatterjee, R.; Shukla, A.; Chakrabarti, K.; Chatterji, U. CLEC12A sensitizes differentially responsive breast cancer cells to the anti-cancer effects of artemisinin by repressing autophagy and inflammation. Front. Oncol. 2023, 13, 1242432. [Google Scholar] [CrossRef]
- Li, Y.Q.; Wang, W.; Li, A.X.; Huang, W.; Chen, S.M.; Han, F.; Wang, L.C. Dihydroartemisinin induces pyroptosis by promoting the AIM2/caspase-3/DFNA5 axis in breast cancer cells. Chem. Biol. Interact. 2021, 340, 109434. [Google Scholar] [CrossRef] [PubMed]
- Pirali, M.; Taheri, M.; Zarei, S.; Majidi, M.; Ghafouri, H. Artesunate, as a HSP70 ATPase activity inhibitor, induces apoptosis in breast cancer cells. Int. J. Biol. Macromol. 2020, 164, 3369–3375. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.S.; Wang, M.J.; Lu, X.; Zhang, J.; Liu, Q.X.; Zhou, D.; Dai, J.G.; Zheng, H. Artesunate inhibits epithelial-mesenchymal transition in non-small-cell lung cancer (NSCLC) cells by down-regulating the expression of BTBD7. Bioengineered 2020, 11, 1197–1207. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Ni, C.; Teng, P. Effects of artesunate on the malignant biological behaviors of non-small cell lung cancer in human and its mechanism. Bioengineered 2022, 13, 6590–6599. [Google Scholar] [CrossRef]
- Yuan, B.; Liao, F.; Shi, Z.Z.; Ren, Y.; Deng, X.L.; Yang, T.T.; Li, D.Y.; Li, R.F.; Pu, D.D.; Wang, Y.J.; et al. Dihydroartemisinin inhibits the proliferation, colony formation and induces ferroptosis of lung cancer cells by inhibiting PRIM2/SLC7A11 axis. OncoTargets Ther. 2020, 13, 10829–10840. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.T.; Yi, H.M.; Yao, H.; Lu, L.; He, G.C.; Wu, M.; Zheng, C.J.; Li, Y.; Chen, S.S.; Li, L.W.; et al. Artemisinin derivatives inhibit non-small cell lung cancer cells through induction of ROS-dependent apoptosis/ferroptosis. J. Cancer 2021, 12, 4075–4085. [Google Scholar] [CrossRef]
- Li, Y.P.; Sun, H.Y.; Bai, C.H.; Hu, Y.F.; Tang, J.Y.; Zhang, Y.X.; Chen, J.L.; Zhong, Z.Q.; He, Y.P.; Hu, K.F.; et al. Dihydroartemisinin inhibits tumor progress via blocking ROR1-induced STAT3-activation in non-small cell lung cancer. Int. Immunopharmacol. 2024, 133, 112157. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Wang, Y.; Li, Y.P.; Huang, C.; Xiao, X.Q.; Zhong, Z.Q.; Tang, J.Y.; Lu, H.L.; Tang, Y.B.; Yang, J.H. Dihydroartemisinin and artesunate inhibit aerobic glycolysis via suppressing c-Myc signaling in non-small cell lung cancer. Biochem. Pharmacol. 2022, 198, 114941. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.Q.; Li, Y.P.; Wang, Y.; Zhang, Y.X.; Chen, J.L.; Liu, W.W.; Tang, J.Y.; Yue, F.P.; Yang, J.H. Dihydroartemisinin inhibits Lewis Lung carcinoma progression by inducing macrophages M1 polarization via AKT/mTOR pathway. Int. Immunopharmacol. 2022, 103, 108427. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.Q.; Huang, J.F.; Niu, K.; Zhou, J.; Wang, N.N.; Liu, Y.; Chen, L.W. B7-H3 but not PD-L1 is involved in the antitumor effects of dihydroartemisinin in non-small cell lung cancer. Eur. J. Pharmacol. 2023, 950, 175746. [Google Scholar] [CrossRef]
- Xie, J.J.; Zhu, G.Y.; Gao, M.; Xi, J.; Chen, G.; Ma, X.X.; Yan, Y.; Wang, Z.Y.; Xu, Z.J.; Chen, H.J.; et al. An artemisinin derivative ART1 induces ferroptosis by targeting the HSD17B4 protein essential for lipid metabolism and directly inducing lipid peroxidation. CCS Chem. 2022, 4, 304–317. [Google Scholar] [CrossRef]
- Xu, C.C.; Xiao, L.F.; Lin, P.Y.; Yang, X.Y.; Zou, X.; Mu, L.L.; Yang, X.P. Synthesis and antitumor activities of novel mitochondria-targeted dihydroartemisinin ether derivatives. ACS Omega 2022, 7, 38832–38846. [Google Scholar] [CrossRef] [PubMed]
- Hill, K.S.; McDowell, A.; McCorkle, J.R.; Schuler, E.; Ellingson, S.R.; Plattner, R.; Kolesar, J.M. KEAP1 is required for artesunate anticancer activity in non-small-cell lung cancer. Cancers 2021, 13, 1885. [Google Scholar] [CrossRef] [PubMed]
