Advanced Characterization Techniques and Theoretical Calculation for Single Atom Catalysts in Fenton-like Chemistry
Abstract
:1. Introduction
2. Advanced Characterizations
2.1. Electron Microscopy
2.2. Spectroscopy Techniques
2.3. Electrochemical Techniques
2.4. Other Characterization Techniques
3. Theoretical Calculation
4. Conclusions and Perspectives
- (1)
- The changes in SACs in the catalytic reaction process and the related catalytic reaction mechanism still need to be further understood by employing theoretical calculations.
- (2)
- The stability of the single atomic site of SACs in the reaction process needs further improvement.
- (3)
- Under working conditions, direct knowledge of the dynamic changes in active sites during catalytic reactions is still limited. Real-time monitoring of real active sites by in situ measurements, such as in situ HAADF-STEM, XAS, and diffuse infrared Fourier-transform spectroscopy (DRIFTS), helps to clarify the catalytic mechanism.
- (4)
- It is still necessary to regulate the electronic structure of the single atomic active site through local electronic structure engineering to improve the intrinsic catalytic activity of the single atomic site and improve the catalytic reaction kinetics.
- (5)
- More efforts should be focused on the practical industrial application of SAC, and more attention should be paid to technical issues, reactor size, facility capacity, and reaction economics.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Gao, Y.; Zhu, Y.; Li, T.; Chen, Z.; Jiang, Q.; Zhao, Z.; Liang, X.; Hu, C. Unraveling the High-Activity Origin of Single-Atom Iron Catalysts for Organic Pollutant Oxidation via Peroxymonosulfate Activation. Environ. Sci. Technol. 2021, 55, 8318–8328. [Google Scholar] [CrossRef] [PubMed]
- Ren, T.; Yin, M.; Chen, S.; Ouyang, C.; Huang, X.; Zhang, X. Single-Atom Fe-N4 Sites for Catalytic Ozonation to Selectively Induce a Nonradical Pathway toward Wastewater Purification. Environ. Sci. Technol. 2023, 57, 3623–3633. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Xie, Y.; Xiao, J.; Zhao, Z.J.; Wang, Y.; Xu, Z.; Zhang, Y.; Yin, L.; Cao, H.; Gong, J. Single-Atom Mn-N4 Site-Catalyzed Peroxone Reaction for the Efficient Production of Hydroxyl Radicals in an Acidic Solution. J. Am. Chem. Soc. 2019, 141, 12005–12010. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Su, R.; Xu, F.; Xu, X.; Gao, B.; Li, Q. The Unique Fe3Mo3N Structure Bestowed Efficient Fenton-Like Performance of the Iron-Based Catalysts: The Double Enhancement of Radicals and Nonradicals. Adv. Mater. 2024, 36, 2311869. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Cheng, X.; Zou, R.; Yong, X.; Pang, C.; Su, Y.; Zhang, Y. Simple modulation of Fe-based single atoms/clusters catalyst with acidic microenvironment for ultrafast Fenton-like reaction. Appl. Catal. B Environ. 2022, 304, 121009. [Google Scholar] [CrossRef]
- Huang, B.; Xiong, Z.; Zhou, P.; Zhang, H.; Pan, Z.; Yao, G.; Lai, B. Ultrafast degradation of contaminants in a trace cobalt(II) activated peroxymonosulfate process triggered through borate: Indispensable role of intermediate complex. J. Hazard. Mater. 2022, 424 Pt D, 127641. [Google Scholar] [CrossRef]
- Lee, J.; von Gunten, U.; Kim, J.H. Persulfate-Based Advanced Oxidation: Critical Assessment of Opportunities and Roadblocks. Environ. Sci. Technol. 2020, 54, 3064–3081. [Google Scholar] [CrossRef]
- Liang, S.; Zhu, L.; Hua, J.; Duan, W.; Yang, P.T.; Wang, S.L.; Wei, C.; Liu, C.; Feng, C. Fe2+/HClO Reaction Produces Fe(IV)O2+: An Enhanced Advanced Oxidation Process. Environ. Sci. Technol. 2020, 54, 6406–6414. [Google Scholar] [CrossRef]
- Mao, Y.; Wang, P.; Zhang, D.; Xia, Y.; Li, Y.; Zeng, W.; Zhan, S.; Crittenden, J.C. Accelerating Fe(III)-Aqua Complex Reduction in an Efficient Solid-Liquid-Interfacial Fenton Reaction over the Mn-CNH Co-catalyst at Near-Neutral pH. Environ. Sci. Technol. 2021, 55, 13326–13334. [Google Scholar] [PubMed]
