Exploring the Potential of Microbial Coalbed Methane for Sustainable Energy Development
Abstract
:1. Introduction
2. Microbially Coal Degradation Pathways and Methane Formation
2.1. Overview of the Degradation Process
2.2. Microbial Communities Involved in Coal Degradation
2.3. Enzymes and Metabolic Pathways Involved in Coal Degradation
3. Applications of Microbial Coal Degradation for Sustainable Energy Development
3.1. Coal Bioconversion for Energy Production
3.2. Potential for Biofuel Production
3.3. Integration with Other Renewable Energy Sources
4. Challenges and Limitations of Microbial Coal Degradation
4.1. Environmental Factors Affecting Microbial Coal Degradation
4.2. Efficiency, Scalability, and Economics
5. Future Prospects and Research Directions
5.1. Emerging Technologies and Strategies for Enhancing Coal Degradation Efficiency
5.2. Evaluation of Microbial Coal Degradation’s Sustainability and Effects on the Environment
5.3. Integration with Circular Economy and Waste Management
6. Conclusions
- (1)
- Making the biodegradation process clearer: Microorganisms degrade coal in complex and diverse ways, and this process requires more research and studying.
- (2)
- Building an efficient microbial activation system: It is critical to develop a system to enhance the activity and performance of the microorganisms responsible for coal degradation. This can be achieved through techniques such as genetic engineering and synthetic biology to screen for microbial strains that have efficient degradation capabilities and are highly adaptable. This could substantially increase the stability of MECoM in situ applications and is expected to provide new solutions for future energy development.
- (3)
- Creating the ideal conditions for sustainability: New technological methods are needed to improve the environmental conditions for microbial action and to accelerate the efficiency of coal bio-liquefaction and gasification. This will not only favor the development of renewable energy sources but will also give the residual coal waste great potential value.
- (4)
- Combining microbial coal degradation with the use of waste resources: Combining the use of waste resources with microbial coal degradation might improve waste management procedures and encourage a circular economy. By addressing these challenges and researching these areas, microbial coal degradation technology can be further advanced. The achievement of waste management, environmental remediation, and sustainable energy development may result from this. To maximize this procedure, investigate its economic viability, and realize the full potential of this technology for a more sustainable and environmentally friendly future, more research and development are required.
- (5)
- Generating support: In order to accomplish the goal of sustainable energy development, policymakers and the business community should simultaneously pay attention to and support this research and development.
Funding
Conflicts of Interest
References
- Akimbekov, N.S.; Digel, I.; Tastambek, K.T.; Marat, A.K.; Turaliyeva, M.A.; Kaiyrmanova, G.K. Biotechnology of Microorganisms from Coal Environments: From Environmental Remediation to Energy Production. Biology 2022, 11, 1306. [Google Scholar] [CrossRef] [PubMed]