- Falette-Puisieux, M.; Pellat, A.; Assaf, A.; Ginestet, C.; Brezault, C.; Dhooge, M.; Soyer, P.; Coriat, R. Therapeutic management of advanced hepatocellular carcinoma: An updated review. Cancers 2022, 14, 2357. [Google Scholar] [CrossRef]
- Zhu, X.L.; Yang, M.; Song, Z.L.; Yao, G.B.; Shi, Q.F. Artemether inhibits proliferation, invasion and migration of hepatocellular carcinoma cells via targeting of CYP2J2. Oncol. Lett. 2022, 23, 180. [Google Scholar] [CrossRef]
- Nandi, D.; Cheema, P.S.; Singal, A.; Bharti, H.; Nag, A. Artemisinin mediates its tumor-suppressive activity in hepatocellular carcinoma through targeted inhibition of FoxM1. Front. Oncol. 2021, 11, 751271. [Google Scholar] [CrossRef]
- Wu, R.T.; Gao, Y.; Wu, J.Q.; Wang, C.L.; Yang, L. Semi-synthetic product dihydroartemisinin inhibited fibronectin-1 and integrin-β1 and interfered with the migration of HCCLM6 cells via PI3K-AKT pathway. Biotechnol. Lett. 2020, 42, 917–926. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.Y.; Wang, Z.W.; Chen, L.; Zhang, C.; Liao, F.Y.; Wang, Y.W.; Wang, Y.; Luo, P.; Luo, M.; Shi, C.M. Artesunate induces ER-derived-ROS-mediated cell death by disrupting labile iron pool and iron redistribution in hepatocellular carcinoma cells. Am. J. Cancer Res. 2021, 11, 691–711. [Google Scholar] [PubMed]
- Wang, Z.W.; Li, M.X.; Liu, Y.F.; Qiao, Z.T.; Bai, T.; Yang, L.; Liu, B. Dihydroartemisinin triggers ferroptosis in primary liver cancer cells by promoting and unfolded protein response-induced upregulation of CHAC1 expression. Oncol. Rep. 2021, 46, 240. [Google Scholar] [CrossRef] [PubMed]
- Tran, D.Q.; Truong, N.H.; Nguyen, T.H.A.; Trinh, T.T.; Ba, T.C.; Nguyen, T.T.L.; Nguyen, X.H.; Nguyen, M.C.; Luu, V. Synthesis and cytotoxic activity evaluation of novel dihydroartemisinin and zerumbone conjugates with 2-mercapto-1,3,4-oxadiazoles as potential EGFR inhibitors. J. Chem. Res. 2023, 47, 20230922. [Google Scholar] [CrossRef]
- Hao, L.Y.; Guo, Y.L.; Peng, Q.; Zhang, Z.Q.; Ji, J.M.; Liu, Y.W.; Xue, Y.; Li, C.G.; Zheng, K.N.; Shi, X.L. Dihydroartemisinin reduced lipid droplet deposition by YAP1 to promote the anti-PD-1 effect in hepatocellular carcinoma. Phytomedicine 2022, 96, 153913. [Google Scholar] [CrossRef]
- Gong, Y.; Peng, Q.; Gao, Y.T.; Yang, J.L.; Lu, J.L.; Zhang, Y.M.; Yang, Y.G.; Liang, H.; Yue, Y.; Shi, X.L. Dihydroartemisinin inhibited interleukin-18 expression by decreasing YAP1 in hepatocellular carcinoma cells. Acta Histochem. 2023, 125, 152040. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.; Yang, H.; Zhao, X.; Wei, S.; Tao, Y.; Liu, M.; Bo, R.; Li, J. Antimalarial agent artesunate induces G0/G1 cell cycle arrest and apoptosis via increasing intracellular ROS levels in normal liver cells. Hum. Exp. Toxicol. 2020, 39, 1681–1689. [Google Scholar] [CrossRef]
- Li, C.; Zhao, Z.Z.; Zhang, J.; Diao, P.Y.; Li, Y.H.; Zhang, Q.; Zhang, L. Effects of artemisinin on colon cancer cell proliferation through miR-22. J. Biomater. Tiss. Eng. 2020, 10, 1447–1451. [Google Scholar]
- Wang, Y.Q.; Chen, Y.; Liu, L.J.; He, D.L.; Li, H. Effects of artemisinin combined with 5-fluorouracil on colon cancer cell proliferation, migration, and drug sensitivity via PI3K/AKT signaling. J. Biomater. Tiss. Eng. 2020, 10, 1600–1604. [Google Scholar]
- Jia, T.H.; Li, M.; Wang, Y.; Li, W.; Yu, Y.; Qi, J. Artemisinin inhibits colorectal carcinoma growth through downregulation of NRP2, N-cadherin and vimentin expression. Lat. Am. J. Pharm. 2023, 42, 782–787. [Google Scholar]
- Sun, G.S.; Zhao, S.Q.; Fan, Z.G.; Wang, Y.L.; Liu, H.Y.; Cao, H.S.; Sun, G.Q.; Huang, T.; Cai, H.Z.; Pan, H.; et al. CHSY1 promotes CD8+ T cell exhaustion through activation of succinate metabolism pathway leading to colorectal cancer liver metastasis based on CRISPR/Cas9 screening. J. Exp. Clin. Canc. Res. 2023, 42, 248. [Google Scholar] [CrossRef]