- Qi, Y.; Li, J.; Zhang, Y.; Cao, Q.; Si, Y.; Wu, Z.; Akram, M.; Xu, X. Novel lignin-based single atom catalysts as peroxymonosulfate activator for pollutants degradation: Role of single cobalt and electron transfer pathway. Appl. Catal. B Environ. 2021, 286, 119910. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Y.; Wang, W.; Wu, D.; Wu, Q.; Hu, H. Highly selective production of singlet oxygen by manipulating the spin state of single-atom Co–N moieties and electron localization. Appl. Catal. B Environ. 2023, 324, 122248. [Google Scholar] [CrossRef]
- Zhang, S.; Lu, Z.; Hu, C.; Li, F. Understanding the Distance Effect of the Single-Atom Active Sites in Fenton-Like Reactions for Efficient Water Remediation. Adv. Sci. 2024, 11, 2307151. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, X.; Liang, C.; Yin, L.; Yang, Y. Reconstructing the coordination environment of single atomic Fe-catalysts for boosting the Fenton-like degradation activities. Appl. Catal. B Environ. 2022, 315, 121536. [Google Scholar] [CrossRef]
- Liu, J.; Wei, Z.; Gong, Z.; Yan, M.; Hu, Y.; Zhao, S.; Ye, G.; Fei, H. Single-atom CoN4 sites with elongated bonding induced by phosphorus doping for efficient H2O2 electrosynthesis. Appl. Catal. B Environ. 2023, 324, 122267. [Google Scholar] [CrossRef]
- Fu, H.; Wei, J.; Chen, G.; Xu, M.; Liu, J.; Zhang, J.; Li, K.; Xu, Q.; Zou, Y.; Zhang, W.-X.; et al. Axial coordination tuning Fe single-atom catalysts for boosting H2O2 activation. Appl. Catal. B Environ. 2023, 321, 122012. [Google Scholar] [CrossRef]
- Li, X.; Cao, C.-S.; Hung, S.-F.; Lu, Y.-R.; Cai, W.; Rykov, A.I.; Miao, S.; Xi, S.; Yang, H.; Hu, Z.; et al. Identification of the Electronic and Structural Dynamics of Catalytic Centers in Single-Fe-Atom Material. Chem 2020, 6, 3440–3454. [Google Scholar] [CrossRef]
- Zhao, Z.; Tan, H.; Zhang, P.; Liang, X.; Li, T.; Gao, Y.; Hu, C. Turning the Inert Element Zinc into an Active Single-Atom Catalyst for Efficient Fenton-Like Chemistry. Angew. Chem. Int. Ed. Engl. 2023, 62, e202219178. [Google Scholar] [CrossRef]
- Wang, B.; Cheng, C.; Jin, M.; He, J.; Zhang, H.; Ren, W.; Li, J.; Wang, D.; Li, Y. A Site Distance Effect Induced by Reactant Molecule Matchup in Single-Atom Catalysts for Fenton-Like Reactions. Angew. Chem. Int. Ed. Engl. 2022, 61, e202207268. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.S.; Jiang, X.H.; Zhong, Z.A.; Tian, L.; Sun, Q.; Cui, Y.T.; Lu, X.; Zou, J.P.; Luo, S.L. Carbon Nitride Supported High-Loading Fe Single-Atom Catalyst for Activation of Peroxymonosulfate to Generate 1O2 with 100% Selectivity. Angew. Chem. Int. Ed. Engl. 2021, 60, 21751–21755. [Google Scholar] [CrossRef]
- Shao, S.; Cui, J.; Wang, K.; Yang, Z.; Li, L.; Zeng, S.; Cui, J.; Hu, C.; Zhao, Y. Efficient and Durable Single-Atom Fe Catalyst for Fenton-like Reaction via Mediated Electron-Transfer Mechanism. ACS EST Engg. 2022, 3, 36–44. [Google Scholar] [CrossRef]
- Tan, W.; Xie, S.; Le, D.; Diao, W.; Wang, M.; Low, K.B.; Austin, D.; Hong, S.; Gao, F.; Dong, L.; et al. Fine-tuned local coordination environment of Pt single atoms on ceria controls catalytic reactivity. Nat. Commun. 2022, 13, 7070. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.; Huang, D.; Gupta, S.; Weon, S.; Niu, J.; Stavitski, E.; Muhich, C.; Kim, J.H. Neighboring Pd single atoms surpass isolated single atoms for selective hydrodehalogenation catalysis. Nat. Commun. 2021, 12, 5179. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zhang, M.; Huang, H.; Dong, C.; Dai, X.; Feng, G.; Lin, L.; Sun, D.; Yang, D.; Xie, L.; et al. Single Atom-Doped Nanosonosensitizers for Mutually Optimized Sono/Chemo-Nanodynamic Therapy of Triple Negative Breast Cancer. Adv. Sci. 2023, 10, e2206244. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Xu, W. Synergistically enhanced single-atomic site catalysts for clean energy conversion. J. Mater. Chem. A 2022, 10, 5673–5698. [Google Scholar] [CrossRef]
- Zhao, Y.; Jiang, W.J.; Zhang, J.; Lovell, E.C.; Amal, R.; Han, Z.; Lu, X. Anchoring Sites Engineering in Single-Atom Catalysts for Highly Efficient Electrochemical Energy Conversion Reactions. Adv. Mater. 2021, 33, e2102801. [Google Scholar] [CrossRef] [PubMed]
