Bis(Dicarbollide) Complexes of Transition Metals: How Substituents in Dicarbollide Ligands Affect the Geometry and Properties of the Complexes
Abstract
:1. Introduction
2. Dicarbollide vs. Cyclopentadienide: Geometry and Energy
3. Halogen Derivatives of Transition Metal Bis(Dicarbollides)
4. Chalcogen Derivatives of Transition Metal Bis(Dicarbollides)
5. Pnictogen Derivatives of Transition Metal Bis(Dicarbollides)
6. Aryl Derivatives of Transition Metal Bis(Dicarbollides)
7. BH···M Interactions in Derivatives of Transition Metal Bis(Dicarbollides)
8. Interligand Interactions and Properties of Bis(Dicarbollide) Complexes
9. Conclusions
Funding
Conflicts of Interest
References
- Hawthorne, M.F.; Young, D.C.; Wegner, P.A. Carbametallic boron hydride derivatives. I. Apparent analogs of ferrocene and ferricinium ion. J. Am. Chem. Soc. 1965, 87, 1818–1819. [Google Scholar] [CrossRef]
- Hawthorne, M.F.; Andrews, T.D. Carborane analogs of cobalticinium ion. Chem. Commun. 1965, 443–444. [Google Scholar] [CrossRef]
- Sivaev, I.B.; Bregadze, V.I. Chemistry of cobalt bis(dicarbollides). A review. Collect. Czech. Chem. Commun. 1999, 64, 783–805. [Google Scholar] [CrossRef]
- Sivaev, I.B.; Bregadze, V.I. Chemistry of nickel and iron bis(dicarbollides). A review. J. Organomet. Chem. 2000, 614–615, 27–36. [Google Scholar] [CrossRef]
- Dash, B.P.; Satapathy, R.; Swain, B.R.; Mahanta, C.S.; Jena, B.B.; Hosmane, N.S. Cobalt bis(dicarbollide) anion and its derivatives. J. Organomet. Chem. 2017, 849–850, 170–194. [Google Scholar] [CrossRef]
- Pazderová, L.; Tüzün, E.Z.; Bavol, D.; Litecká, M.; Grüner, B. Chemistry of carbon substituted derivatives of cobalt bis(dicarbollide)(1-) ion with some insight into recent progress in boron substitutions. Molecules 2023, 28, 6971. [Google Scholar] [CrossRef]
- Bregadze, V.I.; Timofeev, S.V.; Sivaev, I.B.; Lobanova, I.A. Substitution reactions at boron atoms in metallacarboranes. Russ. Chem. Rev. 2004, 73, 433–453. [Google Scholar] [CrossRef]
- Druzina, A.A.; Shmalko, A.V.; Sivaev, I.B.; Bregadze, V.I. Cyclic oxonium derivatives of cobalt and iron bis(dicarbollides) and their use in organic synthesis. Russ. Chem. Rev. 2021, 90, 785–830. [Google Scholar] [CrossRef]
- Grimes, R.N. Metallacarboranes of the transition and lanthanide elements. In Carboranes, 3rd ed.; Academic Press: London, UK, 2016; pp. 711–903. [Google Scholar] [CrossRef]
- Kar, S.; Pradhan, A.N.; Ghosh, S. Polyhedral metallaboranes and metallacarboranes. In Comprehensive Organometallic Chemistry IV; Elsevier: Amsterdam, The Netherlands, 2022; Volume 9, pp. 263–369. [Google Scholar] [CrossRef]
- Hawthorne, M.F. Catalysis with metallacarboranes. In Chemistry for the Future; Grünewald, H., Ed.; Pergamon Press: Oxford, UK, 1984; pp. 135–141. [Google Scholar] [CrossRef]
- Gozzi, M.; Schwarze, B.; Hey-Hawkins, E. Half- and mixed-sandwich metallacarboranes in catalysis. In Handbook of Boron Science with Applications in Organometallics, Catalysis, Materials and Medicine; Hosmane, N.S., Eagling, R., Eds.; World Scientific Publishing: London, UK, 2019; Volume 2, pp. 27–80. [Google Scholar] [CrossRef]
- Vinogradov, M.M.; Loginov, D.A. Rhoda- and iridacarborane halide complexes: Synthesis, structure and application in homogeneous catalysis. J. Organomet. Chem. 2020, 910, 121135. [Google Scholar] [CrossRef]
- Grishin, I.D.; Knyazeva, N.A.; Penkal’, A.M. Novel ruthenium(II) and (III) carborane complexes with diphosphine ligands and their application in radical polymerization. Russ. Chem. Bull. 2020, 69, 1520–1529. [Google Scholar] [CrossRef]
- Guerrero, I.; Kelemen, Z.; Viñas, C.; Romero, I.; Teixidor, F. Metallacarboranes as photoredox catalysts in water. Chem. Eur. J. 2020, 26, 5027–5036. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Perveen, S.; Ouyang, Y.; Zhang, S.; Jiao, J.; He, G.; Nie, Y.; Li, P. Well-defined, versatile and recyclable half-sandwich nickelacarborane catalyst for selective carbene-transfer reactions. Chem. Eur. J. 2021, 27, 5754–5760. [Google Scholar] [CrossRef] [PubMed]
- Molotkov, A.P.; Timofeev, S.V.; Loginov, D.A. Trimethylammonium-containing rhodacarborane [(9-NMe3-7,8-C2B9H10)RhCl2]2 as a catalyst for the annulation of arylcarboxylic acids with alkynes. Russ. Chem. Bull. 2021, 70, 1922–1926. [Google Scholar] [CrossRef]
- Guerrero, I.; Viñas, C.; Fontrodona, X.; Romero, I.; Teixidor, F. Aqueous persistent noncovalent ion-pair cooperative coupling in a ruthenium cobaltabis(dicarbollide) system as a highly efficient photoredox oxidation catalyst. Inorg. Chem. 2021, 60, 8898–8907. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, I.; Viñas, C.; Romero, I.; Teixidor, F. A stand-alone cobalt bis(dicarbollide) photoredox catalyst epoxidates alkenes in water at extremely low catalyst load. Green Chem. 2021, 23, 10123–10131. [Google Scholar] [CrossRef]
- Hawthorne, M.F.; Zink, J.I.; Skelton, J.M.; Bayer, M.B.; Liu, C.; Livshits, E.; Baer, R.; Neuhauser, D. Electrical or photocontrol of the rotary motion of a metallacarborane. Science 2004, 303, 1849–1852. [Google Scholar] [CrossRef] [PubMed]
- Li, T.C.; Spokoyny, A.M.; She, C.; Farha, O.K.; Mirkin, C.A.; Marks, T.J.; Hupp, J.T. Ni(III)/(IV) bis(dicarbollide) as a fast, noncorrosive redox shuttle for dye-sensitized solar cells. J. Am. Chem. Soc. 2010, 132, 4580–4582. [Google Scholar] [CrossRef] [PubMed]
