Catalytic Degradation of Bisphenol A with a Magnetically Recoverable Geopolymer Composite Using Coal Gangue
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of MnFe2O4-CGP Composite
2.2. Effects on the Degradation of BPA
2.3. Adsorption Kinetics and Isotherms
2.4. Stability and Reusability
2.5. Identification of Reactive Radical Species
2.6. Possible Catalytic Mechanism
3. Materials and Methods
3.1. Materials
3.2. Characterization
3.3. Synthesis of MnFe2O4 Nanoparticles
3.4. Synthesis of MnFe2O4-CGP Composite
3.5. Fenton-like Oxidation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, W.P.; Zhang, H.H.; Cao, B.P.; Lin, K.D.; Gan, J. Oxidative removal of bisphenol A using zero valent Aluminum–acid system. Water Res. 2011, 45, 1872–1878. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.H.; Kanjo, Y.; Mizutani, S. Removal mechanisms for endocrine disrupting compounds (EDCs) in wastewater treatment—Physical means, biodegradation, and chemical advanced oxidation: A review. Sci. Total Environ. 2009, 407, 731–748. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Sun, B.; Guan, X.H. Oxidative removal of bisphenol A by permanganate: Kinetics, pathways and influences of Co-existing chemicals. Sep. Purif. Technol. 2013, 107, 48–53. [Google Scholar] [CrossRef]
- Dietrich, M.; Franke, M.; Stelter, M.; Braeutigam, P. Degradation of endocrine disruptor bisphenol A by ultrasound-assisted electrochemical oxidation in water. Ultrason. Sonochem. 2017, 39, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Erjavec, B.; Kaplan, R.; Djinović, P.; Pintar, A. Catalytic wet air oxidation of bisphenol A model solution in a trickle-bed reactor over titanate nanotube-based catalysts. Appl. Catal. B Environ. 2013, 132–133, 342–352. [Google Scholar] [CrossRef]
- Zhang, L.P.; Qiu, X.H.; Chen, J.Y. Influence of humic acid on the structure memory effect of hydrocalumite and its performance in the adsorption cycles of bisphenol A. J. Water Process Eng. 2019, 32, 100987. [Google Scholar] [CrossRef]
- Yang, K.L.; Yue, Q.Y.; Kong, J.J.; Zhao, P.; Gao, Y.; Fu, K.F.; Gao, B.Y. Microbial diversity in combined UAF–UBAF system with novel sludge and coal cinder ceramic fillers for tetracycline wastewater treatment. Chem. Eng. J. 2016, 285, 319–330. [Google Scholar] [CrossRef]
- Wang, N.N.; Zheng, T.; Zhang, G.S.; Wang, P. A review on Fenton-like processes for organic wastewater treatment. J. Environ. Chem. Eng. 2016, 4, 762–787. [Google Scholar] [CrossRef]
- Xia, H.L.; Li, C.W.; Yang, G.Y.; Shi, Z.A.; Jin, C.X.; He, W.Z.; Xu, J.C.; Li, G.M. A review of microwave-assisted advanced oxidation processes for wastewater treatment. Chemosphere 2022, 287, 131981. [Google Scholar] [CrossRef]
- Qin, H.D.; Yang, Y.C.; Shi, W.; She, Y.B. Heterogeneous Fenton degradation of ofloxacin catalyzed by magnetic nanostructured MnFe2O4 with different morphologies. Environ. Sci. Pollut. Res. 2021, 28, 26558–26570. [Google Scholar] [CrossRef]
- Xu, H.Y.; Li, Y.; Wang, W.S.; Li, X.J.; Dong, L.M. Magnetic nanoscale MnFe2O4 as heterogeneous Fenton-like catalyst for Rhodamine B degradation: Efficiency, kinetics and process optimization. J. Iran. Chem. Soc. 2023, 20, 2043–2055. [Google Scholar] [CrossRef]
