State-of-the-Art Review on the Behavior of Bio-Asphalt Binders and Mixtures
Abstract
:1. Introduction
2. Main Sources of Bio-Binder
3. Production Techniques of Bio-Binder/Bio-Oil
3.1. Bio-Binder/Oil Extraction
3.1.1. Thermochemical Conversion Technologies
3.1.2. Solvent Extraction
3.1.3. Other Techniques
3.2. Production of Bio-Modified Binder (BMB) and Asphalt Mixtures
3.2.1. Classification and Application of Bio-Oils in Asphalt Pavement
3.2.2. Mixing Techniques for Bio-Modified Asphalt
Author | Mixing Type | Oil Contents (%) | Mixing Conditions | ||
---|---|---|---|---|---|
Temperature (°C) | Duration (Min) | Speed (RPM) | |||
[64] | High Shear Mixer | 0, 1.5, 2.5, 3.5, 4.5, 5.5 | 150 | 60 | 4000 |
[80] | 1, 2, 4, 6, 8 | 140–145 | 5 | 1600 | |
[76] | Propeller | 1, 2, 3, 4, 5 | 160 | 30 | 200 |
[81] | 5, 10, 15, 20 | 135 | 15 | 3000 | |
[82] | Mechanical | 1, 2 | 150 | 6 | 2000 |
[83] | Propeller | 3, 4, 5, 6, 7 | 130 | 15 | 1200 |
[35] | 0, 5, 10 | 145 | 15 | 200 | |
[1] | High Shear Mixer | 3, 5, 10, 15, 20 | 135 | 30 | 3000 |
[84] | High Shear Mixer | 10, 15 | 135 | 30 | 3000 |
[85] | Shear Mill | 0.75 | 140 | 60 | 3000 |
[86] | High Shear Mixer | 5, 10, 30 | 140–145 | 20 | 5000 |
[87] | Mechanical | 2, 4, 6, 8, 10 | 150 | 30 | 1000 |
[53] | High Shear Mixer | 1, 2, 3 | 10 | 5000 | |
[5] | 5 | 135 | 30 | 1800 | |
[88] | Mechanical Mixer | 110 | 15 | 2000 | |
[89] | High Shear Mixer | 150 | 30 | 900 | |
[90] | High Shear Mixer | 170 | 50 | 4000 | |
[91] | High Shear Mixer | 120 | 120 | 900 | |
[92] | High Shear Mixer | 0, 2, 4, 6, 8, 10 | 200 | 3000 | |
[93] | High Shear Mixer | 0, 4, 8, 12, 16 | 160 | 40 | 5000 |
[94] | Stirrer | 5, 10, 15, 20 | 135 | 15 | 2000 |
[95] | High Shear Mixer | 1, 2, 3 | 163 | 60 | 1000 |
[96] | High Shear Mixer | 5, 10, 15 | 140 | 30 | 4000 |
[97] | High Shear Mixer | 5, 10, 15 | 140 | 30 | 4000 |
[77] | High Shear Mixer | 0, 3, 6, 9 | 180, 200, 220, 240 | 120, 240, 360, 480 | 1500 |
[70] | Propeller Mixer | 6 | 130 | 15 | 1200 |
[98] | Shear Device | 2.5, 5.5, 8, 10.4 | 135 | 60 | 5000 |
[62] | Low-Shear Drill Mixer | 1, 3 | 135 | 40 | |
[54] | High Shear Mixer | 5, 10 | 140 | 60 | 1000 |
[66] | Glass Rod | 5, 10, 15 | 150 | 5 | Simultaneous stirring |
[99] | Shear Mixer | 20, 40, 60 | 120 | 60 | 1000 |
[100,101] | Silverson Shear Mill | 0.75 | 140 | 60 | 3000 |
[102] | Silverson Shear Mill | 0.5 | 140 | 60 | 3000 |
[17] | Hand Blended | 10 | 135 | 5 | |
[103,104] | Mixer | 5, 10, 15 | 150 | 10 | 500 |
[73] | Laboratory Mixer | 10 | 160 | 10 | 500 |
[4] | Shear Mixer | 10 | 135 | 30 | 750 |
[105] | High-Speed Shear Mixer | 10, 15, 20 | 135 | 15 | 5000 |
[63,106] | Hand Stirring | 1.25, 2.5, 3.75, 5.0 | 150 | 1 | |
[107] | Mixing | 0, 9, 18 | 135 | ||
[108,109] | Mixing | 0, 6, 12, 18 | 140 | ||
[110] | High-Shear Mixer | 2:1, 1:1, 1:2 | 180 | 30 | 3000 |
[111] | Mechanical Stirrer | 0–30 | 120 | 20 | 1500 |
4. Performance Evaluation
4.1. Mechanical Properties of Asphalt Binder
4.1.1. Specific Gravity and Density of BB
4.1.2. Physical Characteristics of BMB
4.1.3. Storage Stability
4.2. Rheological Properties of Asphalt Binder
4.2.1. High-Temperature Binder Performance
4.2.2. Intermediate Temperature Binder Performance
4.2.3. Low-Temperature Performance
4.2.4. Aging Resistance
4.3. Effect of Adding Bio-Oil as Rejuvenating Agent
4.4. Effect of Using Additives and Waste Materials in Combination with Bio-Oil
4.4.1. Polymers
4.4.2. Rubber
4.4.3. Nano Particles
4.4.4. Warm Mix Additives
4.4.5. Other Materials
4.5. Performance of Asphalt Mixtures
4.5.1. Laboratory Investigation of Asphalt Mixtures
4.5.2. Field Results
5. Conclusions
- Effect on Rheological Properties: Bio-oil modifies the rheological properties of the asphalt binder, improving its performance against pavement distresses.
- Viscosity Increase: The bio-binder increases the viscosity of the asphalt binder at high service temperatures.
- High-Temperature Performance: Adding bio-oil reduces the high-temperature complex modulus and phase angle, lowering the high-temperature PG of the asphalt binder. This benefits stiff binders, such as those modified with polymers/rubber or RAP. However, higher bio-oil content can increase rutting susceptibility.
- Feasibility as a Modifier: Bio-oils are feasible alternatives or modifiers for asphalt binders due to the enhancements introduced to the binder or mixture.
- Penetration and Rejuvenation: Bio-oil increases binder penetration and reduces stiffness, making it an excellent rejuvenating agent for aged binders (RAP).
- Reduced Softening Point and Viscosity: Bio-oil addition reduces the softening point and rotational viscosity, leading to lower mixing and compaction temperatures.
- Aging Susceptibility: The aging mechanism of the modified binder changes with bio-oil addition, increasing susceptibility to aging.
- Low-Temperature Performance: BBR tests indicate that bio-oil extends the range of intermediate and low-temperature PG by reducing the minimum operational temperature.
- Fatigue Performance: Proper bio-oil content can extend the low-temperature range without compromising binder consistency, as shown by DSR and BBR fatigue parameters.
- Fatigue Cracking Resistance: LAS tests demonstrate that bio-oil enhances fatigue cracking resistance, indicated by increased Nf values.
- Rejuvenation Efficiency: Bio-oil effectively reduces the stiffness of aged/RAP binders, making it suitable for recycling purposes.
- Optimal Oil Content: The optimal bio-oil content depends on the binder’s function and oil properties. Low dosages enhance low-temperature performance, while high contents rejuvenate aged/PAV binders.
- RAP Technology: Bio-origin additives improve RAP technology by enhancing the blending of RAP with virgin materials and binder rejuvenation.
- Rejuvenating Agent: Bio-oil is a suitable rejuvenating agent for aged asphalt binders in bituminous pavements.
- Optimal Dosage: A 5% bio-oil content is optimal for rejuvenating aged binders, offering better rutting and fatigue performance than virgin binders. Bio-oil is capable of changing the rheological properties of the asphalt binder, which will improve the performance against pavement distress.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABCD | Asphalt Binder Cracking Device |
BA | Bagasse Ash |
BBR | Bending Beam Rheometer |
BBA | Bio-Based Asphalt (BBA) |
BMB | Bio-Modified Asphalt Binder |
BB | Bio-Oil/ Bio-Binder |
BRA | Buton Rock Asphalt |
SH | Castor Oil |
DC | Corn Oil |
CR | Crumb Rubber |
DSO | Date Seed Oil |
G* | Dynamic Shear Modulus |
DSR | Dynamic Shear Rheometer |
EFB | Empty Fruit Bunch |
G*sinδ | Fatigue Parameter |
TFTT | Fracture Toughness Temperature |
HAP | Hard Asphalt Particles |
HMA | Hot Mix Asphalt |
IDT | Indirect Tensile Strength |
LAS | Linear Amplitude Sweep |
MSCR | Multiple Stress Creep Recovery |
Jnr | Nonrecoverable Creep Compliance |
PI | Penetration Index |
PVN | Penetration Viscosity Number |
PG | Performance Grade |
BA | Petroleum-Based Asphalt (BA) |
δ | Phase Angle |
SBS | Poly(Styrene-Butadiene-Styrene |
PE | Polyethylene |
PMB | Polymer-Modified Bio-Oil |
PPA | Polyphosphoric Acid |
PAV | Pressure Aging Vessel |
RP | Reactor Product |
RAP | Reclaimed Asphalt Pavement |
RAS | Reclaimed Asphalt Shingles |
RA | Recycling Agents |
RTFO | Rolling Thin Film Oven |
RV | Rotational Viscosity |
|G*|/sinδ | Rutting Resistance Parameter |
SI | Segregation Index |
SFA | Soy Fatty Acids |
TSRST | Thermal Stress Restrained Specimen |
TR | Tire Rubber Powder |
TLA | Trinidad And Tobago |
TPB | Trinidad Petroleum Asphalt Binder |
UFO | Used Frying Oil |
VECD | Visco-Elastic Continuous Damage |
VTS | Viscosity–Temperature Susceptibility |
WMA | Warm Mix Additives |
WCO | Waste Cooking Oil |
WEO | Waste Engine Oil |
WVO | Waste Vegetable Oil |
References
- Dong, Z.; Zhou, T.; Wang, H.; Luan, H. Performance Comparison between Different Sourced Bioasphalts and Asphalt Mixtures. J. Mater. Civ. Eng. 2018, 30, 04018063. [Google Scholar] [CrossRef]
- Zhang, Z.; Fang, Y.; Yang, J.; Li, X. A comprehensive review of bio-oil, bio-binder and bio-asphalt materials: Their source, composition, preparation and performance. J. Traffic Transp. Eng. (Engl. Ed.) 2022, 9, 151–166. [Google Scholar] [CrossRef]
- Tabaković, A. Is this the end of the road for bio-inspired road construction materials? RILEM Tech. Lett. 2022, 7, 79–87. [Google Scholar] [CrossRef]
- Oldham, D.J.; Fini, E.H.; Chailleux, E. Application of a bio-binder as a rejuvenator for wet processed asphalt shingles in pavement construction. Constr. Build. Mater. 2015, 86, 75–84. [Google Scholar] [CrossRef]
- Hill, B.; Oldham, D.; Behnia, B.; Fini, E.; Buttlar, W.; Reis, H. Low-temperature performance characterization of biomodified Asphalt mixtures that contain reclaimed asphalt pavement. Transp. Res. Rec. 2013, 2371, 49–57. [Google Scholar] [CrossRef]
- Maharaj, R.; Ramjattan-Harry, V.; Mohamed, N. Rutting and Fatigue Cracking Resistance of Waste Cooking Oil Modified Trinidad Asphaltic Materials. Sci. World J. 2015, 2015, 385013. [Google Scholar] [CrossRef]
- Maharaj, R.; Harry, V.; Mohamed, N. The rheological properties of trinidad asphaltic materials blended with waste cooking oil. Prog. Rubber, Plast. Recycl. Technol. 2015, 31, 265–279. [Google Scholar] [CrossRef]