- Spokoyny, A.M.; Li, T.C.; Farha, O.K.; Machan, C.W.; She, C.; Stern, C.L.; Marks, T.J.; Hupp, J.T.; Mirkin, C.A. Electronic tuning of nickel-based bis(dicarbollide) redox shuttles in dye-sensitized solar cells. Angew. Chem. Int. Ed. 2010, 49, 5339–5343. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, R.D.; Clingerman, D.J.; Morris, W.; Wilmer, C.E.; Sarjeant, A.A.; Stern, C.L.; O’Keeffe, M.; Snurr, R.Q.; Hupp, J.T.; Farha, O.K.; et al. Metallacarborane-based metal-organic framework with a complex topology. Cryst. Growth Des. 2014, 14, 1324–1330. [Google Scholar] [CrossRef]
- Kung, C.-W.; Otake, K.; Buru, C.T.; Goswami, S.; Cui, Y.; Hupp, J.T.; Spokoyny, A.M.; Farha, O.K. Increased electrical conductivity in a mesoporous metal-organic framework featuring metallacarboranes guests. J. Am. Chem. Soc. 2018, 140, 3871–3875. [Google Scholar] [CrossRef]
- Kožíšek, M.; Cígler, P.; Lepšík, M.; Fanfrlík, J.; Řezáčová, P.; Brynda, J.; Pokorná, J.; Plešek, J.; Grüner, B.; Šašková, K.G.; et al. Inorganic polyhedral metallacarborane inhibitors of HIV protease: A new approach to overcoming antiviral resistance. J. Med. Chem. 2008, 51, 4839–4843. [Google Scholar] [CrossRef] [PubMed]
- Řezáčová, P.; Cígler, P.; Matějíček, P.; Lepšík, M.; Pokorná, J.; Grüner, B.; Konvalinka, J. Medicinal application of carboranes: Inhibition of HIV protease. In Boron Science: New Technologies and Applications; Hosmane, N.S., Ed.; CRC Press: Boca Raton, FL, USA, 2012; pp. 41–70. ISBN 9781439826621. [Google Scholar]
- Efremenko, A.V.; Ignatova, A.A.; Grin, M.A.; Sivaev, I.B.; Mironov, A.F.; Bregadze, V.I.; Feofanov, A.V. Chlorin e6 fused with a cobalt-bis(dicarbollide) nanoparticle provides efficient boron delivery and photoinduced cytotoxicity in cancer cells. Photochem. Photobiol. Sci. 2014, 13, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, I.; García-Mendiola, T.; Sato, S.; Pita, M.; Nakamura, H.; Lorenzo, E.; Teixidor, F.; Marques, F.; Viñas, C. Metallacarboranes on the road to anticancer therapies: Cellular uptake, DNA interaction, and biological valuation of cobaltabisdicarbollide [COSAN]−. Chem. Eur. J. 2018, 24, 17239–17254. [Google Scholar] [CrossRef] [PubMed]
- Gozzi, M.; Murganic, B.; Drača, D.; Popp, J.; Coburger, P.; Maksimović-Ivanić, D.; Mijatović, S.; Hey-Hawkins, E. Quinoline-conjugated ruthenacarboranes: Toward hybrid drugs with a dual mode of action. ChemMedChem 2019, 14, 2061–2074. [Google Scholar] [CrossRef] [PubMed]
- Grüner, B.; Kugler, M.; El Anwar, S.; Holub, J.; Nekvinda, J.; Bavol, D.; Růžičková, Z.; Pospíšilová, K.; Fábry, M.; Král, V.; et al. Cobalt bis(dicarbollide) alkylsulfonamides: Potent and highly selective inhibitors of tumor specific carbonic anhydrase IX. ChemPlusChem 2020, 86, 352–363. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, R.G.; Marques, F.; Robalo, M.P.; Fontrodona, X.; Garcia, M.H.; Geninatti Crich, S.; Viñas, C.; Valente, A. Ruthenium carboranyl complexes with 2,2′-bipyridine derivatives for potential bimodal therapy application. RSC Adv. 2020, 10, 16266–16276. [Google Scholar] [CrossRef]
- Kellert, M.; Sárosi, I.; Rajaratnam, R.; Meggers, E.; Lönnecke, P.; Hey-Hawkins, E. Ruthenacarborane–phenanthroline derivatives as potential metallodrugs. Molecules 2020, 25, 2322. [Google Scholar] [CrossRef] [PubMed]
- Nuez-Martinez, M.; Pinto, C.I.G.; Guerreiro, J.F.; Mendes, F.; Marques, F.; Muñoz-Juan, A.; Xavier, J.A.M.; Laromaine, A.; Bitonto, V.; Protti, N.; et al. Cobaltabis(dicarbollide) ([o-COSAN]−) as multifunctional chemotherapeutics: A prospective application in Boron Neutron Capture Therapy (BNCT) for glioblastoma. Cancers 2021, 3, 6367. [Google Scholar] [CrossRef] [PubMed]
- Drača, D.; Marković, M.; Gozzi, M.; Mijatović, S.; Maksimović-Ivanić, D.; Hey-Hawkins, E. Ruthenacarborane and quinoline: A promising combination for the treatment of brain tumors. Molecules 2021, 26, 3801. [Google Scholar] [CrossRef]
- Vaňková, E.; Lokočová, K.; Kašparová, P.; Hadravová, R.; Křížová, I.; Maťátková, O.; Masák, J.; Šícha, V. Cobalt bis-dicarbollide enhances antibiotics action towards Staphylococcus epidermidis planktonic growth due to cell envelopes disruption. Pharmaceuticals 2022, 15, 534. [Google Scholar] [CrossRef]
- Fink, K.; Cebula, J.; Tošner, Z.; Psurski, M.; Uchman, M.; Goszczyński, T.M. Cobalt bis(dicarbollide) is a DNA-neutral pharmacophore. Dalton Trans. 2023, 52, 10338–10347. [Google Scholar] [CrossRef] [PubMed]
- Gos, M.; Cebula, J.; Goszczyński, T.M. Metallacarboranes in medicinal chemistry: Current advances and future perspectives. J. Med. Chem. 2024, 67, 8481–8501. [Google Scholar] [CrossRef] [PubMed]
- Stogniy, M.Y.; Anufriev, S.A.; Sivaev, I.B. Charge-compensated derivatives of nido-carborane. Inorganics 2023, 11, 72. [Google Scholar] [CrossRef]
- Timofeev, S.V.; Sivaev, I.B.; Prikaznova, E.A.; Bregadze, V.I. Transition metal complexes with charge-compensated dicarbollide ligands. J. Organomet. Chem. 2014, 751, 221–250. [Google Scholar] [CrossRef]
- Brown, D.A.; Fanning, M.O.; Fitzpatrick, N.J. Molecular orbital theory of organometallic compounds. 15. A comparative study of ferrocene and π-cyclopentadienyl-(3)-1,2-dicarbollyliron. Inorg. Chem. 1978, 17, 1620–1623. [Google Scholar] [CrossRef]