- Wang, Y.J.; Yang, Z.R.; Zhu, W.L.; Chen, Y.Z.; He, X.Q.; Li, J.F.; Han, Z.Y.; Yang, Y.H.; Liu, W.; Zhang, K. Dihydroartemisinin inhibited stem cell-like properties and enhanced oxaliplatin sensitivity of colorectal cancer via AKT/mTOR signaling. Drug Dev. Res. 2023, 84, 988–998. [Google Scholar] [CrossRef]
- Huang, Z.Y.; Gan, S.; Zhuang, X.R.; Chen, Y.; Lu, L.L.; Wang, Y.; Qi, X.X.; Feng, Q.; Huang, Q.J.; Du, B.A.Y.; et al. Artesunate inhibits the cell growth in colorectal cancer by promoting ROS-dependent cell senescence and autophagy. Cells 2022, 11, 2472. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Zijlstra, S.N.; Soto-Gamez, A.; Setroikromo, R.; Quax, W.J. Artemisinin derivatives stimulate DR5-specific TRAIL-induced apoptosis by regulating wildtype P53. Cancers 2020, 12, 2514. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Lu, W.Y.; Dai, T.Z.; Chen, H.; Wang, T.; Yang, L.; Yang, X.L.; Liu, Y.; Sun, D.Q. Novel artemisinin derivatives with potent anticancer activities and the anti-colorectal cancer effect by the mitochondria-mediated pathway. Bioorg. Chem. 2021, 106, 104496. [Google Scholar] [CrossRef] [PubMed]
- Bader, S.; Wilmers, J.; Ontikatze, T.; Ritter, V.; Jendrossek, V.; Rudner, J. Loss of pro-apoptotic Bax and Bak increases resistance to dihydroartemisinin-mediated cytotoxicity in normoxia but not in hypoxia in HCT116 colorectal cancer cells. Free Radic. Bio. Med. 2021, 174, 157–170. [Google Scholar] [CrossRef]
- Geng, Y.Y.; Li, W.C.; Wong, N.K.; Xue, F.C.; Li, Q.; Zhang, Y.; Xu, J.Y.; Deng, Z.S.; Zhou, Y.Q. Discovery of artemisinins as microsomal prostaglandins synthase-2 inhibitors for the treatment of colorectal cancer via chemoproteomics. J. Med. Chem. 2024, 67, 2083–2094. [Google Scholar] [CrossRef] [PubMed]
- Gong, R.H.; Chen, M.T.; Huang, C.H.; Wong, H.L.X.; Kwan, H.Y.; Bian, Z.X. Combination of artesunate and WNT974 induces KRAS protein degradation by upregulating E3 ligase ANACP2 and β-TrCP in the ubiquitin-proteasome pathway. Cell Commun. Signal 2022, 20, 34. [Google Scholar] [CrossRef]
- Wang, X.W.; Zheng, Y.Y.; Chai, Z.B.; Li, J.; Zhu, C.H.; Peng, Y.L.; Qiu, J.J.; Xu, J.J.; Liu, C.Y. Dihydroartemisinin synergistically enhances the cytotoxic effects of oxaliplatin in colon cancer by targeting the PHB2-RCHY1 mediated signaling pathway. Mol. Carcinogen. 2023, 62, 293–302. [Google Scholar] [CrossRef]
- Otto-Slusarczyk, D.; Mielczarek-Puta, M.; Grabon, W. The real cytotoxic effect of artemisinins on colon cancer cells in a physiological cell culture setting. How composition of the culture medium biases experimental findings. Pharmaceuticals 2021, 14, 976. [Google Scholar] [CrossRef] [PubMed]
- Berköz, M.; Özkan-Yilmaz, F.; Özluer-Hunt, A.; Krosniak, M.; Turkmen, Ö.; Korkmaz, D.; Keskin, S. Artesunate inhibits melanoma progression in vitro via suppressing STAT3 signaling pathway. Pharmacol. Rep. 2021, 73, 650–663. [Google Scholar] [CrossRef]
- Zhang, M.Q.; Wang, L.L.; Liu, W.; Wang, T.; De Sanctis, F.; Zhu, L.F.; Zhang, G.Z.; Cheng, J.; Cao, Q.; Zhou, J.Y.; et al. Targeting inhibition of accumulation and function of myeloid-derived suppressor cells by artemisinin via PI3K/AKT, mTOR, and MAPK pathways enhances anti-PD-L1 immunotherapy in melanoma and liver tumors. J. Immunol. Res. 2022, 2022, 2253436. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Jin, L.B.; Jin, Q.X.; Wei, Q.; Sun, M.Y.; Yue, Q.; Liu, H.; Li, F.F.; Li, H.H.; Ren, X.S.; et al. Inhibitory effect of dihydroartemisinin on the proliferation and migration of melanoma cells and experimental lung metastasis from melanoma in mice. Front. Pharmacol. 2021, 12, 727275. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; Jin, L.B.; Li, F.F.; Fujimoto, M.; Wei, Q.; Lin, Z.H.; Ren, X.S.; Jin, Q.X.; Li, H.H.; Meng, F.P.; et al. Dihydroartemisinin inhibits melanoma by regulating CTL/Treg anti-tumor immunity and STAT3-mediated apoptosis via IL-10 dependent manner. J. Dermatol. Sci. 2020, 99, 193–202. [Google Scholar] [CrossRef]
- Wang, M.; Chen, H.; He, X.; Zhao, X.P.; Zhang, H.R.; Wang, Y.; Wang, H.Y. Artemisinin inhibits the development of esophageal cancer by targeting HIF-1α to reduce glycolysis levels. J. Gastrointest. Oncol. 2022, 13, 2144–2153. [Google Scholar] [CrossRef]