- Xu, S.; Huang, W.; Cai, F.; Huang, H.; Hu, C. Evaluation of properties of Trinidad Lake Asphalt and SBS-modified petroleum asphalt. Pet. Sci. Technol. 2019, 37, 234–241. [Google Scholar] [CrossRef]
- Sun, D.; Sun, G.; Du, Y.; Zhu, X.; Lu, T.; Pang, Q.; Shi, S.; Dai, Z. Evaluation of optimized bio-asphalt containing high content waste cooking oil residues. Fuel 2017, 202, 529–540. [Google Scholar] [CrossRef]
- Sun, D.; Lu, T.; Xiao, F.; Zhu, X.; Sun, G. Formulation and aging resistance of modified bio-asphalt containing high percentage of waste cooking oil residues. J. Clean. Prod. 2017, 161, 1203–1214. [Google Scholar] [CrossRef]
- Yadykova, A.Y.; Strelets, L.A.; Ilyin, S.O. Infrared Spectral Classification of Natural Bitumens for Their Rheological and Thermophysical Characterization. Molecules 2023, 28, 2065. [Google Scholar] [CrossRef] [PubMed]
- Sukkari, A.; Al-Khateeb, G.; Zeiada, W.; Ezzat, H. Investigating the Physical and Rheological Properties of Date Seed Ash-Modified Asphalt Binders in the UAE. In Proceedings of the 2022 Advances in Science and Engineering Technology International Conferences (ASET), Dubai, United Arab Emirates, 21–24 February 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Alraini, K.; Ezzat, H.; Zeiada, W.; Al-Khateeb, G. Investigating the Effect of Polyethylene Terephthalate Recycled from Waste Plastics bottles on Asphalt Binder Under UAE’s Climate Conditions. In Proceedings of the 2022 Advances in Science and Engineering Technology International Conferences (ASET), Dubai, United Arab Emirates, 21–24 February 2022. [Google Scholar] [CrossRef]
- Al Naser, K.; Ezzat, H.; Zeiada, W.; Al-Khateeb, G.; Shanableh, A. Investigation of Nano Materials’ Effect on Rheological Properties of Asphalt Binder. In Proceedings of the 2022 Advances in Science and Engineering Technology International Conferences (ASET), Dubai, United Arab Emirates, 21–24 February 2022. [Google Scholar] [CrossRef]
- Ismail, M.; Zeiada, W.A.; Al-Khateeb, G.; Ezzat, H. Rheological Properties of Rubber Modified Asphalt Binder in the UAE; Springer International Publishing: Berlin/Heidelberg, Germany, 2022; Volume 1. [Google Scholar] [CrossRef]
- Kandhal, P.S. Waste materials in hot mix asphalt—An overview. ASTM Spec. Tech. Publ. 1993, 3–16. [Google Scholar] [CrossRef]
- Samieadel, A.; Islam Rajib, A.; Phani Raj Dandamudi, K.; Deng, S.; Fini, E.H. Improving recycled asphalt using sustainable hybrid rejuvenators with enhanced intercalation into oxidized asphaltenes nanoaggregates. Constr. Build. Mater. 2020, 262, 120090. [Google Scholar] [CrossRef]
- Bamigboye, G.O.; Bassey, D.E.; Olukanni, D.O.; Ngene, B.U.; Adegoke, D.; Odetoyan, A.O.; Kareem, M.A.; Enabulele, D.O.; Nworgu, A.T. Waste materials in highway applications: An overview on generation and utilization implications on sustainability. J. Clean. Prod. 2021, 283, 124581. [Google Scholar] [CrossRef]
- Xiu, S.; Shahbazi, A. Bio-oil production and upgrading research: A review. Renew. Sustain. Energy Rev. 2012, 16, 4406–4414. [Google Scholar] [CrossRef]
- Demirbas, A. Fuel properties of pyrolysis oils from biomass. Energy Sources, Part A Recover. Util. Environ. Eff. 2009, 31, 412–419. [Google Scholar] [CrossRef]
- Xi, J.; Yu, X.; Zhu, Y.; Wang, R. Study of Blending Mechanism of Bio-Binder and Petroleum Asphalt. Proc. Int. Conf. Chem. Mater. Food Eng. 2015, 22, 67–70. [Google Scholar] [CrossRef]
- Grilli, A.; Bocci, M.; Cardone, F.; Conti, C.; Giorgini, E. Laboratory and in-plant validation of hot mix recycling using a rejuvenator. Int. J. Pavement Res. Technol. 2013, 6, 364–371. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, H.; Gao, J.; Yang, X.; You, Z. Comprehensive Performance Evaluation and Cost Analysis of SBS-Modified Bioasphalt Binders and Mixtures. J. Mater. Civ. Eng. 2017, 29. [Google Scholar] [CrossRef]
- Su, N.; Xiao, F.; Wang, J.; Cong, L.; Amirkhanian, S. Productions and applications of bio-asphalts—A review. Constr. Build. Mater. 2018, 183, 578–591. [Google Scholar] [CrossRef]
- Fini, E.H.; Kalberer, E.W.; Shahbazi, A.; Basti, M.; You, Z.; Ozer, H.; Aurangzeb, Q. Chemical Characterization of Biobinder from Swine Manure: Sustainable Modifier for Asphalt Binder. J. Mater. Civ. Eng. 2011, 23, 1506–1513. [Google Scholar] [CrossRef]
- Pouget, S.; Loup, F. Thermo-mechanical behaviour of mixtures containing bio-binders. Road Mater. Pavement Des. 2013, 14, 212–226. [Google Scholar] [CrossRef]
- Yang, X.; You, Z.; Dai, Q. Performance evaluation of asphalt binder modified by bio-oil generated from waste wood resources. Int. J. Pavement Res. Technol. 2013, 6, 431–439. [Google Scholar] [CrossRef]
- Xu, Y. The Laboratory Evaluation of Bio Oil Derived from Waste Resources as Extender for Asphalt Binder. Master’s Thesis, Michigan Technological University, Houghton, MI, USA, 2013. [Google Scholar]
- Yang, X.; You, Z.; Dai, Q.; Mills-Beale, J. Mechanical performance of asphalt mixtures modified by bio-oils derived from waste wood resources. Constr. Build. Mater. 2014, 51, 424–431. [Google Scholar] [CrossRef]
- Yang, X.; You, Z. High temperature performance evaluation of bio-oil modified asphalt binders using the DSR and MSCR tests. Constr. Build. Mater. 2015, 76, 380–387. [Google Scholar] [CrossRef]
- Yang, T.; Chen, M.; Zhou, X.; Xie, J. Evaluation of thermal-mechanical properties of bio-oil regenerated aged asphalt. Materials 2018, 11, 2224. [Google Scholar] [CrossRef] [PubMed]
- Azahar, W.N.A.W.; Jaya, R.P.; Hainin, M.R.; Hasan, M.R.M.; Shaffie, E. X-Ray Diffraction Analysis of Bitumen Containing Untreated and Treated Waste Cooking Oil. Int. J. Recent Technol. Eng. 2019, 8, 435–438. [Google Scholar] [CrossRef]
- Sun, Z.; Yi, J.; Huang, Y.; Feng, D.; Guo, C. Properties of asphalt binder modified by bio-oil derived from waste cooking oil. Constr. Build. Mater. 2016, 102, 496–504. [Google Scholar] [CrossRef]
- Wen, H.; Bhusal, S.; Wen, B. Laboratory Evaluation of Waste Cooking Oil-Based Bioasphalt as an Alternative Binder for Hot Mix Asphalt. J. Mater. Civ. Eng. 2013, 25, 1432–1437. [Google Scholar] [CrossRef]
- Chen, M.; Xiao, F.; Putman, B.; Leng, B.; Wu, S. High temperature properties of rejuvenating recovered binder with rejuvenator, waste cooking and cotton seed oils. Constr. Build. Mater. 2014, 59, 10–16. [Google Scholar] [CrossRef]
- Zargar, M.; Ahmadinia, E.; Asli, H.; Karim, M.R. Investigation of the possibility of using waste cooking oil as a rejuvenating agent for aged bitumen. J. Hazard. Mater. 2012, 233–234, 254–258. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Zhang, K.; Wu, J.; Muhunthan, B.; Shi, X. Evaluation of mechanical performance and modification mechanism of asphalt modified with graphene oxide and warm mix additives. J. Clean. Prod. 2018, 193, 87–96. [Google Scholar] [CrossRef]
- Fernandes, S.; Peralta, J.; Oliveira, J.R.M.; Williams, R.C.; Silva, H.M.R.D. Improving asphalt mixture performance by partially replacing bitumen with waste motor oil and elastomer modifiers. Appl. Sci. 2017, 7, 794. [Google Scholar] [CrossRef]
- Dominguez-Rosado, E.; Pichtel, J. Chemical Characterization of Fresh, Used and Weathered Motor Oil. Proc. Indiana Acad. Sci. 2003, 112, 109–116. [Google Scholar]
- Djumari; Yami, M.A.D.; Nasution, M.F.; Setyawan, A. Design and Properties of Renewable Bioasphalt for Flexible Pavement. Procedia Eng. 2017, 171, 1413–1420. [Google Scholar] [CrossRef]
- Rahman, M.T.; Aziz, M.M.A.; Hainin, M.R.; Abu Bakar, W.A.W. Impact of Bitumen Binder: Scope of Bio-based Binder for Construction of Flexible Pavement. J. Teknol. 2014, 7, 105–109. [Google Scholar] [CrossRef]
- Klabunde, K.J.; Shrestha, K. Sustainable Asphalt Pavements Using Bio-Binders from Bio-Fuel Waste; Bureau of Transportation Statistics: Washington, DC, USA, 2014. [Google Scholar]
- Raman, N.A.A.; Hainin, M.R.; Hassan, N.A.; Ani, F.N. A review on the application of bio-oil as an additive for asphalt. J. Teknol. 2015, 72, 105–110. [Google Scholar] [CrossRef]
- Mu, Y.; Mu, X. Energy conservation in the Earth’s crust and climate change. J. Air Waste Manag. Assoc. 2013, 63, 150–160. [Google Scholar] [CrossRef]
- Mahssin, Z.Y.; Abdul Hassan, N.; Yaacob, H.; Puteh, M.H.; Ismail, C.R.; Putra Jaya, R.; Mohammad Zainol, M.; Mahmud, M.Z.H. Converting Biomass into Bio-Asphalt—A Review. IOP Conf. Ser. Earth Environ. Sci. 2021, 682, 012066. [Google Scholar] [CrossRef]
- Tekin, K.; Karagöz, S.; Bektaş, S. A review of hydrothermal biomass processing. Renew. Sustain. Energy Rev. 2014, 40, 673–687. [Google Scholar] [CrossRef]
- Mohan, D.; Pittman, C.U.; Steele, P.H. Pyrolysis of wood/biomass for bio-oil: A critical review. Energy and Fuels 2006, 20, 848–889. [Google Scholar] [CrossRef]
- Joardder, M.U.H.; Uddin, M.S.; Islam, M.N. The utilization of waste date seed as bio-oil and activated carbon by pyrolysis process. Adv. Mech. Eng. 2012, 2012, 4. [Google Scholar] [CrossRef]
- Wang, H.; Ma, Z.; Chen, X.; Mohd Hasan, M.R. Preparation process of bio-oil and bio-asphalt, their performance, and the application of bio-asphalt: A comprehensive review. J. Traffic Transp. Eng. (Engl. Ed.) 2020, 7, 137–151. [Google Scholar] [CrossRef]
- Fini, E.H.; Yang, S.-H.; Xiu, S. Characterization and Application of Manure-Based Bio-Binder in Asphalt Industry. 2010. Available online: https://trid.trb.org/view.aspx?id=910772 (accessed on 14 July 2019).