- Hua, W.; Sun, H.; Lin, L.; Mu, Q.; Yang, B.; Su, Y.; Wu, H.; Lyu, F.; Zhong, J.; Deng, Z.; et al. A hierarchical Single-Atom Ni-N3-C catalyst for electrochemical CO2 reduction to CO with Near-Unity faradaic efficiency in a broad potential range. Chem. Eng. J. 2022, 446, 137296. [Google Scholar] [CrossRef]
- Lyu, H.; Li, P.; Tang, J.; Zou, W.; Wang, P.; Gao, B.; Dong, L. Single-atom Mn anchored on N-doped graphene oxide for efficient adsorption-photocatalytic degradation of sulfanilamide in water: Electronic interaction and mineralization pathway. Chem. Eng. J. 2023, 454, 140120. [Google Scholar] [CrossRef]
- Ao, X.; Zhang, W.; Zhao, B.; Ding, Y.; Nam, G.; Soule, L.; Abdelhafiz, A.; Wang, C.; Liu, M. Atomically dispersed Fe–N–C decorated with Pt-alloy core–shell nanoparticles for improved activity and durability towards oxygen reduction. Energy Environ. Sci. 2020, 13, 3032–3040. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Liu, W.; Wu, J.; Li, Q.; Feng, Q.; Chen, Z.; Xiong, X.; Wang, D.; Lei, Y. Regulating the coordination structure of metal single atoms for efficient electrocatalytic CO2 reduction. Energy Environ. Sci. 2020, 13, 4609–4624. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, J.; Zheng, L.; Yang, J.; Li, Y.; Wan, X.; Liu, X.; Zhang, X.; Yu, R.; Shui, J. Carbon black-supported FM–N–C (FM = Fe, Co, and Ni) single-atom catalysts synthesized by the self-catalysis of oxygen-coordinated ferrous metal atoms. J. Mater. Chem. A 2020, 8, 13166–13172. [Google Scholar] [CrossRef]
- Cheng, X.; Wang, J.; Zhao, K.; Bi, Y. Spatially confined iron single-atom and potassium ion in carbon nitride toward efficient CO2 reduction. Appl. Catal. B Environ. 2022, 316, 121643. [Google Scholar] [CrossRef]
- Li, X.; Chen, Z.; Yang, Y.; Huan, D.; Su, H.; Zhu, K.; Shi, N.; Qi, Z.; Zheng, X.; Pan, H.; et al. Highly stable and efficient Pt single-atom catalyst for reversible proton-conducting solid oxide cells. Appl. Catal. B Environ. 2022, 316, 121627. [Google Scholar] [CrossRef]
- Huang, B.; Wu, Z.; Zhou, H.; Li, J.; Zhou, C.; Xiong, Z.; Pan, Z.; Yao, G.; Lai, B. Recent advances in single-atom catalysts for advanced oxidation processes in water purification. J. Hazard. Mater. 2021, 412, 125253. [Google Scholar] [CrossRef]
- Fei, H.; Dong, J.; Chen, D.; Hu, T.; Duan, X.; Shakir, I.; Huang, Y.; Duan, X. Single atom electrocatalysts supported on graphene or graphene-like carbons. Chem. Soc. Rev. 2019, 48, 5207–5241. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Chang, X.; Lin, X.; Zhao, Z.J.; Gong, J. Theoretical insights into single-atom catalysts. Chem. Soc. Rev. 2020, 49, 8156–8178. [Google Scholar] [CrossRef]
- Zhao, D.; Zhuang, Z.; Cao, X.; Zhang, C.; Peng, Q.; Chen, C.; Li, Y. Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chem. Soc. Rev. 2020, 49, 2215–2264. [Google Scholar] [CrossRef]
- Jiao, P.; Ye, D.; Zhu, C.; Wu, S.; Qin, C.; An, C.; Hu, N.; Deng, Q. Non-precious transition metal single-atom catalysts for the oxygen reduction reaction: Progress and prospects. Nanoscale 2022, 14, 14322–14340. [Google Scholar] [CrossRef]
- Wu, X.; Kim, J.-H. Outlook on Single Atom Catalysts for Persulfate-Based Advanced Oxidation. ACS EST Eng. 2022, 2, 1776–1796. [Google Scholar] [CrossRef]
- Weon, S.; Huang, D.; Rigby, K.; Chu, C.; Wu, X.; Kim, J.-H. Environmental Materials beyond and below the Nanoscale: Single-Atom Catalysts. ACS EST Eng. 2020, 1, 157–172. [Google Scholar] [CrossRef]
- Shang, Y.; Xu, X.; Gao, B.; Wang, S.; Duan, X. Single-atom catalysis in advanced oxidation processes for environmental remediation. Chem. Soc. Rev. 2021, 50, 5281–5322. [Google Scholar] [CrossRef]
- Hou, C.-C.; Wang, H.-F.; Li, C.; Xu, Q. From metal–organic frameworks to single/dual-atom and cluster metal catalysts for energy applications. Energy Environ. Sci. 2020, 13, 1658–1693. [Google Scholar] [CrossRef]
- Yan, Y.; Cheng, H.; Qu, Z.; Yu, R.; Liu, F.; Ma, Q.; Zhao, S.; Hu, H.; Cheng, Y.; Yang, C.; et al. Recent progress on the synthesis and oxygen reduction applications of Fe-based single-atom and double-atom catalysts. J. Mater. Chem. A 2021, 9, 19489–19507. [Google Scholar] [CrossRef]