- Núñez, R.; Tarrés, M.; Ferrer-Ugalde, A.; Fabrizi de Biani, F.; Teixidor, F. Electrochemistry and photoluminescence of icosahedral carboranes, boranes, metallacarboranes, and their derivatives. Chem. Rev. 2016, 116, 14307–14378. [Google Scholar] [CrossRef] [PubMed]
- Rudakov, D.A.; Shirokii, V.L.; Knizhnikov, V.A.; Bazhanov, A.V.; Vecher, E.I.; Maier, N.A.; Potkin, V.I.; Ryabtsev, A.N.; Petrovskii, P.V.; Sivaev, I.B.; et al. Electrochemical synthesis of halogen derivatives of bis(1,2-dicarbollyl)cobalt(III). Russ. Chem. Bull. 2004, 53, 2554–2557. [Google Scholar] [CrossRef]
- González-Cardoso, P.; Stoica, A.-I.; Farràs, P.; Pepiol, A.; Viñas, C.; Teixidor, F. Additive tuning of redox potential in metallacarboranes by sequential halogen substitution. Chem. Eur. J. 2010, 16, 6660–6665. [Google Scholar] [CrossRef] [PubMed]
- Pepiol, A.; Teixidor, F.; Sillanpää, R.; Lupu, M.; Viñas, C. Stepwise sequential redox potential modulation possible on a single platform. Angew. Chem. Int. Ed. 2011, 50, 12491–12495. [Google Scholar] [CrossRef] [PubMed]
- Stogniy, M.Y.; Anufriev, S.A.; Bogdanova, E.V.; Gorodetskaya, N.A.; Anisimov, A.A.; Suponitsky, K.Y.; Grishin, I.D.; Sivaev, I.B. Charge-compensated nido-carborane derivatives in the synthesis of iron(II) bis(dicarbollide) complexes. Dalton Trans. 2024, 53, 3363–3376. [Google Scholar] [CrossRef]
- Magnoux, C.; Mills, D.P. Metallocene anions: From electrochemical curiosities to isolable complexes. Eur. J. Inorg. Chem. 2022, 2022, e202101063. [Google Scholar] [CrossRef]
- Hawthorne, M.F.; Francis, J.N. Synthesis and properties of cobalt complexes containing the bidentate π-bonding B8C2H104− ligand. Inorg. Chem. 1971, 10, 863–864. [Google Scholar] [CrossRef]
- Hawthorne, M.F.; Young, D.C.; Andrews, T.D.; Howe, D.V.; Pilling, R.L.; Pitts, A.D.; Reintjes, M.; Warren, L.F.; Wegner, P.A. π-Dicarbollyl derivatives of the transition metals. Metallocene analogs. J. Am. Chem. Soc. 1968, 90, 879–896. [Google Scholar] [CrossRef]
- Raviprolu, V.T.; Farias, P.; Carta, V.; Harman, H.; Lavallo, V. When the ferrocene analogy breaks down: Metallocene transmetallation chemistry. Angew. Chem. Int. Ed. 2023, 62, e202308359. [Google Scholar] [CrossRef] [PubMed]
- Tyurin, A.P.; Smol’yakov, A.F.; Dolgushin, F.M.; Godovikov, I.A.; Chizhevsky, I.T. Synthesis of 12-vertex mixed ligand closo-cobaltacarborane complexes and molecular structure of [3,3-(Ph2P(CH2)2PPh2)-3-Cl-closo-3,1,2-CoC2B9H11]. Russ. Chem. Bull. 2014, 62, 1938–1940. [Google Scholar] [CrossRef]
- Tyurin, A.P.; Dolgushin, F.M.; Smol’yakov, A.F.; Grishin, I.D.; D’yachihin, D.I.; Turmina, E.S.; Grishin, D.F.; Chizhevsky, I.T. Synthesis and characterization of mixed-ligand ferracarboranes. Direct metalation of the nido-carborane [nido-7,8-C2B9H12]− monoanion with 14-e [Ph2P(CH2)nPPh2]FeCl2 (n = 2, 3). J. Organomet. Chem. 2013, 747, 148–154. [Google Scholar] [CrossRef]
- Warren, L.F.; Hawthorne, M.F. Chemistry of the bis[π-(3)-1,2-dicarbollyl] metalates of nickel and palladium. J. Am. Chem. Soc. 1970, 92, 1157–1173. [Google Scholar] [CrossRef]
- Maier, N.A.; Erdman, A.A.; Zubreichuk, Z.P.; Prokopovich, V.P.; Ol’dekop, Y.A. Synthesis and some transformations of complex nickel(II) salts of bis(3,1,2-dicarbollyl)nickel(III). Preparation of 3-(2,2′-bipyridyl)-closo-3,1,2-nickeladicarbadodecaborane. J. Organomet. Chem. 1985, 292, 297–302. [Google Scholar] [CrossRef]
- Erdman, A.A.; Zubreichuk, Z.P.; Maier, N.A.; Ol’dekop, Y.A. Selective synthesis of 2,2’-bipyridyl complexes of o- and m-nickelacarborane. Zh. Obshch. Khim. 1988, 58, 334–337. (In Russian) [Google Scholar]
- Erdman, A.A.; Zubreichuk, Z.P.; Prokopovich, V.P.; Polyakov, A.V.; Yanovskii, A.I.; Struchkov, Y.T.; Maier, N.A.; Ol’dekop, Y.A. Thermal ortho-meta rearrangement of nickelacarboranes. Crystal and molecular structure of 3,1,2- and 2,1,7-bipyNiC2B9H11. Sov. J. Coord. Chem. 1989, 15, 79–86. [Google Scholar]
- Zubreichuk, Z.P.; Erdman, A.A.; Ivko, A.A.; Maier, N.A. Synthesis and some transformations of complex salts of bis-o-dicarbollyliron(II), -cobalt(II), and -nickel(II). Russ. J. Gen. Chem. 2001, 71, 531–534. [Google Scholar] [CrossRef]
- Andreichuk, E.P.; Anisimov, A.A.; Shmalko, A.V.; Suponitsky, K.Y.; Sivaev, I.B.; Bregadze, V.I. Stability of nickel bis(dicarbollide) complexes. Mendeleev Commun. 2019, 29, 534–536. [Google Scholar] [CrossRef]
- Erdman, A.A.; Zubreichuk, Z.P.; Maier, N.A.; Shingel, I.A.; Ol’dekop, Y.A. Synthesis and reactions of phenanthroline complexes of bis(dicarbollyl)nickel and nickelacarboranes. Vestsi Akad. Navuk BSSR Ser. Khim. Navuk 1989. (In Russian) [Google Scholar]
- Erdman, A.A.; Zubreichuk, Z.P.; Knizhnikov, V.A.; Maier, A.A.; Aleksandrov, G.G.; Nefedov, S.E.; Eremenko, I.L. Synthesis and the structure of the triphenylphosphine complex of o-nickelacarborane, 3,3-(PPh3)2-3,1,2-NiC2B9H11. Russ. Chem. Bull. 2001, 50, 2248–2250. [Google Scholar] [CrossRef]
- Andreichuk, E.P.; Anufriev, S.A.; Suponitsky, K.Y.; Sivaev, I.B. The first nickelacarborane with closo-nido structure. Molecules 2020, 25, 6009. [Google Scholar] [CrossRef] [PubMed]
- Bohn, R.K.; Haaland, A. On the molecular structure of ferrocene, Fe(C5H5)2. J. Organomet. Chem. 1966, 5, 470–476. [Google Scholar] [CrossRef]