- Dhasmana, H.; Ozer, H.; Al-Qadi, I.L.; Zhang, Y.; Schideman, L.; Sharma, B.K.; Chen, W.T.; Minarick, M.J.; Zhang, P. Rheological and chemical characterization of biobinders from different biomass resources. Transp. Res. Rec. 2015, 2505, 121–129. [Google Scholar] [CrossRef]
- Fini, E.H.; Al-Qadi, I.L.; You, Z.; Zada, B.; Mills-Beale, J. Partial replacement of asphalt binder with bio-binder: Characterisation and modification. Int. J. Pavement Eng. 2012, 13, 515–522. [Google Scholar] [CrossRef]
- Gong, M.; Zhu, H.; Pauli, T.; Yang, J.; Wei, J.; Yao, Z. Evaluation of bio-binder modified asphalt’s adhesion behavior using sessile drop device and atomic force microscopy. Constr. Build. Mater. 2017, 145, 42–51. [Google Scholar] [CrossRef]
- Poh, C.C.; Hassan, N.A.; Raman, N.A.A.; Shukry, N.A.M.; Warid, M.N.M.; Satar, M.K.I.M.; Ismail, C.R.; Hassan, S.A.; Mashros, N. Effect of fast pyrolysis bio-oil from palm oil empty fruit bunch on bitumen properties. IOP Conf. Ser. Mater. Sci. Eng. 2018, 342, 012053. [Google Scholar] [CrossRef]
- Tayh, S.A.; Muniandy, R.; Hassim, S.; Jakarni, F. Aging and consistency characterization of bio-binders from domestic wastes. Int. J. Appl. Eng. Res. 2017, 12, 2613–2622. [Google Scholar]
- Peralta, J.; Williams, R.C.; Rover, M. Development of Rubber-Modified Fractionated Bio-Oil for Use as Noncrude Petroleum Binder in Flexible Pavements. In Proceedings of the Alternative Binders for Sustainable Asphalt Pavements, Washington, DC, USA, 22 January 2012; pp. 23–36. [Google Scholar]
- Peralta, J.; Williams, R.C.; Silva, H.M.R.D.; Machado, A.V.A. Recombination of asphalt with bio-asphalt: Binder formulation and asphalt mixes application. Asph. Paving Technol. Assoc. Asph. Paving Technol. Tech. Sess. 2014, 83, 1–36. [Google Scholar]
- Zhang, R.; You, Z.; Ji, J.; Shi, Q.; Suo, Z. A review of characteristics of bio-oils and their utilization as additives of asphalts. Molecules 2021, 26, 5049. [Google Scholar] [CrossRef]
- Zahoor, M.; Nizamuddin, S.; Madapusi, S.; Giustozzi, F. Recycling asphalt using waste bio-oil: A review of the production processes, properties and future perspectives. Process Saf. Environ. Prot. 2021, 147, 1135–1159. [Google Scholar] [CrossRef]
- Panwar, N.L.; Paul, A.S. An overview of recent development in bio-oil upgrading and separation techniques. Environ. Eng. Res. 2021, 26, 200382. [Google Scholar] [CrossRef]
- Ali, M.A.; Al-hattab, T.A.; Al-hydary, I.A. Extraction of Date Palm Seed Oil (Phoenix Dactylifera) by Soxhlet Apparatus. Int. J. Adv. Eng. Technol. 2015, 8, 261–271. [Google Scholar]
- Seidel, J.C.; Haddock, J.E. Soy Fatty Acids as Sustainable Modifier for Asphalt Binders. In Proceedings of the Alternative Binders for Sustainable Asphalt Pavements, Washington, DC, USA, 22 January 2012; pp. 15–22. [Google Scholar]
- Kowalski, K.J.; Król, J.B.; Bańkowski, W.; Radziszewski, P.; Sarnowski, M. Thermal and fatigue evaluation of asphalt mixtures containing RAP treated with a bio-agent. Appl. Sci. 2017, 7, 216. [Google Scholar] [CrossRef]
- Alattieh, S.A.; Al-Khateeb, G.G.; Zeiada, W.; Shanableh, A. Performance assessment of bio-modified asphalt binder using extracted bio oil from date seeds waste. Int. J. Syst. Assur. Eng. Manag. 2020, 11, 1260–1270. [Google Scholar] [CrossRef]
- Foroutan Mirhosseini, A.; Kavussi, A.; Jalal Kamali, M.H.; Khabiri, M.M.; Hassani, A. Evaluating fatigue behavior of asphalt binders and mixes containing Date Seed Ash. J. Civ. Eng. Manag. 2017, 23, 1164–1175. [Google Scholar] [CrossRef]
- Nayak, P.; Sahoo, U.C. A rheological study on aged binder rejuvenated with Pongamia oil and Composite castor oil. Int. J. Pavement Eng. 2017, 18, 595–607. [Google Scholar] [CrossRef]
- Chailleux, E.; Audo, M.; Bujoli, B.; Queffelec, C.; Legrand, J.; Lepine, O. Alternative Binder from Microalgae. In Proceedings of the Alternative Binders for Sustainable Asphalt Pavements, Washington, DC, USA, 22 January 2012; pp. 7–14. [Google Scholar]
- Azwanida, N. A Review on the Extraction Methods Use in Medicinal Plants, Principle, Strength and Limitation. Med. Aromat. Plants 2015, 4, 3–8. [Google Scholar] [CrossRef]
- Foroutan Mirhosseini, A.; Kavussi, A.; Tahami, S.A.; Dessouky, S. Characterizing Temperature Performance of Bio-Modified Binders Containing RAP Binder. J. Mater. Civ. Eng. 2018, 30, 04018176. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, M.; Wu, S.; Liu, J.; Amirkhanian, S. Analysis of the relationships between waste cooking oil qualities and rejuvenated asphalt properties. Materials 2017, 10, 508. [Google Scholar] [CrossRef]
- Aziz, M.M.A.; Rahman, M.T.; Haininl, M.R.; Abu Bakar, W.A.W. Alternative binders for flexible pavement. ARPN J. Eng. Appl. Sci. 2016, 11, 11868–11871. [Google Scholar]
- Ingrassia, L.P.; Lu, X.; Ferrotti, G.; Canestrari, F. Renewable materials in bituminous binders and mixtures: Speculative pretext or reliable opportunity? Resour. Conserv. Recycl. 2019, 144, 209–222. [Google Scholar] [CrossRef]
- Ingrassia, L.P.; Lu, X.; Ferrotti, G.; Conti, C.; Canestrari, F. Investigating the “circular propensity” of road bio-binders: Effectiveness in hot recycling of reclaimed asphalt and recyclability potential. J. Clean. Prod. 2020, 255, 120193. [Google Scholar] [CrossRef]
- Baghaee Moghaddam, T.; Baaj, H. The use of rejuvenating agents in production of recycled hot mix asphalt: A systematic review. Constr. Build. Mater. 2016, 114, 805–816. [Google Scholar] [CrossRef]
- Zaumanis, M.; Mallick, R.B.; Frank, R. 100% recycled hot mix asphalt: A review and analysis. Resour. Conserv. Recycl. 2014, 92, 230–245. [Google Scholar] [CrossRef]
- ASLI, H.; KARIM, M.R. Implementation of Waste Cooking Oil as RAP Rejuvenator. J. East. Asia Soc. Transp. Stud. 2011, 9, 1336–1350. [Google Scholar] [CrossRef]
- Ma, J.; Sun, G.; Sun, D.; Zhang, Y.; Cannone Falchetto, A.; Lu, T.; Hu, M.; Yuan, Y. Rubber asphalt modified with waste cooking oil residue: Optimized preparation, rheological property, storage stability and aging characteristic. Constr. Build. Mater. 2020, 258, 120372. [Google Scholar] [CrossRef]
- Kaseer, F.; Martin, A.E.; Arámbula-Mercado, E. Use of recycling agents in asphalt mixtures with high recycled materials contents in the United States: A literature review. Constr. Build. Mater. 2019, 211, 974–987. [Google Scholar] [CrossRef]
- Arámbula-Mercado, E.; Kaseer, F.; Epps Martin, A.; Yin, F.; Garcia Cucalon, L. Evaluation of recycling agent dosage selection and incorporation methods for asphalt mixtures with high RAP and RAS contents. Constr. Build. Mater. 2018, 158, 432–442. [Google Scholar] [CrossRef]
- Al-Omari, A.A.; Khedaywi, T.S.; Khasawneh, M.A. Laboratory characterization of asphalt binders modified with waste vegetable oil using SuperPave specifications. Int. J. Pavement Res. Technol. 2018, 11, 68–76. [Google Scholar] [CrossRef]
- Cao, X.; Wang, H.; Cao, X.; Sun, W.; Zhu, H.; Tang, B. Investigation of rheological and chemical properties asphalt binder rejuvenated with waste vegetable oil. Constr. Build. Mater. 2018, 180, 455–463. [Google Scholar] [CrossRef]
- Caro, S.; Vega, N.; Husserl, J.; Alvarez, A.E. Studying the impact of biomodifiers produced from agroindustrial wastes on asphalt binders. Constr. Build. Mater. 2016, 126, 369–380. [Google Scholar] [CrossRef]
- Chen, M.; Leng, B.; Wu, S.; Sang, Y. Physical, chemical and rheological properties of waste edible vegetable oil rejuvenated asphalt binders. Constr. Build. Mater. 2014, 66, 286–298. [Google Scholar] [CrossRef]
- Dong, Z.; Zhou, T.; Luan, H.; Wang, H.; Xie, N.; Xiao, G. qing Performance evaluation of bio-based asphalt and asphalt mixture and effects of physical and chemical modification. Road Mater. Pavement Des. 2018, 21, 1470–1489. [Google Scholar] [CrossRef]