- Kuwano, Y.; Shimizu, Y. Bioremediation of Coal Contaminated Soil under Sulfate-Reducing Condition. Environ. Technol. 2006, 27, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Saha, P.; Sarkar, S. Microbial Degradation of Coal into a Value Added Product. Int. J. Coal Prep. Util. 2019, 39, 1–19. [Google Scholar] [CrossRef]
- Wu, Y.; Xi, B.; Fang, F.; Kou, B.; Gang, C.; Tang, J.; Tan, W.; Yuan, Y.; Yu, T. Insights into Relationships between Polycyclic Aromatic Hydrocarbon Concentration, Bacterial Communities and Organic Matter Composition in Coal Gangue Site. Environ. Res. 2023, 236, 116502. [Google Scholar] [CrossRef]
- Li, J.; Pignatello, J.J.; Smets, B.F.; Grasso, D.; Monserrate, E. Bench-scale evaluation of in situ bioremediation strategies for soil at a former manufactured gas plant site. Environ. Toxicol. Chem. 2005, 24, 741. [Google Scholar] [CrossRef] [PubMed]
- Goraya, N.S.; Rajpoot, N.; Marriyappan Sivagnanam, B. Coal Bed Methane Enhancement Techniques: A Review. ChemistrySelect 2019, 4, 3585–3601. [Google Scholar] [CrossRef]
- Feng, X.; Sun, J.; Xie, Y. Degradation of Shanxi Lignite by Trichoderma citrinoviride. Fuel 2021, 291, 120204. [Google Scholar] [CrossRef]
- Guo, H.; Zhang, Y.; Zhang, J.; Huang, Z.; Urynowicz, M.A.; Liang, W.; Han, Z.; Liu, J. Characterization of Anthracite-Degrading Methanogenic Microflora Enriched from Qinshui Basin in China. Energy Fuels 2019, 33, 6380–6389. [Google Scholar] [CrossRef]
- Sabar, M.A.; Ali, M.I.; Fatima, N.; Malik, A.Y.; Jamal, A.; Farman, M.; Huang, Z.; Urynowicz, M. Degradation of Low Rank Coal by Rhizopus Oryzae Isolated from a Pakistani Coal Mine and Its Enhanced Releases of Organic Substances. Fuel 2019, 253, 257–265. [Google Scholar] [CrossRef]
- Vick, S.H.W.; Gong, S.; Sestak, S.; Vergara, T.J.; Pinetown, K.L.; Li, Z.; Greenfield, P.; Tetu, S.G.; Midgley, D.J.; Paulsen, I.T. Who Eats What? Unravelling Microbial Conversion of Coal to Methane. FEMS Microbiol. Ecol. 2019, 95, fiz093. [Google Scholar] [CrossRef]
- Cohen, M.S.; Gabriele, P.D. Degradation of Coal by the Fungi Polyporus versicolor and Poria monticola. Appl. Environ. Microbiol. 1982, 44, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Achi, O. Growth and Coal-Solubilizing Activity of Penicillium-Simplicissimum on Coal-Related Aromatic-Compounds. Bioresour. Technol. 1994, 48, 53–57. [Google Scholar] [CrossRef]
- Achi, O.K.; Emeruwa, A.C. Influence of Cultural Conditions on Coal Solubilization by Penicillium Simplicissimum. J. Chem. Technol. Biotechnol. 2007, 57, 121–125. [Google Scholar] [CrossRef]
- Hölker, U.; Fakoussa, R.M.; Höfer, M. Growth Substrates Control the Ability of Fusarium Oxysporum to Solubilize Low-Rank Coal. Appl. Microbiol. Biotechnol. 1995, 44, 351–355. [Google Scholar] [CrossRef]
- Wang, B.; Wang, Y.; Cui, X.; Zhang, Y.; Yu, Z. Bioconversion of Coal to Methane by Microbial Communities from Soil and from an Opencast Mine in the Xilingol Grassland of Northeast China. Biotechnol. Biofuels 2019, 12, 236. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Guo, H.; Wang, Q.; Haider, R.; Urynowicz, M.A.; Fallgren, P.H.; Jin, S.; Tang, M.; Chen, B.; Huang, Z. Characterization of Organic Compounds from Hydrogen Peroxide-Treated Subbituminous Coal and Their Composition Changes during Microbial Methanogenesis. Fuel 2019, 237, 1209–1216. [Google Scholar] [CrossRef]
- Bao, Y.; Ju, Y.; Huang, H.; Yun, J.; Guo, C. Potential and Constraints of Biogenic Methane Generation from Coals and Mudstones from Huaibei Coalfield, Eastern China. Energy Fuels 2019, 33, 287–295. [Google Scholar] [CrossRef]