- Chen, X.; He, L.Y.; Lai, S.; He, Y. Dihydroartemisinin inhibits the migration of esophageal cancer cells by inducing autophagy. Oncol. Lett. 2020, 20, 94. [Google Scholar] [CrossRef]
- Ma, Q.; Liao, H.B.; Xu, L.; Li, Q.R.; Zou, J.; Sun, R.; Xiao, D.; Liu, C.; Pu, W.J.; Cheng, J.B.; et al. Autophagy-dependent cell cycle arrest in esophageal cancer cells exposed to dihydroartemisinin. Chin. Med. 2020, 15, 37. [Google Scholar] [CrossRef] [PubMed]
- Mao, L.L.; Deng, G.D.; Li, M.F.; Lu, S.H.; Jiang, W.; Yu, X.Y. Antitumour effects of artesunate via cell cycle checkpoint controls in human oesophageal squamous carcinoma cells. Eur. J. Med. Res. 2024, 29, 293. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.L.; Chen, X.H.; Zhu, Y.Y.; Qin, J.C.; Niu, T.T.; Ding, Y.W.; Xiao, Y.; Jiang, Y.N.; Liu, K.D.; Lu, J.; et al. Dihydroartemisinin inhibits the proliferation of esophageal squamous cell carcinoma partially by targeting AKT1 and p70S6K. Front. Pharmacol. 2020, 11, 587470. [Google Scholar] [CrossRef]
- Li, Q.R.; Ma, Q.; Xu, L.; Gao, C.L.; Yao, L.H.; Wen, J.L.; Yang, M.Y.; Cheng, J.B.; Zhou, X.; Zou, J.; et al. Human telomerase reverse transcriptase as a therapeutic target of dihydroartemisinin for esophageal squamous cancer. Front. Pharmacol. 2021, 12, 769787. [Google Scholar] [CrossRef]
- Karmakar, D.; Maity, J.; Mondal, P.; Chowdhury, P.S.; Sikdar, N.; Karmakar, P.; Das, C.; Sengupta, S. E2F5 promotes prostate cancer cell migration and invasion through regulation of TFPI2, MMP-2 and MMP-9. Carcinogenesis 2020, 41, 1767–1780. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Zhang, J.; Zhao, Z.J.; Liu, Y.; Zhao, Z.; Fu, K.; Li, B.K.; Jin, J. Artemisinin suppresses aerobic glycolysis in thyroid cancer cells by downregulating HIF-1a, which is increased by the XIST/miR-93/HIF-1a pathway. PLoS ONE 2023, 18, e0284242. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Luo, R.T.; Li, W.; Yan, H.Y.; Xie, S.Q.; Xiao, W.; Wang, Y.F.; Chen, B.; Bai, P.D.; Xing, J.C. Dihydroartemisinin suppresses bladder cancer cell invasion and migration by regulating KDM3A and p21. J. Cancer 2020, 11, 1115–1124. [Google Scholar] [CrossRef]
- Shi, H.Q.; Xiong, L.; Yan, G.; Du, S.Q.; Liu, J.; Shi, Y.B. Susceptibility of cervical cancer to dihydroartemisinin-induced ferritinophagy-dependent ferroptosis. Front. Mol. Biosci. 2023, 10, 1156062. [Google Scholar] [CrossRef]
- Zheng, J.F.; Li, X.H.; Yang, W.L.; Zhang, F. Dihydroartemisinin regulates apoptosis, migration, and invasion of ovarian cancer cells via mediating RECK. J. Pharmacol. Sci. 2021, 146, 71–81. [Google Scholar] [CrossRef]
- Fan, H.N.; Zhu, M.Y.; Peng, S.Q.; Zhu, J.S.; Zhang, J.; Qu, G.Q. Dihydroartemisinin inhibits the growth and invasion of gastric cancer cells by regulating cyclin D1-CDK4-Rb signaling. Pathol. Res. Pract. 2020, 216, 152795. [Google Scholar] [CrossRef]
- Gong, H.L.; Gao, M.J.; Lin, Y.C.; Liu, J.L.; Hu, Z.W.; Liu, J. TUG1/MAZ/FTH1 axis attenuates the antiglioma effect of dihydroartemisinin by inhibiting ferroptosis. Oxid. Med. Cell. Longev. 2022, 2022, 7843863. [Google Scholar] [CrossRef]
- Zhang, X.K.; Yang, S.B.; Wang, Q.; Ye, W.M.; Liu, S.L.; Wang, X.; Zhang, Z.Y.; Cao, L.Y.; Jiang, X.Q. Tailored theranostic nanoparticles cause efficient ferroptosis in head and neck squamous cell carcinoma through a reactive oxygen species “butterfly effect”. Chem. Eng. J. 2021, 423, 130083. [Google Scholar] [CrossRef]
- Wu, X.L.; Yang, C.W.; Li, Z.W.; Lv, P.; An, X.; Peng, X.H.; Li, Y.; Jiang, X.J.; Mao, X.M.; Chen, D.H.; et al. Dihydroartemisinin inhibits HNSCC invasion and migration by controlling miR-195-5p expression. Heliyon 2024, 10, e32522. [Google Scholar] [CrossRef]