- Elkashef, M.; Podolsky, J.; Williams, R.C.; Cochran, E. Preliminary examination of soybean oil derived material as a potential rejuvenator through Superpave criteria and asphalt bitumen rheology. Constr. Build. Mater. 2017, 149, 826–836. [Google Scholar] [CrossRef]
- Gao, J.; Wang, H.; You, Z.; Hasan, M.R.M.; Lei, Y.; Irfan, M. Rheological behavior and sensitivity of wood-derived bio-oil modified asphalt binders. Appl. Sci. 2018, 8, 919. [Google Scholar] [CrossRef]
- Girimath, S.; Singh, D. Effects of bio-oil on performance characteristics of base and recycled asphalt pavement binders. Constr. Build. Mater. 2019, 227, 116684. [Google Scholar] [CrossRef]
- Khairuddin, F.H.; Alamawi, M.Y.; Yusoff, N.I.M.; Badri, K.; Ceylan, H. The Effect of Palm Kernel Oil-Based Monoester Polyol (Pko-P) on Temperature Susceptibility of Bitumen. In Proceedings of the Malaysian Universities Transport Research Forum Conference, Shah Alam, Selangor, Malaysia, 10–12 October 2017. [Google Scholar]
- Khan, J.; Hussain, A.; Haq, F.; Ahmad, K.; Mushtaq, K. Performance Evaluation of Modified Bitumen with Replaced Percentage of Waste Cooking Oil & Tire Rubber with Bagasse Ash as Modifier. Civ. Eng. J. 2019, 5, 587. [Google Scholar] [CrossRef]
- Luo, W.; Zhang, Y.; Cong, P. Investigation on physical and high temperature rheology properties of asphalt binder adding waste oil and polymers. Constr. Build. Mater. 2017, 144, 13–24. [Google Scholar] [CrossRef]
- Rahman, M.T.; Hainin, M.R.; Bakar, W.A.W.A. Use of waste cooking oil, tire rubber powder and palm oil fuel ash in partial replacement of bitumen. Constr. Build. Mater. 2017, 150, 95–104. [Google Scholar] [CrossRef]
- Singh-Ackbarali, D.; Maharaj, R.; Mohamed, N.; Ramjattan-Harry, V. Potential of used frying oil in paving material: Solution to environmental pollution problem. Environ. Sci. Pollut. Res. 2017, 24, 12220–12226. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Yi, J.; Chen, Z.; Xie, S.; Xu, M.; Feng, D. Chemical and rheological properties of polymer modified bitumen incorporating bio-oil derived from waste cooking oil. Mater. Struct. Constr. 2019, 52, 106. [Google Scholar] [CrossRef]
- Xinxin, C.; Xuejuan, C.; Boming, T.; Yuanyuan, W.; Xiaolong, L. Investigation on possibility of waste vegetable oil rejuvenating aged asphalt. Appl. Sci. 2018, 8, 765. [Google Scholar] [CrossRef]
- Rasman, M.; Hassan, N.A.; Hainin, M.R.; Putra Jaya, R.; Haryati, Y.; Shukry, N.A.M.; Abdullah, M.E.; Kamaruddin, N.H.M. Engineering properties of bitumen modified with bio-oil. MATEC Web Conf. 2018, 250, 02003. [Google Scholar] [CrossRef]
- Qu, X.; Liu, Q.; Wang, C.; Wang, D.; Oeser, M. Effect of co-production of renewable biomaterials on the performance of asphalt binder in macro and micro perspectives. Materials 2018, 11, 244. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Xue, L.; Xie, W.; You, Z.; Yang, X. Laboratory investigation on chemical and rheological properties of bio-asphalt binders incorporating waste cooking oil. Constr. Build. Mater. 2018, 167, 348–358. [Google Scholar] [CrossRef]
- Sun, B.; Zhou, X. Diffusion and Rheological Properties of Asphalt Modified by Bio-Oil Regenerant Derived from Waste Wood. J. Mater. Civ. Eng. 2018, 30, 04017274. [Google Scholar] [CrossRef]
- Alamawi, M.Y.; Khairuddin, F.H.; Yusoff, N.I.M.; Badri, K.; Ceylan, H. Investigation on physical, thermal and chemical properties of palm kernel oil polyol bio-based binder as a replacement for bituminous binder. Constr. Build. Mater. 2019, 204, 122–131. [Google Scholar] [CrossRef]
- Podolsky, J.H.; Studer, J.; Williams Christopher, R.; Cochran, E.W. Low Temperature Performance of Bio-Derived/Chemical Additives in Warm Mix Asphalt. Proc. Int. Conf. Cold Reg. Eng. 2015, 2015, 241–251. [Google Scholar]
- Podolsky, J.H.; Buss, A.; Williams, R.C.; Cochran, E.W. The rutting and stripping resistance of warm and hot mix asphalt using bio-additives. Constr. Build. Mater. 2016, 112, 128–139. [Google Scholar] [CrossRef]
- Podolsky, J.H.; Buss, A.; Williams, R.C.; Cochran, E. Comparative performance of bio-derived/chemical additives in warm mix asphalt at low temperature. Mater. Struct. Constr. 2016, 49, 563–575. [Google Scholar] [CrossRef]
- Ingrassia, L.P.; Lu, X.; Ferrotti, G.; Canestrari, F. Chemical and rheological investigation on the short- and long-term aging properties of bio-binders for road pavements. Constr. Build. Mater. 2019, 217, 518–529. [Google Scholar] [CrossRef]
- Ingrassia, L.P.; Lu, X.; Ferrotti, G.; Canestrari, F. Chemical, morphological and rheological characterization of bitumen partially replaced with wood bio-oil: Towards more sustainable materials in road pavements. J. Traffic Transp. Eng. (Engl. Ed.) 2019, 7, 192–204. [Google Scholar] [CrossRef]
- Zhang, R.; You, Z.; Wang, H.; Chen, X.; Si, C.; Peng, C. Using bio-based rejuvenator derived from waste wood to recycle old asphalt. Constr. Build. Mater. 2018, 189, 568–575. [Google Scholar] [CrossRef]
- Król, J.B.; Kowalski, K.J.; Niczke, Ł.; Radziszewski, P. Effect of bitumen fluxing using a bio-origin additive. Constr. Build. Mater. 2016, 114, 194–203. [Google Scholar] [CrossRef]
- Zaumanis, M.; Mallick, R.; Frank, R. Evaluation of rejuvenator’s effectiveness with conventional mix testing for 100% reclaimed Asphalt pavement mixtures. Transp. Res. Rec. 2013, 2370, 17–25. [Google Scholar] [CrossRef]
- Zaumanis, M.; Mallick, R.B.; Poulikakos, L.; Frank, R. Influence of six rejuvenators on the performance properties of Reclaimed Asphalt Pavement (RAP) binder and 100% recycled asphalt mixtures. Comput. Chem. Eng. 2014, 71, 538–550. [Google Scholar] [CrossRef]
- Zaumanis, M.; Mallick, R.B.; Frank, R. Determining optimum rejuvenator dose for asphalt recycling based on Superpave performance grade specifications. Constr. Build. Mater. 2014, 69, 159–166. [Google Scholar] [CrossRef]
- Zhou, T.; Faisal, S.; Cao, L.; Luan, H.; Dong, Z.; Fini, E.H. Comparing effects of physisorption and chemisorption of bio-oil onto rubber particles in asphalt. J. Clean. Prod. 2020, 273, 123112. [Google Scholar] [CrossRef]
- Zeng, M.; Pan, H.; Zhao, Y.; Tian, W. Evaluation of asphalt binder containing castor oil-based bioasphalt using conventional tests. Constr. Build. Mater. 2016, 126, 537–543. [Google Scholar] [CrossRef]
- ASTM D5; Standard Test Method for Penetration of Bituminous Materials. ASTM Standards: West Conshohocken, PA, USA, 2013. [CrossRef]
- ASTM D36; Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus). ASTM Standards: West Conshohocken, PA, USA, 2014. [CrossRef]
- ASTM D4402; ASTM D4402-06 Standard Test Method for Viscosity Determination of Asphalt at Elevated Temperatures Using a Rotational Viscometer. ASTM Standards: West Conshohocken, PA, USA, 2015. [CrossRef]
- ASTM D2493; Standard Viscosity-Temperature Chart for Asphalts. ASTM Standards: West Conshohocken, PA, USA, 2009. [CrossRef]
- ASTM D7175; Standard Method of Test for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR). ASTM Standards: West Conshohocken, PA, USA, 2015. [CrossRef]
- AASHTO T350; Standard Method of Test for Multiple Stress Creep Recovery (MSCR) Test of Asphalt Binder Using a Dynamic Shear Rheometer (DSR). AASHTO: Frederick, MD, USA, 2014.
- AASHTO T391-20; Estimating Fatigue Resistance of Asphalt Binders Using the Linear Amplitude Sweep. AASHTO: Frederick, MD, USA, 2020.
- ASTM D66 48; Standard Test Method for Determining the Flexural Creep Stiffness of Asphalt Binder Using the Bending Beam Rheometer (BBR). ASTM Standards: West Conshohocken, PA, USA, 2008. [CrossRef]
- AASHTO T315; Standard Method of Test for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR). AASHTO: Frederick, MD, USA, 2012.
- ASTM D3497; Standard Test Method for Dynamic Modulus of Asphalt Mixtures. ASTM Standards: West Conshohocken, PA, USA, 1979.
- AASHTO T 324; Standard Method of Test for Hamburg Wheel-Track Testing of Compacted Hot Mix Asphalt (HMA). AASHTO: Frederick, MD, USA, 2014.