- Wan, Z.; Wang, J.L. Degradation of sulfamethazine antibiotics using Fe3O4–Mn3O4 nanocomposite as a Fenton-like catalyst. J. Chem. Technol. Biotechnol. 2017, 92, 874–883. [Google Scholar] [CrossRef]
- Cheng, Z.Y.; Luo, S.Y.; Li, X.J.; Zhang, S.; Thang Nguyen, T.; Guo, M.H.; Gao, X. Ultrasound-assisted heterogeneous Fenton-like process for Methylene blue removal using magnetic MnFe2O4/Biochar nanocomposite. Appl. Surf. Sci. 2021, 566, 150654. [Google Scholar] [CrossRef]
- Zhao, W.K.; Yang, B. Fabrication of magnetic MnFe2O4@HL composites with an in situ Fenton-like reaction for enhancing tetracycline degradation. J. Colloid Interf. Sci. 2024, 658, 997–1008. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Kang, J.; Liang, P.; Zhang, H.Y.; Sun, H.Q.; Tadé, M.O.; Wang, S.B. Ferric carbide nanocrystals encapsulated in nitrogen-doped carbon nanotubes as an outstanding environmental catalyst. Environ. Sci. Nano. 2017, 4, 170–179. [Google Scholar] [CrossRef]
- Li, N.; Fu, F.L.; Lu, J.W.; Ding, Z.C.; Tang, B.; Pang, J.B. Facile preparation of magnetic mesoporous MnFe2O4@SiO2-CTAB composites for Cr(VI) adsorption and reduction. Environ. Pollut. 2017, 220, 1376–1385. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.Y.; Qu, J.Y.; Tian, S.; Ding, Y.W.; Hai, X.; Jiang, B.; Wu, M.B.; Qiu, J.S. Green fabrication of magnetic recoverable graphene/MnFe2O4 hybrids for efficient decomposition of methylene blue and the Mn/Fe redox synergetic mechanism. RSC Adv. 2016, 6, 104549–104555. [Google Scholar] [CrossRef]
- Rathore, R.; Waghmare, A.; Rai, S.; Chandra, V. Enhanced photocatalytic performance of g-C3N4@MnFe2O4 nanocomposite for crystal violet dye degradation under solar light. ChemistrySelect 2023, 8, e202301344. [Google Scholar] [CrossRef]
- Derakhshani, E.; Naghizadeh, A.; Mortazavi-Derazkola, S. Biosynthesis of MnFe2O4@TiO2 magnetic nanocomposite using oleaster tree bark for efficient photocatalytic degradation of humic acid in aqueous solutions. Environ. Sci. Pollut. Res. 2023, 30, 3862–3871. [Google Scholar] [CrossRef]
- Siyal, A.A.; Shamsuddin, M.R.; Khan, M.I.; Rabat, N.E.; Zulfiqar, M.; Man, Z.; Siame, J.; Azizli, K.A. A review on geopolymers as emerging materials for the adsorption of heavy metals and dyes. J. Environ. Manag. 2018, 224, 327–339. [Google Scholar] [CrossRef]
- Ji, Z.H.; Zhang, Y.; Qi, X.Y.; Wang, Y.K.; Xia, X.H.; Pei, Y.S. Low-cost and facile fabrication of recyclable and reusable waste-based geopolymer for visible-light photocatalysis degradation. J. Clean. Prod. 2021, 310, 127434. [Google Scholar] [CrossRef]
- Liu, J.; Lv, C. Durability of Cellulosic-Fiber-Reinforced geopolymers: A review. Molecules 2022, 27, 796. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Yang, L.; Rao, F.; Zhang, K.M.; Qin, Z.L.; Song, Z.G.; Na, Z.H. Behaviors and mechanisms of adsorption of MB and Cr(VI) by geopolymer microspheres under single and binary systems. Molecules 2024, 29, 1560. [Google Scholar] [CrossRef]
- Rasaki, S.A.; Zhang, B.X.; Guarecuco, R.; Thomas, T.; Yang, M.H. Geopolymer for use in heavy metals adsorption, and advanced oxidative processes: A critical review. J. Clean. Prod. 2019, 213, 42–58. [Google Scholar] [CrossRef]