- Zhang, P.; Yang, Y.; Duan, X.; Liu, Y.; Wang, S. Density Functional Theory Calculations for Insight into the Heterocatalyst Reactivity and Mechanism in Persulfate-Based Advanced Oxidation Reactions. ACS Catal. 2021, 11, 11129–11159. [Google Scholar] [CrossRef]
- Hu, J.; Li, Y.; Zou, Y.; Lin, L.; Li, B.; Li, X.-Y. Transition metal single-atom embedded on N-doped carbon as a catalyst for peroxymonosulfate activation: A DFT study. Chem. Eng. J. 2022, 437, 135428. [Google Scholar] [CrossRef]
- Xia, P.; Wang, C.; He, Q.; Ye, Z.; Sirés, I. MOF-derived single-atom catalysts: The next frontier in advanced oxidation for water treatment. Chem. Eng. J. 2023, 452, 139446. [Google Scholar] [CrossRef]
- Yang, P.; Long, Y.; Huang, W.; Liu, D. Single-atom copper embedded in two-dimensional MXene toward peroxymonosulfate activation to generate singlet oxygen with nearly 100% selectivity for enhanced Fenton-like reactions. Appl. Catal. B Environ. 2023, 324, 122245. [Google Scholar] [CrossRef]
- Duan, P.; Pan, J.; Du, W.; Yue, Q.; Gao, B.; Xu, X. Activation of Peroxymonosulfate via Mediated Electron Transfer Mechanism on Single–Atom Fe Catalyst for Effective Organic Pollutants Removal. Appl. Catal. B Environ. 2021, 299, 120714. [Google Scholar] [CrossRef]
- Li, X.; Hu, J.; Deng, Y.; Li, T.; Liu, Z.-Q.; Wang, Z. High stable photo-Fenton-like catalyst of FeP/Fe single atom-graphene oxide for long-term antibiotic tetracycline removal. Appl. Catal. B Environ. 2023, 324, 122243. [Google Scholar] [CrossRef]
- Wang, Q.; Lu, J.; Jiang, Y.; Yang, S.; Yang, Y.; Wang, Z. FeCo bimetallic metal organic framework nanosheets as peroxymonosulfate activator for selective oxidation of organic pollutants. Chem. Eng. J. 2022, 443, 136483. [Google Scholar] [CrossRef]
- Bi, G.; Ding, R.; Song, J.; Luo, M.; Zhang, H.; Liu, M.; Huang, D.; Mu, Y. Discriminating the Active Ru Species Towards the Selective Generation of Singlet Oxygen from Peroxymonosulfate: Nanoparticles Surpass Single-Atom Catalysts. Angew. Chem. Int. Ed. Engl. 2024, 63, e202401551. [Google Scholar] [CrossRef]
- Yang, L.; Xiong, Z.; Li, J.; Wu, Z.; Zhao, X.; Zhao, C.; Zhou, Y.; Qian, Y.; Lai, B. Iron active sites encapsulated in N-doped graphite for efficiently selective degradation of emerging contaminants via peroxymonosulfate (PMS) activation: Inherent roles of adsorption and electron-transfer dominated nonradical mechanisms. Chem. Eng. J. 2022, 444, 136623. [Google Scholar] [CrossRef]
- Zhang, B.; Li, X.; Bingham, P.A.; Akiyama, K.; Kubuki, S. Carbon matrix with atomic dispersion of binary cobalt/iron-N sites as efficient peroxymonosulfate activator for organic pollutant oxidation. Chem. Eng. J. 2023, 451, 138574. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, X.; Liu, W.; Jiao, M.; Mou, K.; Zhang, X.; Liu, L. Amination strategy to boost the CO2 electroreduction current density of M–N/C single-atom catalysts to the industrial application level. Energy Environ. Sci. 2021, 14, 2349–2356. [Google Scholar] [CrossRef]
- Yang, Q.; Xu, Q.; Jiang, H.-L. Metal-organic frameworks meet metal nanoparticles: Synergistic effect for enhanced catalysis. Chem. Soc. Rev. 2017, 46, 4774–4808. [Google Scholar] [CrossRef]
- Song, Z.; Zhang, L.; Doyle-Davis, K.; Fu, X.; Luo, J.L.; Sun, X. Recent Advances in MOF-Derived Single Atom Catalysts for Electrochemical Applications. Adv. Energy Mater. 2020, 10, 2001561. [Google Scholar] [CrossRef]
- Li, X.; Huang, X.; Xi, S.; Miao, S.; Ding, J.; Cai, W.; Liu, S.; Yang, X.; Yang, H.; Gao, J.; et al. Single Cobalt Atoms Anchored on Porous N-Doped Graphene with Dual Reaction Sites for Efficient Fenton-like Catalysis. J. Am. Chem. Soc. 2018, 140, 12469–12475. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zeng, D.; Zhang, Q.; Cui, R.; Hassan, M.; Dong, L.; Li, J.; He, Y. Single Mn atom anchored on N-doped porous carbon as highly efficient Fenton-like catalyst for the degradation of organic contaminants. Appl. Catal. B Environ. 2020, 279, 119363. [Google Scholar] [CrossRef]