- ASTM D6931; Standard Test Method for Indirect Tensile (IDT) Strength of Bituminous Mixtures. ASTM Standards: West Conshohocken, PA, USA, 2017. [CrossRef]
- ASTM D8237; ASTM D8237-18—Standard Test Method for Determining Fatigue Failure of Asphalt-Aggregate Mixtures with the Four-Point Beam Fatigue Device. ASTM Standards: West Conshohocken, PA, USA, 2021. [CrossRef]
- Yang, S.H.; Suciptan, T. Rheological behavior of Japanese cedar-based biobinder as partial replacement for bituminous binder. Constr. Build. Mater. 2016, 114, 127–133. [Google Scholar] [CrossRef]
- Mamat, R.; Hainin, M.R.; Hassan, N.A.; Rahman, N.A.A.; Warid, M.N.M.; Idham, M.K. A review of performance asphalt mixtures using bio-binder as alternative binder. J. Teknol. 2015, 77, 17–20. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, H.; You, Z.; Jiang, X.; Yang, X. Optimization of bio-asphalt using bio-oil and distilled water. J. Clean. Prod. 2017, 165, 281–289. [Google Scholar] [CrossRef]
- Lei, Y.; Wang, H.; Fini, E.H.; You, Z.; Yang, X.; Gao, J.; Dong, S.; Jiang, G. Evaluation of the effect of bio-oil on the high-temperature performance of rubber modified asphalt. Constr. Build. Mater. 2018, 191, 692–701. [Google Scholar] [CrossRef]
- Ren, J.; Zang, G.; Wang, S.; Shi, J.; Wang, Y. Investigating the pavement performance and aging resistance of modified bio-asphalt with nano-particles. PLoS ONE 2020, 15, e0238817. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Zhang, X.; Peng, C.; Wang, Y.; Wang, Y.; Zhao, H.; Xu, X.; Xia, L.; Wang, C.; Li, G.; et al. Short-term aging characteristics and mechanisms of SBS-modified bio-asphalt binder considering time-dependent effect. Constr. Build. Mater. 2022, 352, 129048. [Google Scholar] [CrossRef]
- Jacobson, K.; Maheria, K.C.; Kumar Dalai, A. Bio-oil valorization: A review. Renew. Sustain. Energy Rev. 2013, 23, 91–106. [Google Scholar] [CrossRef]
- Abd Tayh, S.; Muniandy, R.; Hassim, S.; Mohd Jakarni, F. Evaluation of the Fatigue Behavior of Stone Mastic Asphalt Modified By Domestic Waste Bioasphalt. J. Eng. Sustain. Dev. 2018, 22, 139–149. [Google Scholar] [CrossRef]
- Gong, M.; Yang, J.; Zhang, J.; Zhu, H.; Tong, T. Physical-chemical properties of aged asphalt rejuvenated by bio-oil derived from biodiesel residue. Constr. Build. Mater. 2016, 105, 35–45. [Google Scholar] [CrossRef]
- Xingyu, Y.; Ruikun, D.; Naipeng, T. Development of a novel binder rejuvenator composed by waste cooking oil and crumb tire rubber. Constr. Build. Mater. 2020, 236, 117621. [Google Scholar] [CrossRef]
- Fadel, I.; Abdulla, M. Rejuvenated of Aged Asphalt Binder Properties by Using Waste Vegetable Oil. Tishreen Univ. J. Res. Sci. Stud. 2019, 41. [Google Scholar]
- Kamaruddin, N.H.M.; Hainin, M.R.; Hassan, N.A.; Abdullah, M.E.; Yaacob, H. Evaluation of pavement mixture incorporating waste oil. J. Teknol. 2014, 71, 93–98. [Google Scholar] [CrossRef]
- Xiu, S.; Shahbazi, A.; Shirley, V.; Cheng, D. Hydrothermal pyrolysis of swine manure to bio-oil: Effects of operating parameters on products yield and characterization of bio-oil. J. Anal. Appl. Pyrolysis 2010, 88, 73–79. [Google Scholar] [CrossRef]
- Sonibare, K.; Rucker, G.; Zhang, L. Molecular dynamics simulation on vegetable oil modified model asphalt. Constr. Build. Mater. 2021, 270, 121687. [Google Scholar] [CrossRef]
- Mills-Beale, J.; You, Z.; Fini, E.; Zada, B.; Lee, C.H.; Yap, Y.K. Aging Influence on Rheology Properties of Petroleum-Based Asphalt Modified with Biobinder. J. Mater. Civ. Eng. 2014, 26, 358–366. [Google Scholar] [CrossRef]
- Somé, S.C.; Pavoine, A.; Chailleux, E. Evaluation of the potential use of waste sunflower and rapeseed oils-modified natural bitumen as binders for asphalt pavement design. Int. J. Pavement Res. Technol. 2016, 9, 368–375. [Google Scholar] [CrossRef]
- Somé, S.C.; Gaudefroy, V.; Delaunay, D. Effect of vegetable oil additives on binder and mix properties: Laboratory and field investigation. Mater. Struct. Constr. 2016, 49, 2197–2208. [Google Scholar] [CrossRef]
- Portugal, A.C.X.; de Figueirêdo Lopes Lucena, L.C.; de Figueirêdo Lopes Lucena, A.E.; Beserra da Costa, D. Rheological performance of soybean in asphalt binder modification. Road Mater. Pavement Des. 2018, 19, 768–782. [Google Scholar] [CrossRef]
- Alattieh, S.A.; Al-Khateeb, G.G.; Zeiada, W. Evaluation of low-and intermediate-temperature performance of bio oil-modified asphalt binders. Sustainability 2021, 13, 4039. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, H.; Jiang, X.; You, Z.; Yang, X.; Ye, M. Thermal Storage Stability of Bio-Oil Modified Asphalt. J. Mater. Civ. Eng. 2018, 30, 04018054. [Google Scholar] [CrossRef]
- Kabir, S.F.; Mousavi, M.; Fini, E.H. Selective adsorption of bio-oils’ molecules onto rubber surface and its effects on stability of rubberized asphalt. J. Clean. Prod. 2020, 252, 119856. [Google Scholar] [CrossRef]
- Lei, Z.; Bahia, H.; Yi-qiu, T.; Ling, C. Effects of refined waste and bio-based oil modifiers on rheological properties of asphalt binders. Constr. Build. Mater. 2017, 148, 504–511. [Google Scholar] [CrossRef]
- Portugal, A.C.X.; de Figueirêdo Lopes Lucena, L.C.; de Figueirêdo Lopes Lucena, A.E.; Beserra Costa, D.; Patricio, J.D. Evaluating the rheological effect of asphalt binder modification using soybean oil. Pet. Sci. Technol. 2018, 36, 1351–1360. [Google Scholar] [CrossRef]
- Bailey, H.K.; Zoorob, S.E. The Use of Vegetable Oil in Asphalt Mixtures, in the Laboratory and Field. In Proceedings of the 5th Eurasphalt & Eurobitume Congress, Istanbul, Turkey, 13–15 June 2012; pp. 13–15. [Google Scholar]
- Cope, M.; Allen, B.; Zoorob, S.E. A Study of the Effect of Bitumen/Vegetable Oil Blends on Asphalt Mixture Performance. In Proceedings of the 4th International Conference Bituminous Mixtures and Pavements. 2007, pp. 261–270. Available online: https://trid.trb.org/view/841147 (accessed on 27 October 2020).
- Wang, C.; Xie, T.; Cao, W. Performance of bio-oil modified paving asphalt: Chemical and rheological characterization. Mater. Struct. Constr. 2019, 52, 1–13. [Google Scholar] [CrossRef]
- Ju, Z.; Ge, D.; Lv, S.; Xue, Y.; Duan, D.; Deng, Y.; Chen, J. Investigation on fatigue characteristics of polyphosphoric acid modified high dosage bio-asphalt mixture under three-dimensional stress state. Constr. Build. Mater. 2023, 401, 132749. [Google Scholar] [CrossRef]
- Gaudenzi, E.; Cardone, F.; Lu, X.; Canestrari, F. Analysis of fatigue and healing properties of conventional bitumen and bio-binder for road pavements. Materials 2020, 13, 420. [Google Scholar] [CrossRef]
- Cao, W.; Wang, Y.; Wang, C. Fatigue characterization of bio-modified asphalt binders under various laboratory aging conditions. Constr. Build. Mater. 2019, 208, 686–696. [Google Scholar] [CrossRef]
- Alattieh, S.A. Evaluating the Performance of Date Seeds Bio Oil—Modified Asphalt Binders. Master Thesis, University of Sharjah, Sharjah, United Arab Emirates, 2020. [Google Scholar]
- Lei, Z.; Bahia, H.; Yi-Qiu, T. Effect of bio-based and refined waste oil modifiers on low temperature performance of asphalt binders. Constr. Build. Mater. 2015, 86, 95–100. [Google Scholar] [CrossRef]
- Lu, X.; Uhlback, P.; Soenen, H. Investigation of bitumen low temperature properties using a dynamic shear rheometer with 4 mm parallel plates. Int. J. Pavement Res. Technol. 2017, 10, 15–22. [Google Scholar] [CrossRef]
- Azahar, W.N.A.W.; Bujang, M.; Jaya, R.P.; Hainin, M.R.; Mohamed, A.; Ngadi, N.; Jayanti, D.S. The potential of waste cooking oil as bio-asphalt for alternative binder—An overview. J. Teknol. 2016, 78, 111–116. [Google Scholar] [CrossRef]
- You, Z.; Mills-Beale, J.; Fini, E.; Goh, S.W.; Colbert, B. Evaluation of Low-Temperature Binder Properties of Warm-Mix Asphalt, Extracted and Recovered RAP and RAS, and Bioasphalt. J. Mater. Civ. Eng. 2011, 23, 1569–1574. [Google Scholar] [CrossRef]
- Lv, S.; Yuan, J.; Peng, X.; Borges Cabrera, M.; Guo, S.; Luo, X.; Gao, J. Performance and optimization of bio-oil/Buton rock asphalt composite modified asphalt. Constr. Build. Mater. 2020, 264, 120235. [Google Scholar] [CrossRef]
- Xu, G.; Wang, H.; Zhu, H. Rheological properties and anti-aging performance of asphalt binder modified with wood lignin. Constr. Build. Mater. 2017, 151, 801–808. [Google Scholar] [CrossRef]
- do Nascimento Camargo, I.G.; Bernucci, L.L.B.; Vasconcelos, K.L. Aging Characterization of Biobinder Produced from Renewable Sources. In Proceedings of the RILEM 252-CMB 2018 International Symposium on the Chemo-Mechanical Characterization of Bituminous Materials; Springer: Dordrecht, The Netherlands, 2019; pp. 9–14. [Google Scholar] [CrossRef]