- Asim, N.; Alghoul, M.; Mohammad, M.; Amin, M.H.; Akhtaruzzaman, M.; Amin, N.; Sopian, K. Emerging sustainable solutions for depollution: Geopolymers. Constr. Build. Mater. 2019, 199, 540–548. [Google Scholar] [CrossRef]
- Dong, D.Z.; Wang, K.T.; Yi, M.; Liang, Y.S.; Muhammad, Y.; Wei, E.N.; Wei, Y.Z.; Fujita, T. Preparation of TiO2 photocatalyst microspheres by geopolymer technology for the degradation of tetracycline. J. Clean. Prod. 2022, 339, 130734. [Google Scholar] [CrossRef]
- Zailan, S.N.; Bouaissi, A.; Mahmed, N.; Abdullah, M.M.A.B. Influence of ZnO nanoparticles on mechanical properties and photocatalytic activity of Self-cleaning ZnO-based geopolymer paste. J. Inorg. Organomet. Polym. Mater. 2020, 30, 2007–2016. [Google Scholar] [CrossRef]
- Fallah, M.; MacKenzie, K.J.D.; Hanna, J.V.; Page, S.J. Novel photoactive inorganic polymer composites of inorganic polymers with copper(I) oxide nanoparticles. J. Mater. Sci. 2015, 50, 7374–7383. [Google Scholar] [CrossRef]
- Wang, Q.P.; Zhu, L.T.; Lu, C.Y.; Liu, Y.X.; Yu, Q.B.; Chen, S. Investigation on the effect of calcium on the properties of geopolymer prepared from uncalcined coal gangue. Polymers 2023, 15, 1241. [Google Scholar] [CrossRef]
- Yi, C.; Ma, H.Q.; Chen, H.Y.; Wang, J.X.; Shi, J.; Li, Z.H.; Yu, M.K. Preparation and characterization of coal gangue geopolymers. Constr. Build. Mater. 2018, 187, 318–326. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Ling, T.C. Reactivity activation of waste coal gangue and its impact on the properties of cement-based materials—A review. Constr. Build. Mater. 2020, 234, 117424. [Google Scholar] [CrossRef]
- Wang, R.; Wang, J.S.; Song, Q.C. The effect of Na+ and H2O on structural and mechanical properties of coal gangue-based geopolymer: Molecular dynamics simulation and experimental study. Constr. Build. Mater. 2021, 268, 121081. [Google Scholar] [CrossRef]
- Yao, Y.J.; Cai, Y.M.; Lu, F.; Wei, F.Y.; Wang, X.Y.; Wang, S.B. Magnetic recoverable MnFe2O4 and MnFe2O4-graphene hybrid as heterogeneous catalysts of peroxymonosulfate activation for efficient degradation of aqueous organic pollutants. J. Hazard. Mater. 2014, 270, 61–70. [Google Scholar] [CrossRef]
- Cheng, Z.Y.; Li, S.P.; Nguyen, T.T.; Gao, X.; Luo, S.Y.; Guo, M.H. Biochar loaded on MnFe2O4 as Fenton catalyst for Rhodamine B removal: Characterizations, catalytic performance, process optimization and mechanism. Colloid. Surface. A 2021, 631, 127651. [Google Scholar] [CrossRef]
- Baig, M.M.; Zulfiqar, S.; Yousuf, M.A.; Shakir, I.; Aboud, M.F.A.; Warsi, M.F. DyxMnFe2-xO4 nanoparticles decorated over mesoporous silica for environmental remediation applications. J. Hazard. Mater. 2021, 402, 123526. [Google Scholar] [CrossRef]
- Li, L.; Lai, C.; Huang, F.L.; Cheng, M.; Zeng, G.M.; Huang, D.L.; Li, B.S.; Liu, S.Y.; Zhang, M.M.; Qin, L.; et al. Degradation of naphthalene with magnetic bio-char activate hydrogen peroxide: Synergism of bio-char and Fe–Mn binary oxides. Water Res. 2019, 160, 238–248. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.M.; Wang, X.S.; Geng, M.Z.; Chen, D.; Lin, H.; Zhang, H. Catalytic oxidation of clofibric acid by peroxydisulfate activated with wood-based biochar: Effect of biochar pyrolysis temperature, performance and mechanism. Chem. Eng. J. 2019, 374, 1253–1263. [Google Scholar] [CrossRef]