- Kang, H.C.; Lee, S.S.; Knobler, C.B.; Hawthorne, M.F. Syntheses of charge-compensated dicarbollide ligand precursors and their use in the preparation of novel metallacarboranes. Inorg. Chem. 1991, 30, 2024–2031. [Google Scholar] [CrossRef]
- Kester, J.G.; Keller, D.; Huffman, J.C.; Benefiel, M.A.; Geiger, W.E.; Atwood, C.; Siedle, A.R.; Korba, G.A.; Todd, L.J. Synthesis and properties of copper and nickel complexes of the general formula (B11H11)2Mn-. Crystal structure of [(n-Bu)4N]3[Cu(B11H11)2]. Inorg. Chem. 1994, 24, 5438–5442. [Google Scholar] [CrossRef]
- Avdeeva, V.V.; Kubasov, A.S.; Golubev, A.V.; Anufriev, S.A.; Sivaev, I.B.; Nikiforova, S.E.; Goeva, L.V.; Malinina, E.A.; Kuznetsov, N.T. Synthesis of sandwich metallaboranes [M(B11H11)2]3− (M = Cu, Ag) via polyhedral expansion of the closo-undecaborate anion [B11H11]2−. Inorg. Chim. Acta 2023, 556, 121675. [Google Scholar] [CrossRef]
- Bennour, I.; Cioran, A.M.; Teixidor, F.; Viñas, C. 3,2,1 and stop! An innovative, straightforward and clean route for the flash synthesis of metallacarboranes. Green Chem. 2019, 21, 1925–1928. [Google Scholar] [CrossRef]
- Lopez, M.E.; Ellis, D.; Murray, P.R.; Rosair, G.M.; Welch, A.J.; Yellowlees, L.J. Synthesis and/or molecular structures of some simple 2,1,7- and 2,1,12-ruthena- and cobaltacarboranes. Collect. Czech. Chem. Commun. 2010, 75, 853–869. [Google Scholar] [CrossRef]
- Bühl, M.; Holub, J.; Hnyk, D.; Macháček, J. Computational studies of structures and properties of metallaboranes. 2. Transition-metal dicarbollide complexes. Organometallics 2006, 25, 2173–2181. [Google Scholar] [CrossRef]
- Hawthorne, M.F.; Ramachandran, B.M.; Kennedy, R.D.; Knobler, C.B. Approaches to rotary molecular motors. Pure Appl. Chem. 2006, 78, 1299–1304. [Google Scholar] [CrossRef]
- Safronov, A.V.; Shlyakhtina, N.I.; Everett, T.A.; VanGordon, M.R.; Sevryugina, Y.V.; Jalisatgi, S.S.; Hawthorne, M.F. Direct observation of bis(dicarbollyl)nickel conformers in solution by fluorescence spectroscopy: An approach to redox-controlled metallacarborane molecular motors. Inorg. Chem. 2014, 53, 10045–10053. [Google Scholar] [CrossRef] [PubMed]
- Shlyakhtina, N.I.; Safronov, A.V.; Sevryugina, Y.V.; Jalisatgi, S.S.; Hawthorne, M.F. Synthesis, characterization, and preliminary fluorescence study of a mixed ligand bis(dicarbollyl)nickel complex bearing a tryptophan-BODIPY FRET couple. J. Organomet. Chem. 2015, 798, 234–244. [Google Scholar] [CrossRef]
- Bühl, M.; Hnyk, D.; Macháček, J. Computational study of structures and properties of metallaboranes: Cobalt bis(dicarbollide). Chem. Eur. J. 2005, 11, 4109–4120. [Google Scholar] [CrossRef]
- Juárez-Pérez, E.J.; Núñez, R.; Viñas, C.; Sillanpää, R.; Teixidor, F. The role of C–H···H–B interactions in establishing rotamer configurations in metallabis(dicarbollide) systems. Eur. J. Inorg. Chem. 2010, 2010, 2385–2392. [Google Scholar] [CrossRef]
- Kirillova, N.I.; Zhdanov, A.S.; Gusev, A.I.; Kirin, V.N.; Knyazev, S.P.; Sokolova, T.V. The molecular structures of the dicarbaboryl derivatives [3,3′-M(8,1,2-ClC2B9H10)2]K. Organomet. Chem. USSR 1989, 2, 448–450. [Google Scholar]
- Hurlburt, P.K.; Miller, R.L.; Abney, K.D.; Foreman, T.M.; Butcher, R.J.; Kinkead, S.A. New synthetic routes to B-halogenated derivatives of cobalt dicarbollide. Inorg. Chem. 1995, 34, 5215–5219. [Google Scholar] [CrossRef]
- Kazheva, O.N.; Aleksandrov, G.G.; Kravchenko, A.V.; Starodub, V.A.; Lobanova, I.A.; Kosenko, I.D.; Sivaev, I.B.; Bregadze, V.I.; Buravov, L.I.; Dyachenko, O.A. New fulvalenium salts of cobalt bis(dicarbollide): Crystal structures and electrical conductivities. Crystals 2012, 2, 43–55. [Google Scholar] [CrossRef]
- Kazheva, O.N.; Kravchenko, A.V.; Aleksandrov, G.G.; Sivaev, I.B.; Bregadze, V.I.; Kosenko, I.D.; Lobanova, I.A.; Buravov, L.I.; Starodub, V.A.; Dyachenko, O.A. Syntheses, structures, and electroconductivity of bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) and bis(methylenedithio)tetrathiafulvalene (BMDT-TTF) salts with cobalt 8,8′-dichloro-3,3′-bis(1,2-dicarbollide). Russ. Chem. Bull. 2014, 63, 1322–1329. [Google Scholar] [CrossRef]
- Kazheva, O.; Alexandrov, G.; Kravchenko, A.; Starodub, V.; Lobanova, I.; Sivaev, I.; Bregadze, V.; Buravov, L.; Dyachenko, O. First molecular conductors with 8,8′-dibromo cobalt bis(dicarbollide) anion. Solid State Sci. 2008, 10, 1734–1739. [Google Scholar] [CrossRef]
- Sivy, P.; Preisinger, A.; Baumgartner, O.; Valach, F.; Koreñ, B.; Matel, L. Structure of caesium 3,3′-commo-bis(decahydro-8-iodo-1,2-dicarba-3-cobalta-closo-dodecaborate)(1-). Acta Cryst. C 1986, 42, 28–30. [Google Scholar] [CrossRef]
- Kazheva, O.N.; Alexandrov, G.G.; Kravchenko, A.V.; Starodub, V.A.; Lobanova, I.A.; Sivaev, I.B.; Bregadze, V.I.; Titov, L.V.; Buravov, L.I.; Dyachenko, O.A. Molecular conductors with 8,8′-diiodo cobalt bis(dicarbollide) anion. J. Organomet. Chem. 2009, 694, 2336–2342. [Google Scholar] [CrossRef]
- Zaulet, A.A. On the Verge of Bioorganic and Inorganic Chemistry: Metallacarboranes in Nanomedicine. Ph.D. Thesis, Universitat Autònoma de Barcelona, Bellaterra, Spain, 2015. Available online: https://ddd.uab.cat/record/148880 (accessed on 25 September 2015).