- Meng, Y.; Wang, Z.; Lei, J.; Liao, Y.; Zhao, X.; Qin, Y.; Fang, G.; Zhang, C. Study on aging resistance and micro characteristics of bio-asphalt/TLA composite modified asphalt binder. Constr. Build. Mater. 2022, 359, 129566. [Google Scholar] [CrossRef]
- Meng, Y.; Wei, X.; Lei, J.; Liao, Y.; Huang, K.; Lai, J.; Yang, X. Effect of bio-asphalt as additive on macro and micro properties of TLA modified asphalt and its modification mechanism. Constr. Build. Mater. 2023, 365, 130079. [Google Scholar] [CrossRef]
- Meng, Y.; Zhan, L.; Hu, C.; Tang, Y.; Großegger, D.; Ye, X. Research on modification mechanism and performance of an innovative bio-based polyurethane modified asphalt: A sustainable way to reducing dependence on petroleum asphalt. Constr. Build. Mater. 2022, 350, 128830. [Google Scholar] [CrossRef]
- Lopa, R.S.; Jaya, R.P.; Mashros, N.; Hassan, N.A.; Yaacob, H.; Hainin, M.R.; Warid, M.N.M.; Satar, M.K.I.M.; Ramli, N.I. Creep stiffness and voids characteristic of asphalt mixture with waste cooking oil after aging. AIP Conf. Proc. 2018, 2030, 020181. [Google Scholar] [CrossRef]
- Yang, X.; You, Z.; Mills-Beale, J. Asphalt Binders Blended with a High Percentage of Biobinders: Aging Mechanism Using FTIR and Rheology. J. Mater. Civ. Eng. 2015, 27, 04014157. [Google Scholar] [CrossRef]
- Lv, S.; Peng, X.; Liu, C.; Qu, F.; Zhu, X.; Tian, W.; Zheng, J. Aging resistance evaluation of asphalt modified by Buton-rock asphalt and bio-oil based on the rheological and microscopic characteristics. J. Clean. Prod. 2020, 257, 120589. [Google Scholar] [CrossRef]
- Gulzar, S.; Fried, A.; Preciado, J.; Castorena, C.; Underwood, S.; Habbouche, J.; Boz, I. Towards sustainable roads: A State-of-the-art review on the use of recycling agents in recycled asphalt mixtures. J. Clean. Prod. 2023, 406, 136994. [Google Scholar] [CrossRef]
- Abdalla, A.; Faheem, A.; Ayranci, B. The Influence of a New Food Waste Bio-Oil (FWBO) Rejuvenating Agent on Cracking Susceptibility of Aged Binder and RAP. Sustainability 2022, 14, 3673. [Google Scholar] [CrossRef]
- Zhang, R.; You, Z.; Wang, H.; Ye, M.; Yap, Y.K.; Si, C. The impact of bio-oil as rejuvenator for aged asphalt binder. Constr. Build. Mater. 2019, 196, 134–143. [Google Scholar] [CrossRef]
- Zahoor, M.; Nizamuddin, S.; Madapusi, S.; Giustozzi, F. Sustainable asphalt rejuvenation using waste cooking oil: A comprehensive review. J. Clean. Prod. 2021, 278, 123304. [Google Scholar] [CrossRef]
- Ma, J.; Singhvi, P.; Ozer, H.; Al-Qadi, I.L.; Sharma, B.K. Brittleness progression for short- and long-term aged asphalt binders with various levels of recycled binders. Int. J. Pavement Eng. 2021, 22, 1399–1409. [Google Scholar] [CrossRef]
- Al-Khateeb, G.G.; Haider, S.W.; Rahman, M.; Nazzal, M. Innovative Materials, New Design Methods, and Advanced Characterization Techniques for Sustainable Asphalt Pavements. Adv. Mater. Sci. Eng. 2019, 2019, 1–3. [Google Scholar] [CrossRef]
- Aljarmouzi, A.; Dong, R. Sustainable Asphalt Rejuvenation by Using Waste Tire Rubber Mixed with Waste Oils. Sustainability 2022, 14, 8246. [Google Scholar] [CrossRef]
- Wang, J.; Lv, S.; Liu, J.; Peng, X.; Lu, W.; Wang, Z.; Xie, N. Performance evaluation of aged asphalt rejuvenated with various bio-oils based on rheological property index. J. Clean. Prod. 2023, 385, 135593. [Google Scholar] [CrossRef]
- Yu, H.; Ge, J.; Qian, G.; Zhang, C.; Dai, W.; Li, P. Evaluation on the rejuvenation and diffusion characteristics of waste cooking oil on aged SBS asphalt based on molecular dynamics method. J. Clean. Prod. 2023, 406, 136998. [Google Scholar] [CrossRef]
- Sadeq, M.; Masad, E.; Al-Khalid, H.; Sirin, O.; Mehrez, L. Linear and nonlinear viscoelastic and viscoplastic analysis of asphalt binders with warm mix asphalt additives. Int. J. Pavement Eng. 2018, 19, 857–864. [Google Scholar] [CrossRef]
- Mainieri, J.J.G.; Singhvi, P.; Ozer, H.; Sharma, B.K.; Al-Qadi, I.L. Fatigue tolerance of aged asphalt binders modified with softeners. Transp. Res. Rec. 2021, 2675, 1229–1244. [Google Scholar] [CrossRef]
- Alani, M.W.; Ghuzlan, K.A.; Al-Khateeb, G.G.; Zeiada, W.; Ezzat, H.; Sukkari, A. Performance of Bio-Oil Modified Asphalt Binders Containing Warm-mix Additives. In Proceedings of the Advances in Science & Engineering Technology (ASET), Dubai, United Arab Emirates, 20–23 February 2023; pp. 4–8. [Google Scholar]
- Oldham, D.J.; Fini, E.H. A bottom-up approach to study the moisture susceptibility of bio-modified asphalt. Constr. Build. Mater. 2020, 265, 120289. [Google Scholar] [CrossRef]
- Pahlavan, F.; Rajib, A.; Deng, S.; Lammers, P.; Fini, E.H. Investigation of Balanced Feedstocks of Lipids and Proteins to Synthesize Highly Effective Rejuvenators for Oxidized Asphalt. ACS Sustain. Chem. Eng. 2020, 8, 7656–7667. [Google Scholar] [CrossRef]
- Mogawer, W.S.; Fini, E.H.; Austerman, A.J.; Booshehrian, A.; Zada, B. Performance Characteristics of High RAP Bio-Modified Asphalt Mixtures. In Proceedings of the Transportation Research Board 91st Annual Meeting, Washington, DC, USA, 22–26 January 2012; pp. 1–16. [Google Scholar]
- Bao, D.X.; Yu, Y.Y.; Zhao, Q.M. Evaluation of the chemical composition and rheological properties of bio-asphalt from different biomass sources. Road Mater. Pavement Des. 2020, 21, 1829–1843. [Google Scholar] [CrossRef]
- Mohammad, L.N.; Elseifi, M.; Cooper, S.B.; Challa, H.; Naidoo, P. Laboratory Evaluation of Asphalt Mixtures Containing Bio-Binder Technologies. Transp. Res. Rec. J. Transp. Res. Board 2013, 2371, 128–152. [Google Scholar] [CrossRef]
- Orešković, M.; Bressi, S.; Mino, D.; Presti, D. Influence of bio-based additives on RAP clustering and asphalt binder rheology. In Proceedings of the Bearing Capacity of Roads, Railways and Airfields, Athens, Greece, 28–30 June 2017; pp. 1415–1422. [Google Scholar]
- Asli, H.; Ahmadinia, E.; Zargar, M.; Karim, M.R. Investigation on physical properties of waste cooking oil—Rejuvenated bitumen binder. Constr. Build. Mater. 2012, 37, 398–405. [Google Scholar] [CrossRef]
- Zhang, X.; Han, C.; Zhou, X.; Otto, F.; Zhang, F. Characterizing the diffusion and rheological properties of aged asphalt binder rejuvenated with bio-oil based on molecular dynamic simulations and laboratory experimentations. Molecules 2021, 26, 7080. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ning, Y.; Zhou, X.; Xu, X.; Chen, X. Quantifying the rejuvenation effects of soybean-oil on aged asphalt-binder using molecular dynamics simulations. J. Clean. Prod. 2021, 317, 128375. [Google Scholar] [CrossRef]
- Lv, S.; Liu, J.; Peng, X.; Liu, H.; Hu, L.; Yuan, J.; Wang, J. Rheological and microscopic characteristics of bio-oil recycled asphalt. J. Clean. Prod. 2021, 295, 126449. [Google Scholar] [CrossRef]
- Ābele, A.; Merijs-Meri, R.; Bērziņa, R.; Zicāns, J.; Haritonovs, V.; Ivanova, T. Effect of bio-oil on rheological and calorimetric properties of RTFOT aged bituminous compositions. Int. J. Pavement Res. Technol. 2020, 14, 537–542. [Google Scholar] [CrossRef]
- Foroutan Mirhosseini, A.; Tahami, S.A.; Hoff, I.; Dessouky, S.; Ho, C.-H. Performance evaluation of asphalt mixtures containing high-RAP binder content and bio-oil rejuvenator. Constr. Build. Mater. 2019, 227, 116465. [Google Scholar] [CrossRef]
- Foroutan Mirhosseini, A.; Tahami, A.; Hoff, I.; Dessouky, S.; Kavussi, A.; Fuentes, L.; Walubita, L.F. Performance Characterization of Warm-Mix Asphalt Containing High Reclaimed-Asphalt Pavement with Bio-Oil Rejuvenator. J. Mater. Civ. Eng. 2020, 32, 04020382. [Google Scholar] [CrossRef]
- Elkashef, M.; Williams, R.C. Improving fatigue and low temperature performance of 100% RAP mixtures using a soybean-derived rejuvenator. Constr. Build. Mater. 2017, 151, 345–352. [Google Scholar] [CrossRef]
- Cavalli, M.C.; Zaumanis, M.; Mazza, E.; Partl, M.N.; Poulikakos, L.D. Effect of ageing on the mechanical and chemical properties of binder from RAP treated with bio-based rejuvenators. Compos. Part B Eng. 2018, 141, 174–181. [Google Scholar] [CrossRef]
- Cavalli, M.C.; Zaumanis, M.; Mazza, E.; Partl, M.N.; Poulikakos, L.D. Aging effect on rheology and cracking behaviour of reclaimed binder with bio-based rejuvenators. J. Clean. Prod. 2018, 189, 88–97. [Google Scholar] [CrossRef]
- Ahmad, K.A.; Abdullah, M.E.; Nda, M.; Usman, N.; Hassan, N.A. Effect of bio based rejuvenator on permanent deformation of aged bitumen. Int. J. Integr. Eng. 2018, 10, 48–52. [Google Scholar] [CrossRef]
- Qurashi, I.A.; Swamy, A.K. Viscoelastic properties of recycled asphalt binder containing waste engine oil. J. Clean. Prod. 2018, 182, 992–1000. [Google Scholar] [CrossRef]