- Yang, J.; Zeng, D.; Li, J.; Dong, L.; Ong, W.-J.; He, Y. A highly efficient Fenton-like catalyst based on isolated diatomic Fe-Co anchored on N-doped porous carbon. Chem. Eng. J. 2021, 404, 126376. [Google Scholar] [CrossRef]
- Wang, J.; Xie, Y.; Yu, G.; Yin, L.; Xiao, J.; Wang, Y.; Lv, W.; Sun, Z.; Kim, J.H.; Cao, H. Manipulating Selectivity of Hydroxyl Radical Generation by Single-Atom Catalysts in Catalytic Ozonation: Surface or Solution. Environ. Sci. Technol. 2022, 56, 17753–17762. [Google Scholar] [CrossRef]
- Wu, X.; Rigby, K.; Huang, D.; Hedtke, T.; Wang, X.; Chung, M.W.; Weon, S.; Stavitski, E.; Kim, J.H. Single-Atom Cobalt Incorporated in a 2D Graphene Oxide Membrane for Catalytic Pollutant Degradation. Environ. Sci. Technol. 2022, 56, 1341–1351. [Google Scholar] [CrossRef]
- Li, J.; Dou, X.; Qin, H.; Sun, Y.; Yin, D.; Guan, X. Characterization methods of zerovalent iron for water treatment and remediation. Water Res. 2018, 148, 70–85. [Google Scholar] [CrossRef] [PubMed]
- Hutson, N.D.; Attwood, B.C.; Scheckel, K.G. XAS and XPS Characterization of Mercury Binding on Brominated Activated Carbon. Environ. Sci. Technol. 2007, 41, 1747–1752. [Google Scholar] [CrossRef]
- Tse, J.S.; Shaw, D.M.; Klug, D.D.; Patchkovskii, S.; Vankó, G.; Monaco, G.; Krisch, M. X-Ray Raman Spectroscopic Study of Water in the Condensed Phases. Phy. Rev. Lett. 2008, 100, 095502. [Google Scholar] [CrossRef]
- Yin, Y.; Shi, L.; Li, W.; Li, X.; Wu, H.; Ao, Z.; Tian, W.; Liu, S.; Wang, S.; Sun, H. Boosting Fenton-Like Reactions via Single Atom Fe Catalysis. Environ. Sci. Technol. 2019, 53, 11391–11400. [Google Scholar] [CrossRef] [PubMed]
- Miao, J.; Song, J.; Lang, J.; Zhu, Y.; Dai, J.; Wei, Y.; Long, M.; Shao, Z.; Zhou, B.; Alvarez, P.J.J.; et al. Single-Atom MnN5 Catalytic Sites Enable Efficient Peroxymonosulfate Activation by Forming Highly Reactive Mn(IV)–Oxo Species. Environ. Sci. Technol. 2023, 57, 4266–4275. [Google Scholar] [CrossRef]
- Li, X.; Yang, X.; Zhang, J.; Huang, Y.; Liu, B. In Situ/Operando Techniques for Characterization of Single-Atom Catalysts. ACS Catal. 2019, 9, 2521–2531. [Google Scholar] [CrossRef]
- Jiang, H.L.; Yang, Q.; Yang, C.C.; Lin, C.H. Metal-Organic-Framework-Derived Hollow N-Doped Porous Carbon with Ultrahigh Concentrations of Single Zn Atoms for Efficient Carbon Dioxide Conversion. Angew. Chem. Int. Ed. Engl. 2018, 58, 3511–3515. [Google Scholar]
- Zeng, Y.; Zhao, J.; Wang, S.; Ren, X.; Tan, Y.; Lu, Y.-R.; Xi, S.; Wang, J.; Jaouen, F.; Li, X.; et al. Unraveling the Electronic Structure and Dynamics of the Atomically Dispersed Iron Sites in Electrochemical CO2 Reduction. J. Am. Chem. Soc. 2023, 145, 15600–15610. [Google Scholar] [CrossRef]
- Guo, J.; Wang, Y.; Shang, Y.; Yin, K.; Li, Q.; Gao, B.; Li, Y.; Duan, X.; Xu, X. Fenton- like activity and pathway modulation via single-atom sites and pollutants comediates the electron transfer process. Proc. Natl. Acad. Sci. USA 2024, 121, e2313387121. [Google Scholar] [CrossRef]
- Wang, H.; Maiyalagan, T.; Wang, X. Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications. ACS Catal. 2012, 2, 781–794. [Google Scholar] [CrossRef]
- Qiang, R.; Du, Y.; Chen, D.; Ma, W.; Wang, Y.; Xu, P.; Ma, J.; Zhao, H.; Han, X. Electromagnetic functionalized Co/C composites by in situ pyrolysis of metal-organic frameworks (ZIF-67). J. Alloys Compd. 2016, 681, 384–393. [Google Scholar] [CrossRef]
- Huang, B.; Ren, X.; Zhao, J.; Wu, Z.; Wang, X.; Song, X.; Li, X.; Liu, B.; Xiong, Z.; Lai, B. Modulating Electronic Structure Engineering of Atomically Dispersed Cobalt Catalyst in Fenton-like Reaction for Efficient Degradation of Organic Pollutants. Environ. Sci. Technol. 2023, 57, 14071–14081. [Google Scholar] [CrossRef] [PubMed]
- Miao, J.; Zhu, Y.; Lang, J.; Zhang, J.; Cheng, S.; Zhou, B.; Zhang, L.; Alvarez, P.J.J.; Long, M. Spin-State-Dependent Peroxymonosulfate Activation of Single-Atom M–N Moieties via a Radical-Free Pathway. ACS Catal. 2021, 11, 9569–9577. [Google Scholar] [CrossRef]