- Kazheva, O.N.; Kravchenko, A.V.; Aleksandrov, G.G.; Kosenko, I.D.; Lobanova, I.A.; Bregadze, V.I.; Chudak, D.M.; Buravov, L.I.; Protasova, S.G.; Starodub, V.A.; et al. Synthesis, structure, and properties of a new bifunctional radical cation salt with ferracarborane anion: (BEDT-TTF)2[8,8′-Cl2-3,3′-Fe(1,2-C2B9H10)2]. Russ. Chem. Bull. 2016, 65, 2195–2201. [Google Scholar] [CrossRef]
- Kazheva, O.N.; Chudak, D.M.; Shilov, G.V.; Kosenko, I.D.; Abashev, G.G.; Shklyaeva, E.V.; Kravchenko, A.V.; Starodub, V.A.; Buravov, L.I.; Dyachenko, O.A.; et al. First EOTT and BPDT-TTF based molecular conductors with [8,8′-Cl2-3,3′-Fe(1,2-C2B9H10)2]− anion—Synthesis, structure, properties. J. Organomet. Chem. 2021, 949, 121956. [Google Scholar] [CrossRef]
- Kazheva, O.N.; Kravchenko, A.V.; Kosenko, I.D.; Alexandrov, G.G.; Chudak, D.M.; Starodub, V.A.; Lobanova, I.A.; Bregadze, V.I.; Buravov, L.I.; Protasova, S.G.; et al. First hybrid radical-cation salts with halogen substituted iron bis(dicarbollide) anions—Synthesis, structure, properties. J. Organomet. Chem. 2017, 849–850, 261–267. [Google Scholar] [CrossRef]
- Bennour, I.; Ramos, M.N.; Nuez-Martínez, M.; Xavier, J.A.M.; Buades, A.B.; Sillanpää, R.; Teixidor, F.; Choquesillo-Lazarte, D.; Romero, I.; Martinez-Medina, M.; et al. Water soluble organometallic small molecules as promising antibacterial agents: Synthesis, physical-chemical properties and biological evaluation to tackle bacterial infections. Dalton Trans. 2022, 51, 7188–7209. [Google Scholar] [CrossRef] [PubMed]
- Pauling, L. The Nature of the Chemical Bond, 3rd ed.; Cornell University Press: Ithaca, NY, USA, 1960; p. 644. [Google Scholar]
- Gashti, A.N.; Huffman, J.C.; Edwards, A.; Szekeley, G.; Siedle, A.R.; Karty, J.A.; Reilly, J.P.; Todd, L.J. Fluorination studies of the [commo-3,3′-Co(3,1,2-CoC2B9H11)2]- ion. J. Organomet. Chem. 2000, 614–615, 120–124. [Google Scholar] [CrossRef]
- Kazheva, O.N.; Alexandrov, G.G.; Kravchenko, A.V.; Sivaev, I.B.; Starodub, V.A.; Kosenko, I.D.; Lobanova, I.A.; Bregadze, V.I.; Buravov, L.V.; Dyachenko, O.A. New organic conductors with halogen and phenyl substituted cobalt bis(dicarbollide) anions. J. Chem. Eng. Chem. Res. 2015, 2, 497–503. Available online: https://www.researchgate.net/publication/354701349_New_Organic_Conductors_with_Halogen_and_Phenyl_Substituted_Cobalt_Bisdicarbollide_Anions (accessed on 22 July 2024).
- Stogniy, M.Y.; Anufriev, S.A.; Shmal’ko, A.V.; Antropov, S.M.; Anisimov, A.A.; Suponitsky, K.Y.; Filippov, O.A.; Sivaev, I.B. The unexpected reactivity of 9-iodo-nido-carborane: From nucleophilic substitution reactions to the synthesis of tricobalt tris(dicarbollide) Na[4,4′,4′′-(MeOCH2CH2O)3-3,3′,3′′-Co3(μ3-O)(μ3-S)(1,2-C2B9H10)3]. Dalton Trans. 2021, 50, 2671–2688. [Google Scholar] [CrossRef]
- Sivy, P.; Preisinger, A.; Baumgartner, O.; Valach, F.; Koreñ, B.; Matel, L. Structure of caesium 8-iodo-3,3′-commo-bis(decahydro-1,2-dicarba-3-cobalta-closo-dodecaborate)(1-). Acta Cryst. C 1986, 42, 30–33. [Google Scholar] [CrossRef]
- Kazheva, O.N.; Alexandrov, G.G.; Kravchenko, A.V.; Starodub, V.A.; Sivaev, I.B.; Lobanova, I.A.; Bregadze, V.I.; Buravov, L.I.; Dyachenko, O.A. New fulvalenium salts of bis(dicarbollide) cobalt and iron: Synthesis, crystal structure and electrical conductivity. J. Organomet. Chem. 2007, 692, 5033–5043. [Google Scholar] [CrossRef]
- Rokitskaya, T.I.; Kosenko, I.D.; Sivaev, I.B.; Antonenko, Y.N.; Bregadze, V.I. Fast flip-flop of halogenated cobalt bis(dicarbollide) anion in a lipid bilayer membrane. Phys. Chem. Chem. Phys. 2017, 19, 25122–25126. [Google Scholar] [CrossRef]
- Assaf, K.I.; Begaj, B.; Frank, A.; Nilam, M.; Mougharbel, A.S.; Kortz, U.; Nekvinda, J.; Grüner, B.; Gabel, D.; Nau, W.M. High-affinity binding of metallacarborane cobalt bis(dicarbollide) anions to cyclodextrins and application to membrane translocation. J. Org. Chem. 2019, 84, 11790–11798. [Google Scholar] [CrossRef] [PubMed]
- Abraham, M.H.; Abraham, R.J.; Byrne, J.; Griffiths, L. NMR method for the determination of solute hydrogen bond acidity. J. Org. Chem. 2006, 71, 3389–3394. [Google Scholar] [CrossRef] [PubMed]
- Abraham, M.H.; Abraham, R.J.; Acree, W.E.; Aliev, A.E.; Leo, A.J.; Whaley, W.L. An NMR method for the quantitative assessment of intramolecular hydrogen bonding; Application to physicochemical, environmental, and biochemical properties. J. Org. Chem. 2014, 79, 11075–11083. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, R.E.; Chapman, B.K.; Ferrill, R.N.; Jung, E.S.; Samaan, C.A. Approximating the strength of the intramolecular hydrogen bond in 2-fluorophenol and related compounds: A new application of a classic technique. J. Phys. Chem. A 2020, 124, 3851–3858. [Google Scholar] [CrossRef]
- Ohta, K.; Yamazaki, H.; Endo, Y. NMR study of 1-aryl-1,2-dicarba-closo-dodecaboranes: Intramolecular C–H⋯O hydrogen bonding in solution. Tetrahedron Lett. 2006, 47, 1937–1940. [Google Scholar] [CrossRef]
- Anufriev, S.A.; Shmal’ko, A.V.; Suponitsky, K.Y.; Sivaev, I.B. Synthesis of 3-aryl-ortho-carboranes with sensitive functional groups. Molecules 2021, 26, 7297. [Google Scholar] [CrossRef] [PubMed]
- Sivaev, I.B.; Kosenko, I.D. Rotational conformation of 8,8′-dihalogenated derivatives of cobalt bis(dicarbollide) in solution. Russ. Chem. Bull. 2021, 70, 753–756. [Google Scholar] [CrossRef]
- Santos, E.C.; Pinkerton, A.B.; Kinkead, S.A.; Hurlburt, P.K.; Jasper, S.A.; Sellers, C.W.; Huffman, J.C.; Todd, L.J. Syntheses of nido-9,11-X2-7,8-C2B9H10− anions (X=Cl, Br or I) and the synthesis and structural characterization of N(C2H5)4[commo-3,3′-Co(4,7-Br2-3,1,2-CoC2B9H9)2]. Polyhedron 2000, 19, 1777–1781. [Google Scholar] [CrossRef]