- Xu, D.L.; Fan, K.; Zhang, H.; Tang, L.X.; Wang, Y.; Xiang, Z.; Shi, A.M.; Qu, Y.C.; Su, C.J.; Pan, J. Anti-proliferation and apoptosis-inducing effects of dihydroartemisinin on SH-SY5Y cells and metabolomic analysis. Transl. Pediatr. 2022, 11, 1346–1361. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Zhang, B.; Su, Y.W.; Badshah, S.A.; Wang, X.F.; Li, X.; Xue, Y.R.; Xie, L.; Wang, Z.; Yang, Z.Q.; et al. Iron promotes dihydroartemisinin cytotoxicity ROS production and blockade of autophagic flux lysosomal damage in osteosarcoma. Front. Pharmacol. 2020, 11, 444. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.M.; Zhang, Y.W.; Liang, J.R.; Li, Q.; Hu, H.Y.; Zhou, Y.; Zhang, B. Dihydroartemisinin potentiates VEGFR-TKIs antitumorigenic effect on osteosarcoma by regulating Loxl2/VEGFA expression and lipid metabolism pathway. J. Cancer 2023, 14, 809–820. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wu, J.G.; Weng, S.F.; Yang, L.M.; Wang, H.Z.; Xu, Y.Z.; Shen, K. Fourier Transform infrared spectroscopy monitoring of dihydroartemisinin-induced growth inhibition in ovarian cancer cells and normal ovarian surface epithelial cells. Cancer Manag. Res. 2020, 12, 653–661. [Google Scholar] [CrossRef] [PubMed]
- Guo, K.; Cao, Y.Y.; Qian, L.C.; Daniels, M.J.; Tian, Y.; Li, Y.; Song, L.N.; Wang, Z.Q.; Ren, S. Dihydroartemisinin induces ferroptosis in pancreatic cancer cells by the regulation of survival prediction-related genes. Tradit. Med. Res. 2023, 8, 67. [Google Scholar] [CrossRef]
- Xia, T.; Liu, S.H.; Xu, G.; Zhou, S.J.; Luo, Z.G. Dihydroartemisinin induces cell apoptosis through repression of UHRF1 in prostate cancer cells. Anti-Cancer Drug 2022, 33, E113–E124. [Google Scholar] [CrossRef]
- Luo, J.; Odaka, Y.; Huang, Z.; Cheng, B.; Liu, W.; Li, L.; Shang, C.W.; Zhang, C.; Wu, Y.; Luo, Y.; et al. Dihydroartemisinin inhibits mTORC1 signaling by activating the AMPK pathway in rhabdomyosarcoma tumor cells. Cells 2021, 10, 1363. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.J.; Chen, Y.; Wang, F.F.; Wu, H.S.; Zhang, Y.; Liu, J.X.; Cai, Y.S.; Huang, S.H.; He, N.; Hu, Z.H.; et al. Artesunate induces autophagy dependent apoptosis through upregulating ROS and activating AMPK-mTOR-ULK1 axis in human bladder cancer cells. Chem. Biol. Interact. 2020, 331, 109273. [Google Scholar] [CrossRef]
- Chen, F.P.; Lu, J.X.; Zheng, B.L.; Yi, N.; Xie, C.X.; Chen, F.R.; Wei, D.F.; Jiang, H.X.; Qin, S.Y. Artesunate inhibits the growth of insulinoma cells SLC7A11/GPX4-mediated ferroptosis. Curr. Pharm. Des. 2024, 30, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Yuan-Ce, L.; Qi, Z.; Hong-Yang, Z.; Yan-Wen, W.; Yu-Mei, S.; Bi-Juan, Y.; Jun-Lin, Y. Artesunate, as an Hsp90 inhibitor, inhibits the proliferation of Burkitt’s lymphoma cells by inhibiting AKT and ERK. Front. Pharmacol. 2023, 14, 1218467. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Wang, F.J.; Wu, P.Q.; Gong, S.G.; Gao, J.; Tao, H.; Shen, Q.Q.; Wang, S.T.; Zhou, Z.C.; Jia, Y.Q. Artesunate induces apoptosis, autophagy and ferroptosis in diffuse large B cell lymphoma cells by impairing STAT3 signaling. Cell Signal. 2021, 88, 110167. [Google Scholar] [CrossRef] [PubMed]
- Markowitsch, S.D.; Schupp, P.; Lauckner, J.; Vakhrusheva, O.; Slade, K.S.; Mager, R.; Efferth, T.; Haferkamp, A.; Juengel, E. Artesunate inhibits growth of sunitinib-resistant renal cell carcinoma cells through cell cycle arrest and induction of ferroptosis. Cancers 2020, 12, 3150. [Google Scholar] [CrossRef]
- Xu, Z.W.; Liu, X.J.; Zhuang, D.P. Artesunate inhibits proliferation, migration, and invasion of thyroid cancer cells by regulating the PI3K/AKT/FKHR pathway. Biochem. Cell Biol. 2022, 100, 85–92. [Google Scholar] [CrossRef]
- Ahmad, F.; Sarder, A.; Gour, R.; Karna, S.K.L.; Arora, P.; Kartha, K.P.R.; Pokharel, Y.R. Inhibition of prostate cancer cell line (Pc-3) by anhydrodihydroartemisinin (Adha) through caspase-dependent pathway. EXCLI J. 2020, 19, 613–619. [Google Scholar]
- Gao, F.; Sun, Z.; Kong, F.G.; Xiao, J.Q. Artemisinin-derived hybrids and their anticancer activity. Eur. J. Med. Chem. 2020, 188, 112044. [Google Scholar] [CrossRef]