- Liang, S.; Hu, X.; Xu, H.; Lei, Z.; Wei, C.; Feng, C. Mechanistic insight into the reaction pathway of peroxomonosulfate-initiated decomplexation of EDTA-NiII under alkaline conditions: Formation of high-valent Ni intermediate. Appl. Catal. B Environ. 2021, 296, 120375. [Google Scholar] [CrossRef]
- Yang, S.; Xu, S.; Tong, J.; Ding, D.; Wang, G.; Chen, R.; Jin, P.; Wang, X.C. Overlooked role of nitrogen dopant in carbon catalysts for peroxymonosulfate activation: Intrinsic defects or extrinsic defects? Appl. Catal. B Environ. 2021, 295, 120291. [Google Scholar] [CrossRef]
- Wang, L.; Xu, H.; Jiang, N.; Wang, Z.; Jiang, J.; Zhang, T. Trace Cupric Species Triggered Decomposition of Peroxymonosulfate and Degradation of Organic Pollutants: Cu(III) Being the Primary and Selective Intermediate Oxidant. Environ. Sci. Technol. 2020, 54, 4686–4694. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, B.; Li, Y.; Fan, X.; Zhang, F.; Zhang, G.; Peng, W. Facile Synthesis of Atomic Fe-N-C Materials and Dual Roles Investigation of Fe-N4 Sites in Fenton-Like Reactions. Adv. Sci. 2021, 8, e2101824. [Google Scholar] [CrossRef]
- Bao, Y.; Lian, C.; Huang, K.; Yu, H.; Liu, W.; Zhang, J.; Xing, M. Generating High-valent Iron-oxo identical withFe(IV)=O Complexes in Neutral Microenvironments through Peroxymonosulfate Activation by Zn-Fe Layered Double Hydroxides. Angew. Chem. Int. Ed. Engl. 2022, 61, e202209542. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.-J.; Hu, W.-L.; Zhang, Q.-H.; Zhao, T.-T.; Luo, H.; Zhang, X.; Gu, L.; Hu, J.-S.; Wan, L.-J. From biological enzyme to single atomic Fe–N–C electrocatalyst for efficient oxygen reduction. Chem. Commun. 2018, 54, 1307–1310. [Google Scholar] [CrossRef]
- Long, Y.; Dai, J.; Zhao, S.; Su, Y.; Wang, Z.; Zhang, Z. Atomically Dispersed Cobalt Sites on Graphene as Efficient Periodate Activators for Selective Organic Pollutant Degradation. Environ. Sci. Technol. 2021, 55, 5357–5370. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, X.; Cao, D.; Wang, Y.; Zhu, Y. Peroxymonosulfate enhanced visible light photocatalytic degradation bisphenol A by single-atom dispersed Ag mesoporous g-C3N4 hybrid. Appl. Catal. B Environ. 2017, 211, 79–88. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, C.; Yang, Y.; Zhang, S.; Yan, X.; Xiao, C.; Zhou, Y.; Zhu, Z.; Qi, J.; Sun, X.; et al. Mn-Co dual sites relay activation of peroxymonosulfate for accelerated decontamination. Appl. Catal. B Environ. 2023, 330, 122656. [Google Scholar] [CrossRef]
- Zhu, C.; Nie, Y.; Cun, F.; Wang, Y.; Tian, Z.; Liu, F. Two-step pyrolysis to anchor ultrahigh-density single-atom FeN5 sites on carbon nitride for efficient Fenton-like catalysis near 0 °C. Appl. Catal. B Environ. 2022, 319, 121900. [Google Scholar] [CrossRef]
- Ma, W.; Wang, N.; Tong, T.; Zhang, L.; Lin, K.-Y.A.; Han, X.; Du, Y. Nitrogen, phosphorus, and sulfur tri-doped hollow carbon shells derived from ZIF-67@poly (cyclotriphosphazene-co-4,4′-sulfonyldiphenol) as a robust catalyst of peroxymonosulfate activation for degradation of bisphenol A. Carbon 2018, 137, 291–303. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, W.; Liu, W.; Li, Y.; Ye, J.; Liang, J.; Tong, M. Activation of sulfite by single-atom Fe deposited graphitic carbon nitride for diclofenac removal: The synergetic effect of transition metal and photocatalysis. Chem. Eng. J. 2021, 407, 127167. [Google Scholar] [CrossRef]
- Zhang, C.; Bai, L.; Chen, M.; Sun, X.; Zhu, M.; Wu, Q.; Gao, X.; Zhang, Q.; Zheng, X.; Yu, Z.Q.; et al. Modulating the Site Density of Mo Single Atoms to Catch Adventitious O Atoms for Efficient H2O2 Oxidation with Light. Adv. Mater. 2023, 35, e2208704. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, Y.; Feng, Y.; Zeng, Y.; Xie, Z.; Zhang, Q.; Su, Y.; Chen, P.; Liu, Y.; Yao, K.; et al. Novel ternary photocatalyst of single atom-dispersed silver and carbon quantum dots co-loaded with ultrathin g-C3N4 for broad spectrum photocatalytic degradation of naproxen. Appl. Catal. B Environ. 2018, 221, 510–520. [Google Scholar] [CrossRef]