- Shoukat, T.; Yoo, P.J. Rheology of asphalt binder modified with 5W30 viscosity grade waste engine oil. Appl. Sci. 2018, 8, 1194. [Google Scholar] [CrossRef]
- Flávia Justino Uchoa, A.; da Silva Rocha, W.; Peter Macedo Feitosa, J.; Lopes Nogueira, R.; Hellen Almeida de Brito, D.; Barbosa Soares, J.; de Aguiar Soares, S. Bio-based palm oil as an additive for asphalt binder: Chemical characterization and rheological properties. Constr. Build. Mater. 2021, 285, 122883. [Google Scholar] [CrossRef]
- Gao, J.; Wang, H.; You, Z.; Mohd Hasan, M.R. Research on properties of bio-asphalt binders based on time and frequency sweep test. Constr. Build. Mater. 2018, 160, 786–793. [Google Scholar] [CrossRef]
- Rusbintardjo, G.; Hainin, M.R.; Yusoff, N.I.M. Fundamental and rheological properties of oil palm fruit ash modified bitumen. Constr. Build. Mater. 2013, 49, 702–711. [Google Scholar] [CrossRef]
- Langa, E.; Buonocore, G.; Squillace, A.; Muiambo, H. Effect of Vegetable Oil on the Properties of Asphalt Binder Modified with High Density Polyethylene. Polymers 2023, 15, 749. [Google Scholar] [CrossRef]
- Nizamuddin, S.; Baloch, H.A.; Jamal, M.; Madapusi, S.; Giustozzi, F. Performance of waste plastic bio-oil as a rejuvenator for asphalt binder. Sci. Total Environ. 2022, 828, 154489. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, S.; Solatifar, N.; Ph, D.; Asce, S.M. Optimized Preparation and High-Temperature Performance of Composite-Modified Asphalt Binder with CR and WEO. J. Mater. Civ. Eng. 2023, 35, 04022395. [Google Scholar] [CrossRef]
- Iwański, M.; Chomicz-Kowalska, A.; Maciejewski, K.; Iwański, M.M.; Radziszewski, P.; Liphardt, A.; Król, J.B.; Sarnowski, M.; Kowalski, K.J.; Pokorski, P. Effects of Laboratory Ageing on the FTIR Measurements of Water-Foamed Bio-Fluxed Asphalt Binders. Materials 2023, 16, 513. [Google Scholar] [CrossRef] [PubMed]
- Avsenik, L.; Tušar, M. Analysis of possible use of pyrolytic products as binders in asphalt mixes. Gradjevinar 2016, 68, 191–198. [Google Scholar] [CrossRef]
- Al-Sabaeei, A.M.; Napiah, M.; Sutanto, M.; Alaloul, W.; Md Yusoff, N.I.; Imran Khan, M.; Modibbo Saeed, S. Physicochemical, rheological and microstructural properties of Nano-Silica modified Bio-Asphalt. Constr. Build. Mater. 2021, 297, 123772. [Google Scholar] [CrossRef]
- Yadykova, A.Y.; Ilyin, S.O. Rheological and adhesive properties of nanocomposite bitumen binders based on hydrophilic or hydrophobic silica and modified with bio-oil. Constr. Build. Mater. 2022, 342, 127946. [Google Scholar] [CrossRef]
- Ren, J.; Zang, G.; Xu, Y. Formula and Pavement Properties of a Composite Modified Bioasphalt Binder Considering Performance and Economy. J. Mater. Civ. Eng. 2019, 31. [Google Scholar] [CrossRef]
- Lv, S.; Ding, X.; Ren, K.; An, H.; Liu, C.; Lin, S.; Ding, S. Rheological Properties, Anti-Aging Performance and Modification Mechanism of Bio-Asphalt Composite Modified by Rock-Asphalt and Montmorillonite. SSRN Electron. J. 2022. [Google Scholar] [CrossRef]
- Yadykova, A.Y.; Ilyin, S.O. Bitumen improvement with bio-oil and natural or organomodified montmorillonite: Structure, rheology, and adhesion of composite asphalt binders. Constr. Build. Mater. 2023, 364, 129919. [Google Scholar] [CrossRef]
- Xie, T.; Chen, Y.; Wang, C. Rheological Properties of Asphalt Binder Compound Modified by Bio-oil and Organic Montmorillonite. RILEM Bookseries 2022, 27, 1603–1609. [Google Scholar] [CrossRef]
- Ghuzlan, K.A.; Al Assi, M.O. Sasobit-Modified Asphalt Binder Rheology. J. Mater. Civ. Eng. 2017, 29, 1–7. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, H.; Shi, C.; Chen, Z. A novel warm-mix additive for SBR modified asphalt binder: Effects of Sasobit/epoxidized soybean oil compound on binder rheological and long-term aging performance. J. Clean. Prod. 2021, 326, 129405. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, W.; Yang, X.; Ning, Z. Study on the Conventional Performance and Microscopic Properties of PPA/SBS-Modified Bio-Mixed Asphalt. Materials 2022, 15, 4101. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Si, C.; Fan, T.; Zhu, Y.; Li, S.; Ren, S.; Lin, P. Research on the optimal dosage of Bio-Oil/Lignin composite modified asphalt based on rheological and Anti-Aging properties. Constr. Build. Mater. 2023, 389, 131796. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Ren, S.; Jing, R.; Lin, P.; Apostolidis, P.; Erkens, S.; Wang, X.; Scarpas, T. Effect of Bio-oil on Rheology and Chemistry of Organosolv Lignin–Modified Bitumen. J. Mater. Civ. Eng. 2022, 34, 1–16. [Google Scholar] [CrossRef]
- Saha, R.; Melaku, R.S.; Karki, B.; Berg, A.; Gedafa, D.S. Effect of Bio-Oils on Binder and Mix Properties with High RAP Binder Content. J. Mater. Civ. Eng. 2020, 32. [Google Scholar] [CrossRef]
- Saha, R.C. Effect of Bio-Binders on Binder and Mix Properties with High Rap Content. 2017. Available online: https://commons.und.edu/theses/2331 (accessed on 1 June 2022).
- Hill, B.; Oldham, D.; Behnia, B.; Fini, E.H.; Buttlar, W.G.; Reis, H. Evaluation of low temperature viscoelastic properties and fracture behavior of bio-asphalt mixtures. Int. J. Pavement Eng. 2018, 19, 362–369. [Google Scholar] [CrossRef]
- Teng, S.; Williams, R.C. Antioxidant Effect of Bio-Oil Additive ESP on Asphalt Binder. In Proceedings of the 2009 Mid-Continent Transportation Research Symposium. 2009. Available online: https://trid.trb.org/view/900009 (accessed on 27 June 2019).
- Espinosa, L.V.; Vasconcelos, K.; Alvarez, A.E.; Bhasin, A.; Bernucci, L. Moisture damage susceptibility of a wood-based bio-binder for total replacement of asphalt binders. Road Mater. Pavement Des. 2023, 25, 45–55. [Google Scholar] [CrossRef]
- Williams, R.C.; Raouf, M. Development of Non-Petroleum Based Binders for Use in Flexible Pavements; Institute for Transportation and Iowa State University: Ames, IA, USA, 2010. [Google Scholar]
- Williams, R.C.; Peralta, J.; Ng Puga, K.L.N. Development of Non-Petroleum-Based Binders for Use in Flexible Pavements—Phase II. 2015. Available online: https://lib.dr.iastate.edu/intrans_reports/137 (accessed on 1 March 2019).
- You, T.; Shi, Y.; Mohammad, L.N.; Cooper, S.B. Laboratory performance of asphalt mixtures containing re-refined engine oil bottoms modified asphalt binders. Transp. Res. Rec. 2018, 2672, 88–95. [Google Scholar] [CrossRef]
- Guarin, A.; Khan, A.; Butt, A.A.; Birgisson, B.; Kringos, N. An extensive laboratory investigation of the use of bio-oil modified bitumen in road construction. Constr. Build. Mater. 2016, 106, 133–139. [Google Scholar] [CrossRef]
- Lei, Y.; Wang, H.; Chen, X.; Yang, X.; You, Z.; Dong, S.; Gao, J. Shear property, high-temperature rheological performance and low-temperature flexibility of asphalt mastics modified with bio-oil. Constr. Build. Mater. 2018, 174, 30–37. [Google Scholar] [CrossRef]
- Jia, X.; Huang, B.; Moore, J.A.; Zhao, S. Influence of Waste Engine Oil on Asphalt Mixtures Containing Reclaimed Asphalt Pavement. J. Mater. Civ. Eng. 2015, 27, 04015042. [Google Scholar] [CrossRef]
Method | Treatment Condition/Requirement | Reaction Mechanism/Process Description | Technique Feasibility | |
---|---|---|---|---|
Pros. | Cons. | |||
Flash/fast pyrolysis | Relatively high temperature (450–500 °C); a short residence time (<1 s); atmosphere pressure; drying necessary | The light small molecules are converted to oily products through homogeneous reactions in the gas phase | High oil yield; up to 80% on dry feed; lower capital cost | Poor fuel quality obtained |
Hydrothermal liquefaction (HTL)/liquefaction/hydrothermal pyrolysis | Lower temperature (300–400 °C); longer residence time (0.2–1.0 h); high pressure (5–20 Mpa); drying unnecessary | Occurs in an aqueous medium, which involves complex sequences of reactions | Commercialized already better quality of bio-oil obtained (high heating value, low moisture content) | Relatively low oil yield (20–60%); need high pressure equip, thus higher capital cost |
Blend * | Composition (by Weight) | Description |
---|---|---|
A + RAP | 71% A + 29% RAP | Recycled binder formed by a severely aged bitumen blended with a fresh bio-binder |
B + RAP | 71% b + 29% RAP | Recycled binder in which the aged and the fresh binders are composed of 100% bitumen |
A + bio-RAP | 62% A + 38% bio-RAP | Recycled binder in which the aged and the fresh binders are bio-based (both contain 10% by weight of wood bio-oil) |
B + bio-RAP | 62% B + 38% RAP | Recycled binder formed by a severely aged bio-binder blended with a fresh bitumen. |
Material | Performance Parameter | Test | Aging Level | Standard | Temperature Range (°C) |