- El Anwar, S.; Růžičková, Z.; Bavol, D.; Fojt, L.; Grüner, B. Tetrazole ring substitution at carbon and boron sites of the cobalt bis(dicarbollide) ion available via dipolar cycloadditions. Inorg. Chem. 2020, 59, 17430–17442. [Google Scholar] [CrossRef] [PubMed]
- Buades, A.D.; Viñas, C.; Fontrodona, X.; Teixidor, F. 1.3 V Inorganic sequential redox chain with an all-anionic couple 1–/2– in a single framework. Inorg. Chem. 2021, 60, 16168–16177. [Google Scholar] [CrossRef] [PubMed]
- Anufriev, S.A.; Stogniy, M.Y.; Sivaev, I.B. A simple way to obtain a decachloro derivative of cobalt bis(dicarbollide). Reactions 2023, 4, 148–154. [Google Scholar] [CrossRef]
- Kosenko, I.; Lobanova, I.; Ananyev, I.; Laskova, J.; Semioshkin, A.; Bregadze, V. Reactions of bromine-bridged cobalt bis(1,2-dicarbollide) anion with arenes and nucleophiles. J. Organomet. Chem. 2016, 818, 58–67. [Google Scholar] [CrossRef]
- Kosenko, I.D.; Lobanova, I.A.; Ananyev, I.V.; Godovikov, I.A.; Chekulaeva, L.A.; Starikova, Z.A.; Qi, S.; Bregadze, V.I. Novel alkoxy derivatives of cobalt bis(1,2-dicarbollide). J. Organomet. Chem. 2014, 769, 72–79. [Google Scholar] [CrossRef]
- Kosenko, I.D.; Lobanova, I.A.; Ananyev, I.V.; Starikova, Z.A.; Laskova, J.N.; Bregadze, V.I. New 8-aryl-8’-iodo derivatives of cobalt bis(1,2-dicarbollide). Russ. Chem. Bull. 2015, 64, 704–711. [Google Scholar] [CrossRef]
- Kosenko, I.D.; Lobanova, I.A.; Godovikov, I.A.; Starikova, Z.A.; Sivaev, I.B.; Bregadze, V.I. Mild C-H activation of activated aromatics with [8,8′-μ-I-3,3′-Co(1,2-C2B9H10)2]: Just mix them. J. Organomet. Chem. 2012, 721–722, 70–77. [Google Scholar] [CrossRef]
- Bregadze, V.I.; Kosenko, I.D.; Lobanova, I.A.; Starikova, Z.A.; Godovikov, I.A.; Sivaev, I.B. C-H Bond activation of arenes by [8,8′-μ-I-3,3′-Co(1,2-C2B9H10)2] in the presence of sterically hindered Lewis bases. Organometallics 2010, 29, 5366–5372. [Google Scholar] [CrossRef]
- Kosenko, I.; Ananyev, I.; Druzina, A.; Godovikov, I.; Laskova, J.; Bregadze, V.; Studzinska, M.; Paradowska, E.; Leśnikowski, Z.J.; Semioshkin, A. Disubstituted cobalt bis(1,2-dicarbollide)(-1) terminal alkynes: Synthesis, reactivity in the Sonogashira reaction and application in the synthesis of cobalt bis(1,2-dicarbollide)(-1) nucleoside conjugates. J. Organomet. Chem. 2017, 849–850, 142–149. [Google Scholar] [CrossRef]
- Anufriev, S.A.; Erokhina, S.A.; Suponitsky, K.Y.; Godovikov, I.A.; Filippov, O.A.; Fabrizi de Biani, F.; Corsini, M.; Chizhov, A.O.; Sivaev, I.B. Methylsulfanyl-stabilized rotamers of cobalt bis(dicarbollide). Eur. J. Inorg. Chem. 2017, 2017, 4444–4451. [Google Scholar] [CrossRef]
- Anufriev, S.A.; Erokhina, S.A.; Suponitsky, K.Y.; Anisimov, A.A.; Laskova, J.N.; Godovikov, I.A.; de Biani, F.F.; Corsini, M.; Sivaev, I.B.; Bregadze, V.I. Synthesis and structure of bis(methylsulfanyl) derivatives of iron bis(dicarbollide). J. Organomet. Chem. 2018, 865, 239–246. [Google Scholar] [CrossRef]
- Anufriev, S.A.; Suponitsky, K.Y.; Filippov, O.A.; Sivaev, I.B. Synthesis and structure of methylsulfanyl derivatives of nickel bis(dicarbollide). Molecules 2019, 24, 4449. [Google Scholar] [CrossRef] [PubMed]
- Stogniy, M.Y.; Kazheva, O.N.; Chudak, D.M.; Shilov, G.V.; Filippov, O.A.; Sivaev, I.B.; Kravchenko, A.V.; Starodub, V.A.; Buravov, L.I.; Bregadze, V.I.; et al. Synthesis and study of C-substituted methylthio derivatives of cobalt bis(dicarbollide). RSC Adv. 2020, 10, 2887–2896. [Google Scholar] [CrossRef] [PubMed]
- Teixidor, T.; Pedrajas, J.; Rojo, I.; Viñas, C.; Kivekäs, R.; Sillanpää, R.; Sivaev, I.; Bregadze, V.; Sjöberg, S. Chameleonic capacity of [3,3‘-Co(1,2-C2B9H11)2]- in coordination. Generation of the highly uncommon S(thioether)−Na bond. Organometallics 2003, 22, 3414–3423. [Google Scholar] [CrossRef]
- Frank, R.; Ahrens, V.M.; Boehnke, S.; Beck-Sickinger, A.G.; Hey-Hawkins, E. Charge-compensated metallacarborane building blocks for conjugation with peptides. ChemBioChem 2016, 17, 308–317. [Google Scholar] [CrossRef]
- Núñez, R.; Tutusaus, O.; Teixidor, F.; Viñas, C.; Sillanpää, R.; Kivekäs, R. Highly stable neutral and positively charged dicarbollide sandwich complexes. Chem. Eur. J. 2005, 11, 5637–5647. [Google Scholar] [CrossRef] [PubMed]
- Plešek, J.; Štíbr, B.; Cooke, P.A.; Kennedy, J.D.; McGrath, T.D.; Thornton-Pett, M. An additional isomer of the neutral dicarbollide analogue of ferrocene [Fe{C2B9H10(SMe2)}2]. Acta Cryst. C 1998, 54, 36–38. [Google Scholar] [CrossRef]
- Yan, Y.-K.; Mingos, D.M.P.; Müller, T.E.; Williams, D.J.; Kurmoo, M. Synthesis and structure of a charge-compensated ferracarborane, commo-[3,3′-Fe{4-(Me2S)-1,2-C2B9H10}2], and its charge-transfer salt with 2,3-dichloro-5,6-dicyano-p-benzoquinone. J. Chem. Soc. Dalton Trans. 1994, 1735–1741. [Google Scholar] [CrossRef]
- Corsini, M.; Zanello, P.; Kudinov, A.R.; Meshcheryakov, V.I.; Perekalin, D.S.; Lyssenko, K.A. Electrochemical behaviour of cobalta-dicarbollide sandwich complexes with different capping units. J. Solid State Electrochem. 2005, 9, 750–757. [Google Scholar] [CrossRef]
- Yan, Y.-K.; Mingos, D.M.P.; Williams, D.J. Diastereomers of the carborane sandwich complex commo-[3,3-Fe{4-(Me2S)-1,2-C2B9H10}2]; Crystal structure of meso-[Fe(C2B9H10SMe2)2]. J. Organomet. Chem. 1995, 498, 267–274. [Google Scholar] [CrossRef]