- Chen, X.; Deng, F.; Liu, X.; Cui, K.P.; Weerasooriya, R. Hydrothermal ynthesis of MnO2/Fe(0) Composites from Li-ion battery cathodes for destructing sulfadiazine by photo-Fenton process. Sci. Total Environ. 2021, 774, 145776. [Google Scholar] [CrossRef]
- Gonçalves, R.G.L.; Mendes, H.M.; Bastos, S.L.; D’Agostino, L.C.; Tronto, J.; Pulcinelli, S.H.; Santilli, C.V.; Neto, J.L. Fenton-like degradation of methylene blue using Mg/Fe and MnMg/Fe layered double hydroxides as reusable catalysts. Appl. Clay Sci. 2020, 187, 105477. [Google Scholar] [CrossRef]
- Li, Q.; Jiang, X.Y.; Lian, Y.F. The efficient photocatalytic degradation of organic pollutants on the MnFe2O4/BGA composite under visible light. Nanomaterials 2021, 11, 1276. [Google Scholar] [CrossRef]
- Bouzayani, B.; Sanromán, M.Á. Polymer-supported heterogeneous Fenton catalysts for the environmental remediation of wastewater. Molecules 2024, 29, 2188. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Fu, H.; Zhang, D. Degradation of C.I. Acid Orange 7 by ultrasound enhanced heterogeneous Fenton-like process. J. Hazard. Mater. 2009, 172, 654–660. [Google Scholar] [CrossRef] [PubMed]
- Bao, T.; Damtie, M.M.; Hosseinzadeh, A.; Wei, W.; Jin, J.; Phong Vo, H.N.; Ye, J.S.; Liu, Y.; Wang, X.F.; Yu, Z.M.; et al. Bentonite-supported nano zero-valent iron composite as a green catalyst for bisphenol A degradation: Preparation, performance, and mechanism of action. J. Environ. Manag. 2020, 260, 110105. [Google Scholar] [CrossRef]
- Xiao, S.; Cheng, M.; Zhong, H.; Liu, Z.F.; Liu, Y.; Yang, X.; Liang, Q.H. Iron-mediated activation of persulfate and peroxymonosulfate in both homogeneous and heterogeneous ways: A review. Chem. Eng. J. 2020, 384, 123265. [Google Scholar] [CrossRef]
- Du, J.K.; Bao, J.G.; Fu, X.Y.; Lu, C.H.; Kim, S.H. Mesoporous sulfur-modified iron oxide as an effective Fenton-like catalyst for degradation of bisphenol A. Appl. Catal. B Environ. 2016, 184, 132–141. [Google Scholar] [CrossRef]
- Wu, Z.B.; Liang, Y.S.; Zou, D.S.; Yuan, X.Z.; Xiao, Z.H.; Deng, Y.C.; Zhou, Y.Y.; Jiang, L.B.; Qin, P.F. Enhanced heterogeneous activation of persulfate by NixCo3−XO4 for oxidative degradation of tetracycline and bisphenol A. J. Environ. Chem. Eng. 2020, 8, 104451. [Google Scholar] [CrossRef]
- Guo, B.; Xu, T.T.; Zhang, L.; Li, S. A heterogeneous Fenton-like system with green iron nanoparticles for the removal of bisphenol A: Performance, kinetics and transformation mechanism. J. Environ. Manag. 2020, 272, 111047. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Fu, B.R.; Sun, Y.; Jin, P.K.; Bai, X.; Jin, X.; Shi, X.; Wang, Y.; Nie, S. Degradation of organic pollutants by Fe/N co-doped biochar via peroxymonosulfate activation: Synthesis, performance, mechanism and its potential for practical application. Chem. Eng. J. 2020, 400, 125870. [Google Scholar] [CrossRef]
- Zhu, Y.H.; Sun, Z.J.; Deng, Y.; Liu, F.D.; Ruan, W.Q.; Xie, L.J. Mn2O3/Mn3O4-Cu1.5Mn1.5O4 Spinel as an efficient Fenton-like catalyst activating persulfate for the degradation of bisphenol A: Superoxide radicals dominate the reaction. Sci. Total Environ. 2022, 839, 156075. [Google Scholar] [CrossRef]