- Zhong, H.; Jiang, Q.; Wu, C.; Yu, H.H.; Li, B.; Zhou, X.D.; Fu, R.G.; Wang, W.; Sheng, W.B. Design, synthesis, and antitumor activity evaluation of artemisinin bivalent ligands. Molecules 2024, 29, 409. [Google Scholar] [CrossRef]
- Li, Y.W.; Pei, Q.; Cui, B.J.; Zhang, H.M.; Han, L.; Li, W.Q.; Zhu, W.H.; Feng, X.M.; Xie, Z.G. A redox-responsive dihydroartemisinin dimeric nanoprodrug for enhanced antitumor activity. J. Nanobiotechnol. 2021, 19, 441. [Google Scholar] [CrossRef] [PubMed]
- Elhassanny, A.E.M.; Soliman, E.; Marie, M.; McGuire, P.; Gul, W.; ElSohly, M.; Van Dross, R. Heme-dependent ER stress apoptosis: A mechanism for the selective toxicity of the dihydroartemisinin, NSC735847, in colorectal cancer cells. Front. Oncol. 2020, 10, 965. [Google Scholar] [CrossRef]
- Botta, L.; Cesarini, S.; Zippilli, C.; Filippi, S.; Bizzarri, B.M.; Baratto, M.C.; Pogni, R.; Saladino, R. Stereoselective access to antimelanoma agents by hybridization and dimerization of dihydroartemisinin and artesunic acid. ChemMedChem 2021, 16, 2270–2277. [Google Scholar] [CrossRef] [PubMed]
- Kalen, A.L.; Wagner, B.A.; Sarsour, E.H.; Kumar, M.G.; Reedy, J.L.; Buettner, G.R.; Barua, N.C.; Goswami, P.C. Hydrogen peroxide mediates artemisinin-derived C-16 carba-dimer-induced toxicity of human cancer cells. Antioxidants 2020, 9, 108. [Google Scholar] [CrossRef]
- Yue, L.Y.; Pan, Y.N.; Wang, J.Y.; Yue, L.; Luo, Y.X.; Lv, F.; Lv, J.G.; Chen, J.P.; Zhao, Q.J.; Lin, H.X. Design, synthesis, and antitumor activities of isomers of artemisinin dimer derivatives. Chem. Biodivers. 2023, 20, e202300615. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Y.; Li, N.; Zhang, G.Q.; Li, J.Y.; Liu, Y.; Wang, M.; Ren, X.L. Nano strategies for artemisinin derivatives to enhance reverse efficiency of multidrug resistance in breast cancer. Curr. Pharm. Des. 2023, 29, 3458–3466. [Google Scholar] [CrossRef] [PubMed]
- Wong, Y.K.; Xu, C.C.; Kalesh, K.A.; He, Y.K.; Lin, Q.S.; Wong, W.S.F.; Shen, H.M.; Wang, J.G. Artemisinin as an anticancer drug: Recent advances in target profiling and mechanisms of action. Med. Res. Rev. 2017, 37, 1492–1517. [Google Scholar] [CrossRef]
- Abbasi, Y.; Pooladi, M.; Nazmabadi, R.; Amri, J.; Abbasi, H.; Karami, H. Formononetin and dihydroartemisinin act synergistically to induce apoptosis in human acute myeloid leukemia cell lines. Cell J. 2024, 26, 121–129. [Google Scholar]
- Li, Z.; Zhu, Y.T.; Xiang, M.; Qiu, J.L.; Luo, S.Q.; Lin, F. Enhanced lysosomal function is critical for paclitaxel resistance in cancer cells: Reversed by artesunate. Acta. Pharmacol. Sin. 2021, 42, 624–632. [Google Scholar] [CrossRef]
- Chen, X.W.; Song, X.L. Application and progress of photodynamic therapy in combination therapy of lung cancer. Chin. J. Tubere. Respir. Dis. 2023, 46, 424–429. [Google Scholar]
- Fei, Z.; Gu, W.; Xie, R.; Su, H.; Jiang, Y. Artesunate enhances radiosensitivity of esophageal cancer cells by inhibiting the repair of DNA damage. J. Pharmacol. Sci. 2018, 138, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Teng, M.; Wang, Y.; Feng, Y.; Xiao, Z.; Hu, H.; Wang, Q.; Lu, Y.; Li, C.; Zeng, K.; et al. Dihydroartemisinin administration improves the effectiveness of 5-aminolevulinic acid-mediated photodynamic therapy for the treatment of high-risk human papillomavirus infection. Photodiagnosis Photodyn. Ther. 2021, 33, 102078. [Google Scholar] [CrossRef] [PubMed]
- Patil, A.; Prabhakar, B.; Shende, P. Potential of transpapillary route for artesunate-loaded microneedles against breast cancer cell line. Colloids Surface A 2022, 640, 128431. [Google Scholar] [CrossRef]
- Shen, S.; Du, M.B.; Liu, Q.B.; Gao, P.; Wang, J.G.; Liu, S.Z.; Gu, L.W. Development of GLUT1-targeting alkyl glucoside-modified dihydroartemisinin liposomes for cancer therapy. Nanoscale 2020, 12, 21901–21912. [Google Scholar] [CrossRef] [PubMed]
- Slezakova, S.; Ruda-Kucerova, J. Anticancer activity of artemisinin and its derivatives. Anticancer Res. 2017, 37, 5995–6003. [Google Scholar] [PubMed]