- Stogniy, M.Y.; Anufriev, S.A.; Bogdanova, E.V.; Sivaev, I.B.; Bregadze, V.I. Mercury(II) chloride in the synthesis of nido-carborane derivatives with B-N, B-O, and B-S bonds. Russ. Chem. Bull. 2022, 71, 91–101. [Google Scholar] [CrossRef]
- Starikova, Z.A.; Lobanova, I.A.; Timofeev, S.V.; Bregadze, V.I. Synthesis and crystal molecular structure of ferracarborane commo-(3-Fe-{1,2-C2B9H9-4-SMe2-12-HgCl}2). J. Mol. Struct. 2009, 937, 61–64. [Google Scholar] [CrossRef]
- Stogniy, M.Y.; Suponitsky, K.Y.; Chizhov, A.O.; Sivaev, I.B.; Bregadze, V.I. Synthesis of 8-alkoxy and 8,8′-dialkoxy derivatives of cobalt bis(dicarbollide). J. Organomet. Chem. 2018, 865, 138–144. [Google Scholar] [CrossRef]
- Kazakov, G.S.; Stogniy, M.Y.; Sivaev, I.B.; Suponitsky, K.Y.; Godovikov, I.A.; Kirilin, A.D.; Bregadze, V.I. Synthesis of crown ethers with the incorporated cobalt bis(dicarbollide) fragment. J. Organomet. Chem. 2015, 798, 196–203. [Google Scholar] [CrossRef]
- Petřiček, V.; Maly, K.; Petřina, A.; Baše, K.; Línek, A. The crystal and molecular structure of (s-1,4’,2,1’)-3,3’-commo-bis[8-methoxy-1,2-dicarba-3-nickela-closo-dodecaborane (11)], [8-CH3O-1,2-C2B9H10]2Ni. A nickel (IV) complex with a new type of arrangement of the dicarbollide ligands. Z. Kristallogr. 1984, 166, 1–10. [Google Scholar] [CrossRef]
- Kazheva, O.N.; Alexandrov, G.G.; Kravchenko, A.V.; Kosenko, I.D.; Lobanova, I.A.; Sivaev, I.B.; Filippov, O.A.; Shubina, E.S.; Bregadze, V.I.; Starodub, V.A.; et al. Molecular conductors with a 8-hydroxy cobalt bis(dicarbollide) anion. Inorg. Chem. 2011, 50, 444–450. [Google Scholar] [CrossRef]
- Grüner, B.; Kvíčalová, M.; Plešek, J.; Šícha, V.; Císařová, I.; Lučaníková, M.; Selucký, P. Cobalt bis(dicarbollide) ions functionalized by CMPO-like groups attached to boron by short bonds; efficient extraction agents for separation of trivalent f-block elements from highly acidic nuclear waste. J. Organomet. Chem. 2009, 694, 1678–1689. [Google Scholar] [CrossRef]
- Plešek, J.; Grüner, B.; Šícha, V.; Bőhmer, V.; Císařová, I. The zwitterion [8,8′-μ-CH2O(CH3)-(1,2-C2B9H10)2-3,3′-Co]0 as a versatile building block to introduce cobalt bis(dicarbollide) ion into organic molecules. Organometallics 2012, 31, 1703–1715. [Google Scholar] [CrossRef]
- Grüner, B.; Šícha, V.; Hnyk, D.; Londesborough, M.G.S.; Císařová, I. The synthesis and structural characterization of polycyclic derivatives of cobalt bis(dicarbollide)(1-). Inorg. Chem. 2015, 54, 3148–3158. [Google Scholar] [CrossRef] [PubMed]
- Grüner, B.; Švec, P.; Šícha, V.; Padělková, Z. Direct and facile synthesis of carbon substituted alkylhydroxy derivatives of cobalt bis(1,2-dicarbollide), versatile building blocks for synthetic purposes. Dalton Trans. 2012, 41, 7498–7512. [Google Scholar] [CrossRef] [PubMed]
- Plešek, J.; Heřmánek, S.; Franken, A.; Císařová, I.; Nachtigal, C. Dimethyl sulfate induced nucleophilic substitution of the [bis(1,2-dicarbollido)-3-cobalt(1-)]ate ion. Syntheses, properties and structures of its 8,8’-μ-sulfato, 8-phenyl and 8-dioxane derivatives. Collect. Czech. Chem. Commun. 1997, 62, 47–56. [Google Scholar] [CrossRef]
- Lobanova, I.; Kosenko, I.; Laskova, J.; Ananyev, I.; Druzina, A.; Godovikov, I.; Bregadze, V.I.; Qi, S.; Leśnikowski, Z.J.; Semioshkin, A. Synthesis and the structure of 8-tetrahydrofuronium and 8-tetrahydropyronium derivatives of iron bis(dicarbollide)(-1) and their cleavage reactions. Dalton Trans. 2015, 44, 1571–1584. [Google Scholar] [CrossRef] [PubMed]
- Plešek, J.; Grüner, B.; Machaček, J.; Cisařova, I.; Časlavsky, J. 8-Dioxane ferra(III) bis(dicarbollide): A paramagnetic functional molecule as versatile building block for introduction of a Fe(III) centre into organic molecules. J. Organomet. Chem. 2007, 692, 4801–4804. [Google Scholar] [CrossRef]
- Šícha, V.; Plešek, J.; Kvíčalová, M.; Císařová, I.; Grüner, B. Boron(8) substituted nitrilium and ammonium derivatives, versatile cobalt bis(1,2-dicarbollide) building blocks for synthetic purposes. Dalton Trans. 2009, 851–860. [Google Scholar] [CrossRef] [PubMed]
- Bogdanova, E.V.; Stogniy, M.Y.; Suponitsky, K.Y.; Sivaev, I.B.; Bregadze, V.I. Synthesis of boronated amidines by addition of amines to nitrilium derivative of cobalt bis(dicarbollide). Molecules 2021, 26, 6544. [Google Scholar] [CrossRef]
- Hawthorne, M.F.; Beno, C.L.; Harwell, D.E.; Jalisatgi, S.S.; Knobler, C.B. Intra- and inter-molecular hydrogen bonding in some cobaltacarboranes. J. Mol. Struct. 2003, 656, 239–247. [Google Scholar] [CrossRef]
- Rojo, I.; Teixidor, F.; Viñas, C.; Kivekäs, R.; Sillanpää, R. Synthesis and coordinating ability of an anionic cobaltabisdicarbollide ligand geometrically analogous to BINAP. Chem. Eur. J. 2004, 10, 5376–5385. [Google Scholar] [CrossRef] [PubMed]
- Rojo, I.; Teixidor, F.; Viñas, C.; Kivekäs, R.; Sillanpää, R. Relevance of the electronegativity of boron in η5-coordinating ligands: Regioselective monoalkylation and monoarylation in cobaltabisdicarbollide [3,3′-Co(1,2-C2B9H11)2]- clusters. Chem. Eur. J. 2003, 9, 4311–4323. [Google Scholar] [CrossRef] [PubMed]
- Plešek, J.; Grüner, B.; Heřmánek, S.; Báča, J.; Mareček, V.; Jänchenová, J.; Lhotský, A.; Holub, K.; Selucký, P.; Rais, J.; et al. Synthesis of functionalized cobaltacarboranes based on the closo-[(1,2-C2B9H11)2-3,3′-Co]− ion bearing polydentate ligands for separation of M3+ cations from nuclear waste solutions. Electrochemical and liquid–liquid extraction study of selective transfer of M3+ metal cations to an organic phase. Molecular structure of the closo-[(8-(2-CH3O-C6H4-O)-(CH2CH2O)2-1,2-C2B9H10)-(1′,2′-C2B9H11)-3,3′-Co]Na determined by X-ray diffraction analysis. Polyhedron 2002, 21, 975–986. [Google Scholar] [CrossRef]