- Ma, Y.H.; Wang, D.L.; Xu, Y.; Lin, H.; Zhang, H. Nonradical electron transfer-based peroxydisulfate activation by a Mn-Fe bimetallic oxide derived from spent alkaline battery for the oxidation of bisphenol A. J. Hazard. Mater. 2022, 436, 129172. [Google Scholar] [CrossRef]
- Cai, M.J.; Li, J.J.; Wu, F.; Voyard, G.; Mailhot, G.; Brigante, M. Synergistic degradation of bisphenol A in heterogeneous Fenton and photo-Fenton systems catalyzed by graphitized carbon-nano zero valent iron. J. Environ. Chem. Eng. 2023, 11, 110959. [Google Scholar] [CrossRef]
- Cheng, S.; Zhao, S.D.; Xing, B.L.; Shi, C.L.; Meng, W.B.; Zhang, C.X.; Bo, Z. Facile one-pot green synthesis of magnetic separation photocatalyst-adsorbent and its application. J. Water Process Eng. 2022, 47, 102802. [Google Scholar] [CrossRef]
- Zhang, S.X.; Zhao, X.L.; Niu, H.Y.; Shi, Y.L.; Cai, Y.Q.; Jiang, G.B. Superparamagnetic Fe3O4 nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds. J. Hazard. Mater. 2009, 167, 560–566. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Wu, X.H.; Zhang, M.; Liu, C.; Yu, J.Y.; Sun, G.; Si, Y.; Ding, B. Highly flexible, core-shell heterostructured, and visible-light-driven titania-based nanofibrous membranes for antibiotic removal and E. Coil inactivation. Chem. Eng. J. 2020, 379, 122269. [Google Scholar] [CrossRef]
- Kim, J.; Lee, H.; Lee, J.Y.; Park, K.H.; Kim, W.; Lee, J.H.; Kang, H.J.; Hong, S.W.; Park, H.J.; Lee, S.; et al. Photosensitized production of singlet oxygen via C60 fullerene covalently attached to functionalized silica-coated stainless-steel mesh: Remote bacterial and viral inactivation. Appl. Catal. B Environ. 2020, 270, 118862. [Google Scholar] [CrossRef]
Pollutant | C0 (mg/L) | qe (mg/g) | Pseudo-First-Order Model | Pseudo-Second-Order Model | ||||
---|---|---|---|---|---|---|---|---|
q1e (mg/g) | k1 (min−1) | R12 | Q2e (mg/g) | k2 (g·mg−1·min−1) | R22 | |||
BPA | 50 | 11.667 | 10.980 | 0.1779 | 0.993 | 12.195 | 0.0376 | 0.997 |
Langmuir | Freundlich | |||||
---|---|---|---|---|---|---|
qm (mg/g) | kL (L/mg) | R2 | n | kF | R2 | |
MnFe2O4-CGP | 14.84 | 0.0690 | 0.965 | 2.80 | 2.8588 | 0.686 |
Component | SiO2 | Al2O3 | CaO | TiO2 | Fe2O3 | P2O5 | Other |
---|---|---|---|---|---|---|---|
Content (wt.%) | 55.30 | 42.68 | 0.18 | 0.48 | 0.41 | 0.46 | 0.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Q.; Wu, D.; Guo, C.; Ma, J. Catalytic Degradation of Bisphenol A with a Magnetically Recoverable Geopolymer Composite Using Coal Gangue. Molecules 2024, 29, 3657. https://doi.org/10.3390/molecules29153657
Shi Q, Wu D, Guo C, Ma J. Catalytic Degradation of Bisphenol A with a Magnetically Recoverable Geopolymer Composite Using Coal Gangue. Molecules. 2024; 29(15):3657. https://doi.org/10.3390/molecules29153657
Chicago/Turabian StyleShi, Qishun, Danlei Wu, Chunli Guo, and Jianchao Ma. 2024. "Catalytic Degradation of Bisphenol A with a Magnetically Recoverable Geopolymer Composite Using Coal Gangue" Molecules 29, no. 15: 3657. https://doi.org/10.3390/molecules29153657
APA StyleShi, Q., Wu, D., Guo, C., & Ma, J. (2024). Catalytic Degradation of Bisphenol A with a Magnetically Recoverable Geopolymer Composite Using Coal Gangue. Molecules, 29(15), 3657. https://doi.org/10.3390/molecules29153657