- Xu, C.C.; Zhang, H.H.; Mu, L.L.; Yang, X.P. Artemisinins as anticancer drugs: Novel therapeutic approaches, molecular mechanisms, and clinical trials. Front. Pharmacol. 2020, 11, 529881. [Google Scholar] [CrossRef] [PubMed]
- König, M.; von Hagens, C.; Hoth, S.; Baumann, I.; Walter-Sack, I.; Edler, L.; Sertel, S. Investigation of ototoxicity of artesunate as add-on therapy in patients with metastatic or locally advanced breast cancer: New audiological results from a prospective, open, uncontrolled, monocentric phase I study. Cancer Chemoth. Pharm. 2016, 77, 413–427. [Google Scholar] [CrossRef] [PubMed]
- Yarnell, E. Preliminary case series of artemisinin for prostate cancer in a naturopathic practice. J. Restor. Med. 2015, 4, 24–32. [Google Scholar] [CrossRef]
- Deeken, J.F.; Wang, H.K.; Hartley, M.; Cheema, A.K.; Smaglo, B.; Hwang, J.J.; He, A.R.; Weiner, L.M.; Marshall, J.L.; Giaccone, G.; et al. A phase I study of intravenous artesunate in patients with advanced solid tumor malignancies. Cancer Chemoth. Pharm. 2018, 81, 587–596. [Google Scholar] [CrossRef]
- Krishna, S.; Ganapathi, S.; Ster, I.C.; Saeed, M.E.M.; Cowan, M.; Finlayson, C.; Kovacsevics, H.; Jansen, H.; Kremsner, P.G.; Efferth, T.; et al. A randomised, double blind, placebo-controlled pilot study of oral artesunate therapy for colorectal cancer. EBioMedicine 2015, 2, 82–90. [Google Scholar] [CrossRef] [PubMed]
- von Hagens, C.; Walter-Sack, I.; Goeckenjan, M.; Osburg, J.; Storch-Hagenlocher, B.; Sertel, S.; Elsässer, M.; Remppis, B.A.; Edler, L.; Munzinger, J.; et al. Prospective open uncontrolled phase I study to define a well-tolerated dose of oral artesunate as add-on therapy in patients with metastatic breast cancer (ARTIC M33/2). Breast Cancer Res. Treat. 2017, 164, 359–369. [Google Scholar] [CrossRef] [PubMed]
- von Hagens, C.; Walter-Sack, I.; Goeckenjan, M.; Storch-Hagenlocher, B.; Sertel, S.; Elsässer, M.; Remppis, B.A.; Munzinger, J.; Edler, L.; Efferth, T.; et al. Long-term add-on therapy (compassionate use) with oral artesunate in patients with metastatic breast cancer after participating in a phase I study (ARTIC M33/2). Phytomedicine 2019, 54, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Jansen, F.H.; Adoubi, I.; Comoe, J.C.K.; De Cnodder, T.; Jansen, N.; Tschulakow, A.; Efferth, T. First Study of oral artenimol-R in advanced cervical cancer: Clinical benefit, tolerability and tumor markers. Anticancer Res. 2011, 31, 4417–4422. [Google Scholar] [PubMed]
Compound | Cancer Type | Anticancer Effect | Mechanism | Ref. |
---|---|---|---|---|
Artemisinin | Prostate cancer | Inhibiting invasion and migration | Downregulating the E2F5/TFPI2/MMP pathway | [67] |
Thyroid cancer | Inhibiting anaerobic glycolysis | Downregulating the XIST/miR-93/HIF-1α pathway | [68] | |
Dihydroartemisinin | Bladder cancer | Inhibiting invasion and migration | Reducing KDM3A and inducing p21 | [69] |
Cervical cancer | Inducing ferroptosis | Inducing ferritinophagy | [70] | |
Inducing cell growth, invasion, migration, and apoptosis | Reducing Bcl-2, N-cadherin, and Vimentin; inducing RECK | [71] | ||
Gastric cancer | Inhibiting cell growth, invasion, and migration; inducing G1 cell cycle arrest | Downregulating the cyclin D1-CDK4-Rb pathway, PCNA, and MMP2 | [72] | |
Glioma | Inhibiting ferroptosis | Upregulating the TUG1/MAZ/FTH1 pathway | [73] | |
Head and neck cancer | Inducing ferroptosis | Inducing ROS production | [74] | |
Inducing invasion and migration | Regulating miR-195-5p expression | [75] | ||
Neuroblastoma | Inhibiting cell growth and inducing apoptosis | Regulating taurine, linoleic acid, phenylalanine metabolism, and tryptophan metabolism | [76] | |
Osteosarcoma | Inhibiting cell growth, inducing cell death | Inducing the ROS/Erk1/2 pathway and mitochondrial damage | [77] | |
Inhibiting angiogenesis | Reducing Loxl2/VEGFA expression | [78] | ||
Ovarian cancer | Inhibiting cell growth | / | [79] | |