- Qian, M.; Wu, X.L.; Lu, M.; Huang, L.; Li, W.; Lin, H.; Chen, J.; Wang, S.; Duan, X. Modulation of Charge Trapping by Island-like Single-Atom Cobalt Catalyst for Enhanced Photo-Fenton-Like reaction. Adv. Funct. Mater. 2023, 33, 2208688. [Google Scholar] [CrossRef]
- Duan, P.; Li, M.; Xu, X.; Yue, Q.; Gao, Y.; Gao, B. Understanding of interfacial molecular interactions and inner-sphere reaction mechanism in heterogeneous Fenton-like catalysis on Mn-N4 site. Appl. Catal. B Environ. 2024, 344, 123619. [Google Scholar] [CrossRef]
- Ni, W.; Liu, Z.; Zhang, Y.; Ma, C.; Deng, H.; Zhang, S.; Wang, S. Electroreduction of Carbon Dioxide Driven by the Intrinsic Defects in the Carbon Plane of a Single Fe-N4 Site. Adv. Mater. 2021, 33, e2003238. [Google Scholar] [CrossRef]
- Zhang, X.; Li, C.; Wang, X.; Yang, S.; Tan, Y.; Yuan, F.; Zheng, S.; Dionysiou, D.D.; Sun, Z. Defect Engineering Modulated Iron Single Atoms with Assist of Layered Clay for Enhanced Advanced Oxidation Processes. Small 2022, 18, 2204793. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, P.; Wang, C.; Gan, L.; Chen, X.; Zhang, P.; Wang, Y.; Li, H.; Wang, L.; Zhou, X.; et al. Unraveling the dual defect sites in graphite carbon nitride for ultra-high photocatalytic H2O2 evolution. Energy Environ. Sci. 2022, 15, 830–842. [Google Scholar] [CrossRef]
- Liang, X.; Wang, D.; Zhao, Z.; Li, T.; Gao, Y.; Hu, C. Coordination Number Dependent Catalytic Activity of Single-Atom Cobalt Catalysts for Fenton-Like Reaction. Adv. Funct. Mater. 2022, 32, 2203001. [Google Scholar] [CrossRef]
- Wei, Y.; Miao, J.; Ge, J.; Lang, J.; Yu, C.; Zhang, L.; Alvarez, P.J.J.; Long, M. Ultrahigh Peroxymonosulfate Utilization Efficiency over CuO Nanosheets via Heterogeneous Cu(III) Formation and Preferential Electron Transfer during Degradation of Phenols. Environ. Sci. Technol. 2022, 56, 8984–8992. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Yao, Y.; Wang, Y.; Liu, Y. Tuning the electronic structure of transition metals embedded in nitrogen-doped graphene for electrocatalytic nitrogen reduction: A first-principles study. Nanoscale 2020, 12, 9696–9707. [Google Scholar] [CrossRef]
- Jiao, D.; Liu, Y.; Cai, Q.; Zhao, J. Coordination tunes the activity and selectivity of the nitrogen reduction reaction on single-atom iron catalysts: A computational study. J. Mater. Chem. A 2021, 9, 1240–1251. [Google Scholar] [CrossRef]
- Greiner, M.T.; Jones, T.E.; Beeg, S.; Zwiener, L.; Scherzer, M.; Girgsdies, F.; Piccinin, S.; Armbrüster, M.; Knop-Gericke, A.; Schlögl, R. Free-atom-like d states in single-atom alloy catalysts. Nat. Chem. 2018, 10, 1008–1015. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Shang, S.; Fan, Y.; Shih, K.; Li, X.-Y.; Lin, L. Incorporation of atomically dispersed cobalt in the 2D metal–organic framework of a lamellar membrane for highly efficient peroxymonosulfate activation. Appl. Catal. B Environ. 2023, 325, 122344. [Google Scholar] [CrossRef]
- Sun, Y.; Li, R.; Song, C.; Zhang, H.; Cheng, Y.; Nie, A.; Li, H.; Dionysiou, D.D.; Qian, J.; Pan, B. Origin of the improved reactivity of MoS2 single crystal by confining lattice Fe atom in peroxymonosulfate-based Fenton-like reaction. Appl. Catal. B Environ. 2021, 298, 120537. [Google Scholar] [CrossRef]
- Mi, X.; Wang, P.; Xu, S.; Su, L.; Zhong, H.; Wang, H.; Li, Y.; Zhan, S. Almost 100% Peroxymonosulfate Conversion to Singlet Oxygen on Single-Atom CoN2+2 Sites. Angew. Chem. Int. Ed. Engl. 2021, 60, 4588–4593. [Google Scholar] [CrossRef]
- Xiong, Y.; Li, H.; Liu, C.; Zheng, L.; Liu, C.; Wang, J.O.; Liu, S.; Han, Y.; Gu, L.; Qian, J.; et al. Single-Atom Fe Catalysts for Fenton-Like Reactions: Roles of Different N Species. Adv. Mater. 2022, 34, e2110653. [Google Scholar] [CrossRef] [PubMed]
- Xia, P.; Ye, Z.; Zhao, L.; Xue, Q.; Lanzalaco, S.; He, Q.; Qi, X.; Sirés, I. Tailoring single-atom FeN4 moieties as a robust heterogeneous catalyst for high-performance electro-Fenton treatment of organic pollutants. Appl. Catal. B Environ. 2023, 322, 122116. [Google Scholar] [CrossRef]