- Tarrés, M.; Viñas, C.; González-Cardoso, P.; Hänninen, M.M.; Sillanpää, R.; Ďorďovič, V.; Uchman, M.; Teixidor, F.; Matějíček, P. Aqueous self-assembly and cation selectivity of cobaltabisdicarbollide dianionic dumbbells. Chem. Eur. J. 2014, 20, 6786–6794. [Google Scholar] [CrossRef] [PubMed]
- Farràs, P.; Teixidor, F.; Kivekäs, R.; Sillanpää, R.; Viñas, C.; Grüner, B.; Císařová, I. Metallacarboranes as building blocks for polyanionic polyarmed aryl-ether materials. Inorg. Chem. 2008, 47, 9497–9508. [Google Scholar] [CrossRef] [PubMed]
- Hao, E.; Sibrian-Vazquez, M.; Serem, W.; Garno, J.C.; Fronczek, F.R.; Vicente, M.G.H. Synthesis, aggregation and cellular investigations of porphyrin-cobaltacarborane conjugates. Chem. Eur. J. 2007, 13, 9035–9042. [Google Scholar] [CrossRef] [PubMed]
- Sivaev, I.B.; Starikova, Z.A.; Sjöberg, S.; Bregadze, V.I. Synthesis of functional derivatives of the [3,3′-Co(1,2-C2B9H11)2]- anion. J. Organomet. Chem. 2002, 649, 1–8. [Google Scholar] [CrossRef]
- Bregadze, V.I.; Dyachenko, O.A.; Kazheva, O.N.; Kravchenko, A.V.; Sivaev, I.B.; Starodub, V.A. Tetrathiafulvalene-based radical cation salts with transition metal bis(dicarbollide) anions. CrystEngComm 2015, 17, 4754–4767. [Google Scholar] [CrossRef]
- Bregadze, V.I.; Dyachenko, O.A.; Kazheva, O.N.; Kosenko, I.D.; Kravchenko, A.V.; Sivaev, I.B.; Starodub, V.A. Electroconducting radical-cation salts based on tetrathiafulvalene derivatives and transition metals bis(dicarbollides). Russ. J. Gen. Chem. 2019, 89, 971–987. [Google Scholar] [CrossRef]
- Cebula, J.; Fink, K.; Goldeman, W.; Szermer-Olearnik, B.; Nasulewicz-Goldeman, A.; Psurski, M.; Cuprych, M.; Kędziora, A.; Dudek, B.; Bugla-Płoskońska, G.; et al. Structural patterns enhancing the antibacterial activity of metallacarborane-based antibiotics. J. Med. Chem. 2023, 66, 14948–14962. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Liu, W.; Chen, Y.; Jiang, H.; Yan, H.; Kosenko, I.; Chekulaeva, L.; Sivaev, I.; Bregadze, V.; Wang, X. A highly potent antibacterial agent targeting methicillin-resistant Staphylococcus aureus based on cobalt bis(1,2-dicarbollide) alkoxy derivative. Organometallics 2017, 36, 3484–3490. [Google Scholar] [CrossRef]
- Swietnicki, W.; Goldeman, W.; Psurski, M.; Nasulewicz-Goldeman, A.; Boguszewska-Czubara, A.; Drab, M.; Sycz, J.; Goszczyński, T.M. Metallacarborane derivatives effective against Pseudomonas aeruginosa and Yersinia enterocolitica. Int. J. Mol. Sci. 2021, 22, 6762. [Google Scholar] [CrossRef]
- Kubiński, K.; Masłyk, M.; Janeczko, M.; Goldeman, W.; Nasulewicz-Goldeman, A.; Psurski, M.; Martyna, A.; Boguszewska-Czubara, A.; Cebula, J.; Goszczyński, T.M. Metallacarborane derivatives as innovative anti-Candida albicans agents. J. Med. Chem. 2022, 65, 13935–13945. [Google Scholar] [CrossRef] [PubMed]
- Druzina, A.A.; Dudarova, N.V.; Sivaev, I.B.; Bregadze, V.I. Synthesis of conjugates of cobalt bis(dicarbollide) with acridine. Russ. Chem. Bull. 2023, 72, 2083–2089. [Google Scholar] [CrossRef]
- Sivaev, I.B. Ferrocene and transition metal bis(dicarbollides) as platform for design of rotatory molecular switches. Molecules 2017, 22, 2201. [Google Scholar] [CrossRef]
- Sivaev, I.B. Design of molecular switches based on transition metal bis(dicarbollide) complexes. Russ. Chem. Bull. 2018, 67, 1117–1130. [Google Scholar] [CrossRef]
- Timofeev, S.V.; Anufriev, S.A.; Sivaev, I.B.; Bregadze, V.I. Synthesis of cobalt bis(8-methylthio-1,2-dicarbollide)-pentacarbonyltungsten complexes. Russ. Chem. Bull. 2018, 67, 570–572. [Google Scholar] [CrossRef]
- Anufriev, S.A.; Timofeev, S.V.; Anisimov, A.A.; Suponitsky, K.Y.; Sivaev, I.B. Bis(dicarbollide) complexes of transition metals as a platform for molecular switches. Study of complexation of 8,8′-bis(methylsulfanyl) derivatives of cobalt and iron bis(dicarbollides). Molecules 2020, 25, 5745. [Google Scholar] [CrossRef]
Compound | Translocation Rate Constant k, s−1 |
---|---|
[3,3′-Co(1,2-C2B9H11)2]− | 580 |
[8,8′-F2-3,3′-Co(1,2-C2B9H10)2]− | 410 |
[8,8′-Cl2-3,3′-Co(1,2-C2B9H10)2]− | 7430 |
[8,8′-Br2-3,3′-Co(1,2-C2B9H10)2]− | 10,900 |
[8,8′-I2-3,3′-Co(1,2-C2B9H10)2]− | 15,000 |
X | CDCl3 | CD2Cl2 | Acetone-d6 | DMSO-d6 | Methanol-d4 |
---|---|---|---|---|---|
H | 3.76 | 3.84 | 3.98 | 3.99 | 3.86 |
F | 3.71 | 3.79 | 3.90 | 3.88 | 3.75 |
Cl | 4.34 | 4.35 | 4.28 | 4.30 | 4.21 |
Br | 4.36 | 4.40 | 4.37 | 4.35 | 4.30 |
I | 4.42 | 4.46 | 4.40 | 4.40 | 4.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sivaev, I.B. Bis(Dicarbollide) Complexes of Transition Metals: How Substituents in Dicarbollide Ligands Affect the Geometry and Properties of the Complexes. Molecules 2024, 29, 3510. https://doi.org/10.3390/molecules29153510
Sivaev IB. Bis(Dicarbollide) Complexes of Transition Metals: How Substituents in Dicarbollide Ligands Affect the Geometry and Properties of the Complexes. Molecules. 2024; 29(15):3510. https://doi.org/10.3390/molecules29153510
Chicago/Turabian StyleSivaev, Igor B. 2024. "Bis(Dicarbollide) Complexes of Transition Metals: How Substituents in Dicarbollide Ligands Affect the Geometry and Properties of the Complexes" Molecules 29, no. 15: 3510. https://doi.org/10.3390/molecules29153510
APA StyleSivaev, I. B. (2024). Bis(Dicarbollide) Complexes of Transition Metals: How Substituents in Dicarbollide Ligands Affect the Geometry and Properties of the Complexes. Molecules, 29(15), 3510. https://doi.org/10.3390/molecules29153510