Pancreatic cancer | Inducing ferroptosis | Regulating survival prediction-related genes | [80] | |
Prostate cancer | Inhibiting cell growth and migration, inducing apoptosis | Reducing UHRF1 and inducing p16 | [81] | |
Rhabdomyosarcoma | Inhibiting cell growth | Inhibiting the mTORC1 pathway by inducing the AMPK pathway | [82] | |
Artesunate | Bladder cancer | Inducing cell death | Inducing ROS production and activating the AMPK-mTOR-ULK1 pathway | [83] |
Insulinoma | Inducing ferroptosis | Downregulating the SLC7A11/GPX4 pathway | [84] | |
Lymphoma | Inhibiting cell growth, inducing G2/M cell cycle arrest and cell death | Inducing ROS production and TRF2 degradation | [85] | |
Inducing apoptosis, autophagy, and ferroptosis | Inhibiting the E2F5/TFPI2/MMP pathway | [86] | ||
Renal cancer | Inducing cell growth and cell death, inhibiting anaerobic glycolysis | Inducing ROS production and regulating P53 | [87] | |
Thyroid cancer | Inhibiting cell growth, invasion, and migration | Inhibiting the PI3K/Akt/FKHR pathway | [88] | |
Anhydrodihydroartemisinin (10) | Prostate cancer | Inhibiting cell growth and migration | Modulating the caspase-dependent pathway | [89] |
Compound | Aim | Target | Design a | Case/Control | Dose Regimen b | Duration | Main Outcome Measures c | Ref. |
---|---|---|---|---|---|---|---|---|
Artemisinin | Clinical effects and safety | Prostate cancer | CCT | 15/- | p.o., 300–400 mg, t.i.d. | 3 years | PSA doubling time, velocity, signs and symptoms of metastasis and survival | [109] |
Safety, tolerability, and pharmacokinetics | Advanced solid tumor malignancies | CCT | 19/- | i.v., 8, 12, 18, 25, 34, and 45 mg/kg, once a week | 21 days | MTD and DLTs, clinical activity as well as pharmacokinetic analysis | [110] | |
Artesunate | Clinical effects and safety | Colorectal cancer | RCT | 12/11 | p.o., 200 mg, q.d. | 14 days | Apoptosis proportion of cancer cells, tumor marker expression (VEGF, EGFR, c-Myc, CD31, Ki67, and p53), and clinical responses | [111] |
Safety and tolerability | Metastatic breast cancer | CCT | 23/- | p.o., 100, 150, 200 mg, q.d. | 4 weeks | DL-AEs as well as neurological and audiological complications, ECG, full blood count including reticulocytes, ALAT, ASAT, creatinine, NTproBNP, and troponin T | [112] | |
CCT | 13/- | p.o., up to 200 mg, q.d. | Up to 37 months | AEs (clinical neurological examination, audiological examinations, ECG, hematology, clinical chemistry, CA 15-3, liver ultrasound) | [113] | |||
CCT | 23/- | p.o., 100, 150, 200 mg, q.d. | 4 weeks | DL-AEs as well as laboratory assessments, neurological, cardiological, and audiological examinations | [108] | |||
Pharmacokinetics | Metastatic breast cancer | CCT | 23/- | p.o., 100, 150, 200 mg, q.d. | 3 weeks | The population pharmacokinetic properties of artesunate and dihydroartemisinin in plasma | [12] | |
Artenimol-R | Clinical effects and safety | Advanced cervical cancer | CCT | 10/- | p.o., 200 mg, q.d. | 21 days | Pain and vaginal discharge symptoms, biomarker expression (p53, EGFR, Ki-67, CD31, and CD71) in biopsies | [114] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, L.; Chan, B.C.-L.; Qiu, M.-H.; Leung, P.-C.; Wong, C.-K. Artemisinin and Its Derivatives as Potential Anticancer Agents. Molecules 2024, 29, 3886. https://doi.org/10.3390/molecules29163886
Wen L, Chan BC-L, Qiu M-H, Leung P-C, Wong C-K. Artemisinin and Its Derivatives as Potential Anticancer Agents. Molecules. 2024; 29(16):3886. https://doi.org/10.3390/molecules29163886
Chicago/Turabian StyleWen, Luan, Ben Chung-Lap Chan, Ming-Hua Qiu, Ping-Chung Leung, and Chun-Kwok Wong. 2024. "Artemisinin and Its Derivatives as Potential Anticancer Agents" Molecules 29, no. 16: 3886. https://doi.org/10.3390/molecules29163886
APA StyleWen, L., Chan, B. C. -L., Qiu, M. -H., Leung, P. -C., & Wong, C. -K. (2024). Artemisinin and Its Derivatives as Potential Anticancer Agents. Molecules, 29(16), 3886. https://doi.org/10.3390/molecules29163886