- Jiang, N.; Xu, H.; Wang, L.; Jiang, J.; Zhang, T. Nonradical Oxidation of Pollutants with Single-Atom-Fe(III)-Activated Persulfate: Fe(V) Being the Possible Intermediate Oxidant. Environ. Sci. Technol. 2020, 54, 14057–14065. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Pei, Y.; Cao, M.; Yang, H.; Li, Y. Highly dispersed copper single-atom catalysts activated peroxymonosulfate for oxytetracycline removal from water: Mechanism and degradation pathway. Chem. Eng. J. 2022, 450, 138194. [Google Scholar] [CrossRef]
- Shang, Y.; Liu, X.; Li, Y.; Gao, Y.; Gao, B.; Xu, X.; Yue, Q. Boosting fenton-like reaction by reconstructed single Fe atom catalyst for oxidizing organics: Synergistic effect of conjugated π-π sp2 structured carbon and isolated Fe-N4 sites. Chem. Eng. J. 2022, 446, 137120. [Google Scholar] [CrossRef]
- Han, B.; Luo, Y.; Lin, Y.; Weng, B.; Xia, D.; Zhou, Y.; Guan, C.; Wang, Z.; Wei, X.; Jiang, J. Microenvironment engineering of single-atom catalysts for persulfate-based advanced oxidation processes. Chem. Eng. J. 2022, 447, 137551. [Google Scholar] [CrossRef]
- Chen, F.; Wu, X.-L.; Yang, L.; Chen, C.; Lin, H.; Chen, J. Efficient degradation and mineralization of antibiotics via heterogeneous activation of peroxymonosulfate by using graphene supported single-atom Cu catalyst. Chem. Eng. J. 2020, 394, 124904. [Google Scholar] [CrossRef]
- Zhang, B.; Li, X.; Akiyama, K.; Bingham, P.A.; Kubuki, S. Elucidating the Mechanistic Origin of a Spin State-Dependent FeNx-C Catalyst toward Organic Contaminant Oxidation via Peroxymonosulfate Activation. Environ. Sci. Technol. 2022, 56, 1321–1330. [Google Scholar] [CrossRef]
- Chu, C.; Yang, J.; Zhou, X.; Huang, D.; Qi, H.; Weon, S.; Li, J.; Elimelech, M.; Wang, A.; Kim, J.H. Cobalt Single Atoms on Tetrapyridomacrocyclic Support for Efficient Peroxymonosulfate Activation. Environ. Sci. Technol. 2021, 55, 1242–1250. [Google Scholar] [CrossRef]
- Song, J.; Hou, N.; Liu, X.; Antonietti, M.; Wang, Y.; Mu, Y. Unsaturated single-atom CoN3 sites for improved fenton-like reaction towards high-valent metal species. Appl. Catal. B 2023, 325, 122368. [Google Scholar] [CrossRef]
- Zhou, X.; Ke, M.K.; Huang, G.X.; Chen, C.; Chen, W.; Liang, K.; Qu, Y.; Yang, J.; Wang, Y.; Li, F.; et al. Identification of Fenton-like active Cu sites by heteroatom modulation of electronic density. Proc. Natl. Acad. Sci. USA 2022, 119, e2119492119. [Google Scholar] [CrossRef] [PubMed]
- Qian, K.; Chen, H.; Li, W.; Ao, Z.; Wu, Y.N.; Guan, X. Single-Atom Fe Catalyst Outperforms Its Homogeneous Counterpart for Activating Peroxymonosulfate to Achieve Effective Degradation of Organic Contaminants. Environ. Sci. Technol. 2021, 55, 7034–7043. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Wu, Z.; Wang, X.; Song, X.; Zhou, H.; Zhang, H.; Zhou, P.; Liu, W.; Xiong, Z.; Lai, B. Coupled Surface-Confinement Effect and Pore Engineering in a Single-Fe-Atom Catalyst for Ultrafast Fenton-like Reaction with High-Valent Iron-Oxo Complex Oxidation. Environ. Sci. Technol. 2023, 57, 15667–15679. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, Z.; Pan, Z.; Wu, Z.; Huang, B.; Lai, B.; Liu, W. Advanced Characterization Techniques and Theoretical Calculation for Single Atom Catalysts in Fenton-like Chemistry. Molecules 2024, 29, 3719. https://doi.org/10.3390/molecules29163719
Xiong Z, Pan Z, Wu Z, Huang B, Lai B, Liu W. Advanced Characterization Techniques and Theoretical Calculation for Single Atom Catalysts in Fenton-like Chemistry. Molecules. 2024; 29(16):3719. https://doi.org/10.3390/molecules29163719
Chicago/Turabian StyleXiong, Zhaokun, Zhicheng Pan, Zelin Wu, Bingkun Huang, Bo Lai, and Wen Liu. 2024. "Advanced Characterization Techniques and Theoretical Calculation for Single Atom Catalysts in Fenton-like Chemistry" Molecules 29, no. 16: 3719. https://doi.org/10.3390/molecules29163719
APA StyleXiong, Z., Pan, Z., Wu, Z., Huang, B., Lai, B., & Liu, W. (2024). Advanced Characterization Techniques and Theoretical Calculation for Single Atom Catalysts in Fenton-like Chemistry. Molecules, 29(16), 3719. https://doi.org/10.3390/molecules29163719