---|---|---|---|---|---|
Asphalt Binder | Conventional Properties | Penetration Softening point | Unaged | ASTM D5 [112] ASTM D36 [113] | 25 N/A * |
Workability | Rotational viscosity (RV) Temperature susceptibility | Unaged and RTFO | ASTM D4402 [114] ASTM D2493 [115] | 135 | |
Rutting Resistance | G*/sinδ Multiple Stress Creep Recovery (MSCR) | Unaged and RTFO | ASTM D7175 [116] AASHTO T350 [117] | 42–84 High PG | |
Fatigue Resistance | G*sin δ Linear Amplitude Sweep (LAS) | PAV | ASTM D7175 [116] AASHTO T391-20 [118] | 31–13 Intermediate temp | |
Low Temperature Cracking | BBR | PAV | ASTM D66 48 [119] | 0–(−24) | |
Overall Performance | Frequency sweep | AASHTO T315 [120] | 10–70 | ||
Storage Stability | G*/sinδ Softening point | Unaged | ASTM D7175 [116] ASTM D36 [113] | 163 - | |
Asphalt Mixture | Stiffness | Dynamic modulus | - | ASTM D3497 [121] | (−10)–54 |
Rutting | Flow number Hamburg wheel test | - | AASHTO TP 79 AASHTO T 324 [122] | 54 60 | |
Strength | Indirect tensile strength (IDT) | - | ASTM D6931 [123] | ||
Fatigue | Four-point beam fatigue test Three-point bending cylinder | - | ASTM D8237 [124] |
Bio-Oil Type | Waste Vegetable Oil 1 | Waste Vegetable Grease 1 | Organic Oil 1 | Distilled Tall Oil 1 | Aromatic Extract 1 | Waste Engine Oil (WEO) 1 | Palm Kernel Oil Polyol 2 | Black Alder Wood 3 | Castor Oil 4 | Swine Manure 5 |
---|---|---|---|---|---|---|---|---|---|---|
Specific Gravity | 0.917 | 0.924 | 0.947 | 0.950 | 0.995 | 0.872 | 1.114 | 1.2 | 0.88 | 1 |
BMB Blend | Penetration | Softening Point (°C) | RV@135 °C (Pa.s) | Mixing Temperature (°C) | Compaction Temperature (°C) |
---|---|---|---|---|---|
0.0% DSO-BMB | 54 | 49.93 | 0.583 | 159–165 | 144–147 |
1.5% DSO-BMB | 66 | 49.75 | 0.381 | 152–158 | 136–139 |
2.5% DSO-BMB | 84 | 45.03 | 0.323 | 148–154 | 132–136 |
3.5% DSO-BMB | 102 | 43.5 | 0.323 | 147–153 | 131–135 |
4.5% DSO-BMB | 117 | 42.38 | 0.298 | 146–153 | 130–134 |
5.5% DSO-BMB | 139 | 41.03 | 0.263 | 142–148 | 127–131 |
Bio-Binder Content | Location | |G*|/sinδ |
---|---|---|
2% | Top | 1.56 |
Bottom | 1.68 | |
8% | Top | 1.75 |
Bottom | 1.66 | |
25% | Top | 2.30 |
Bottom | 2.42 | |
50% | Top | 2.27 |
Bottom | 17.7 |
Parameter | m-Value | BBR Creep Stiffness (MPa) | |||||
---|---|---|---|---|---|---|---|
Temperature (°C) | −12 | −18 | −24 | −12 | −18 | −24 | |
Asphalt Binder Type | PG64-22 | 0.364 | - | - | 240 | - | - |
5% Bio-binder | 0.383 | 0.392 | 0.412 | 260 | 290 | 310 |
Oil Content (%) | Penetration | Softening Point | Viscosity | |||
---|---|---|---|---|---|---|
RTFO/Unaged | PAV/Unaged | RTFO/Unaged | PAV/Unaged | RTFO/Unaged | PAV/Unaged | |
0 | 0.78 | 0.46 | 1.07 | 1.20 | 1.77 | 3.25 |
3 | 0.77 | 0.45 | 1.08 | 1.22 | 1.83 | 3.39 |
6 | 0.75 | 0.44 | 1.08 | 1.23 | 1.87 | 3.79 |
9 | 0.73 | 0.43 | 1.09 | 1.24 | 1.94 | 4.33 |
12 | 0.69 | 0.39 | 1.10 | 1.27 | 2.02 | 4.98 |
Temperature (°C) | −12 | −18 | Critical Temperature (°C) | ||
---|---|---|---|---|---|
Blend 1 | Stiffness | m-Value | Stiffness | m-Value | |
Control (PG64-22) | 144.4 | 0.332 | 246.7 | 0.272 | −25.2 |
IDB | 125.5 | 0.346 | 226.7 | 0.29 | −26.9 |
FP1 | 154.7 | 0.337 | 312.7 | 0.288 | −26.5 |
FP2 | 149 | 0.34 | 271.7 | 0.288 | −26.58 |
Control (PG70-22) | 117 | 0.341 | 236 | 0.267 | −25.31 |
IDB | 129.3 | 0.344 | 228 | 0.28 | −26.12 |
FP1 | 118.3 | 0.369 | 232.7 | 0.314 | −29.52 |
FP2 | 124.3 | 0.346 | 257.3 | 0.297 | −27.63 |
CR-M | SAR-M | PsCR21-M | PsCR11-M | PsCR12-M | |
---|---|---|---|---|---|
Segregation Index (%) | 44 | 26 | 55 | 35 | 57 |
RAP Content (%) | Tensile Strength Ratio (%) | |||
---|---|---|---|---|
Control | BMB | AD1 | AD2 | |
0% | 70 | 75 | 68 | 80 |
15% | 80 | 78 | 75 | 90 |
45% | 72 | 80 | 65 | 85 |
Binder | N | K8 | K9 | ||||||
---|---|---|---|---|---|---|---|---|---|
Viscosity at135 °C Max, 3 Pa.s | 0.2 | - | - | ||||||
PG, max pavement design temperature, °C | 46 | 52 | 58 | 46 | 52 | 58 | 46 | 52 | 58 |
Dynamic shear (10 rad/s) G*/sinδ, Min 1.00 kPa | 4.48 | 2.00 | 0.93 | 0.44 | 0.22 | - | 0.74 | 0.36 | - |
After RTFOT | |||||||||
Mass loss, Max 1% | 0.6 | 2.85 | 1.71 | ||||||
Dynamic shear (10 rad/s) G*/sinδ, Min 2.20 kPa | 10.88 | 4.5 | 1.98 | 2.29 | 1.10 | - | 2.38 | 1.08 | - |
After PAV (100 °C) | |||||||||
Temperatures | 13 | 10 | 7 | 7 | 4 | 1 | 4 | 1 | −2 |
Dynamic shear (10 rad/s) G*sinδ, Max 5000 kPa | 4170 | 6320 | - | 3490 | 3660 | 5530 | 2860 | 4470 | 6540 |
Min pavement design temperature, °C | −12 | −18 | −24 | −24 | −30 | −36 | −24 | −30 | −36 |
After PAV | |||||||||
Creep stiffness (60 s) | |||||||||
S, Max 300 MPa | 61 | 178 | Sample Broke | - | 264 | 563 | m-value < 0.1 | ||
m-value Min 0.300 | 0.434 | 0.358 | - | 0.363 | |||||
Estimated performance grade | PG52-28 | Failed | Failed |
[Reference] | Bio-Oil Properties | Asphalt Binder Properties | Bio-Modified Asphalt Binder Properties † | Bio-Modified Asphalt Binder Performance ‡ | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Measurement Parameter | Bio-Oil Type | Extraction Method | Base Binder (PG or Pen) | Additives | Consistency | Rheological ** Properties | Rutting Resistance | Fatigue Resistance | ||||
Penetration | Softening Point | Rotational Viscosity * | High Temperature | Intermediate Temperature | Low Temperature | |G*|/sinδ or Recovery | |G*|sinδ or LAS | |||||
[1,84] | Corn oilCastor oil | PEN 90 | 7.1 and 31 | 1.1 and −5.4 | ||||||||
[4,180] | Thermochemical conversion | PG64-22 | RAS | −30 | −50 | Jnr: −50 R%: −9 | ||||||
[5,220] | Swine manure (SM) Woods (WP) Corn stover (CS) | PG64-22 | RAP | SM and CS: −6.25 WP: −4.2 | SM: 0 WP: −12 CS: −10 | |||||||
[25,50,52] | Swine manure | Thermochemical liquefaction | PG64-22 | −35 | −30 | −5 | ||||||
[63] | Rapeseed methyl esters | oxidation reaction promoter | Virgin Bitumen 35/50 | −88.2 | ||||||||
[64,143] | Date seed oil | Soxhlet | PEN 60/70 | - | 160 | −18 | −55 | −65 | −74 | −50 | −67 | −62 |
[66] | Pongamia oil | Viscosity grade-20 | −70 | −75 | ||||||||
[69,191,192] | Date seed oil | Soxhlet | PG64-22 | RAP | −60 no RAP | −16 | |-66 Jnr: +21 R%: −15 | Nf 2.5% | ||||
[72,73,103] | Wood | 50/70 penetration grade | RAP | 38.4 | −5.4 | Mixing and compaction temperature: −6.3 | −34.4 | −28.1 | ||||
[76,186] | Waste cooking oil | AGED BITUMEN 60/70 | 200 | −22.4 | ||||||||
[81] | Soybean oil Niger seed oil | PAV PEN50 | -33 | -64 | −45 | |||||||
[83] | Waste edible vegetable oil | PAV PEN 60–80 and 40–60 and 40–60 (SBS) | A: 187.5 | A: −13 B: −11.7 C: −13.2 | A: −35.7 B: −44.7 C: −46.5 | A: −83.3 B: −72.1 C: −55.6 | A: −75 B: −55 C: −45 | |||||
[86,200] | Wood chips | Industrial oil | PEN 50 | SBS | 5 | −2 | −20.8 | |||||
[87] | Waste wood | fast pyrolysis | Viscosity grade 30 RAP binder | 200 | −16.9 | −30 | Jnr: +45.5 R%: −68.4 | Nf: +305% | ||||
[89] | Waste cooking oil | Virgin Bitumen 60-70 | Tire Rubber powder (15%) Bagasse ash (8%) | 42.6 | 4.3 | 188.9 | 37.7 | −14.3 stiffness: −45.9 | ||||
[90] | Waste oil | PEN 80/100 | SBS polyethylene (PE) | 70.6 | −3.2 | −31.9 | −55.3 | |||||
[106] | Rapeseed | PG70-16 PG64-16 PG58-22 | −26.5 | −87 −66.7 −85 | ||||||||
[128,227] | Corn stover | fast pyrolysis | PEN 80/100 | crumb rubber powder | 24.3 | R%: 23.4 | ||||||
[139] | Thermochemical liquefaction | PG64-22 | −32.5 | −10 | ||||||||
[146,155] | Waste oil | PG64-22 | −60 | Jnr: 20.7 | Nf: 71.4 | |||||||
[158] | Pyrolysis process | PG64-22 | RAS RAP Sasobit | 10 | ||||||||
[182] | Swine manure | PG52-28 | −9 | −9 | −22 | −12 | ||||||
[190] | Rapeseed oil | RTFO PEN 70/100 | SBS EOC | −87 | −21 | −72 | 85 | |||||
[223] | Oakwood (W) Switchgrass (SG) | Pyrolysis | PG58-22 PG64-16 | Polyethylene | ||||||||
[228] | Waste engine oil | PG64-22 | RAP | Df −40.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Khateeb, G.G.; Alattieh, S.A.; Zeiada, W.; Castorena, C. State-of-the-Art Review on the Behavior of Bio-Asphalt Binders and Mixtures. Molecules 2024, 29, 3835. https://doi.org/10.3390/molecules29163835
Al-Khateeb GG, Alattieh SA, Zeiada W, Castorena C. State-of-the-Art Review on the Behavior of Bio-Asphalt Binders and Mixtures. Molecules. 2024; 29(16):3835. https://doi.org/10.3390/molecules29163835
Chicago/Turabian StyleAl-Khateeb, Ghazi G., Sara A. Alattieh, Waleed Zeiada, and Cassie Castorena. 2024. "State-of-the-Art Review on the Behavior of Bio-Asphalt Binders and Mixtures" Molecules 29, no. 16: 3835. https://doi.org/10.3390/molecules29163835
APA StyleAl-Khateeb, G. G., Alattieh, S. A., Zeiada, W., & Castorena, C. (2024). State-of-the-Art Review on the Behavior of Bio-Asphalt Binders and Mixtures. Molecules, 29(16), 3835. https://doi.org/10.3390/molecules29163835