- Yang, X.; Chen, Y.; Wu, R.; Nie, Z.; Han, Z.; Tan, K.; Chen, L. Potential of Biogenic Methane for Pilot-Scale Fermentation Ex Situ with Lump Anthracite and the Changes of Methanogenic Consortia. J. Ind. Microbiol. Biotechnol. 2018, 45, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Scott, A.R. Improving Coal Gas Recovery with Microbially Enhanced Coalbed Methane. In Coalbed Methane: Scientific, Environmental and Economic Evaluation; Mastalerz, M., Glikson, M., Golding, S.D., Eds.; Springer: Dordrecht, The Netherlands, 1999; pp. 89–110. ISBN 978-90-481-5217-9. [Google Scholar]
- David, Y.; Baylon, M.G.; Pamidimarri, S.D.; Baritugo, K.-A.; Chae, C.G.; Kim, Y.J.; Kim, T.W.; Kim, M.-S.; Na, J.G.; Park, S.J. Screening of Microorganisms Able to Degrade Low-Rank Coal in Aerobic Conditions: Potential Coal Biosolubilization Mediators from Coal to Biochemicals. Biotechnol. Bioprocess Eng. 2017, 22, 178–185. [Google Scholar] [CrossRef]
- Wang, B.; Ndayisenga, F.; Zhang, G.; Yu, Z. Deciphering the Initial Products of Coal during Methanogenic Bioconversion: Based on an Untargeted Metabolomics Approach. GCB Bioenergy 2021, 13, 967–978. [Google Scholar] [CrossRef]
- Li, D.; Bao, Y.; Wang, Y.; An, C.; Chang, J. Multiple-Experimental Investigation on the Physicochemical Structures Alternation during Coal Biogasification. Fuel 2023, 339, 127433. [Google Scholar] [CrossRef]
- Runnion, K.; Combie, J.D. Organic Sulfur Removal from Coal by Microorganisms from Extreme Environments. FEMS Microbiol. Rev. 1993, 11, 139–144. [Google Scholar] [CrossRef]
- Biache, C.; Faure, P.; Mansuy-Huault, L.; Cébron, A.; Beguiristain, T.; Leyval, C. Biodegradation of the Organic Matter in a Coking Plant Soil and Its Main Constituents. Org. Geochem. 2013, 56, 10–18. [Google Scholar] [CrossRef]
- Zhuang, H.; Zhu, H.; Shan, S.; Zhang, L.; Fang, C.; Shi, Y. Potential Enhancement of Direct Interspecies Electron Transfer for Anaerobic Degradation of Coal Gasification Wastewater Using Up-Flow Anaerobic Sludge Blanket (UASB) with Nitrogen Doped Sewage Sludge Carbon Assisted. Bioresour. Technol. 2018, 270, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, H.; Xie, Q.; Shan, S.; Fang, C.; Ping, L.; Zhang, C.; Wang, Z. Performance, Mechanism and Stability of Nitrogen-Doped Sewage Sludge Based Activated Carbon Supported Magnetite in Anaerobic Degradation of Coal Gasification Wastewater. Sci. Total Environ. 2020, 737, 140285. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, S.; George, J.; Masto, R.E. Changes in Polycyclic Aromatic Hydrocarbons (PAHs) and Soil Biological Parameters in a Revegetated Coal Mine Spoil. Land Degrad. Dev. 2017, 28, 1047–1055. [Google Scholar] [CrossRef]
- Faison, B.D. Microbial Conversions of Low Rank Coals. Nat. Biotechnol. 1991, 9, 951–956. [Google Scholar] [CrossRef]
- Sekhohola, L.M.; Igbinigie, E.E.; Cowan, A.K. Biological Degradation and Solubilisation of Coal. Biodegradation 2013, 24, 305–318. [Google Scholar] [CrossRef] [PubMed]
- Campbell, B.C.; Greenfield, P.; Gong, S.; Barnhart, E.P.; Midgley, D.J.; Paulsen, I.T.; George, S.C. Methanogenic Archaea in Subsurface Coal Seams Are Biogeographically Distinct: An Analysis of Metagenomically-Derived MCRA Sequences. Environ. Microbiol. 2022, 24, 4065–4078. [Google Scholar] [CrossRef]
- Zhang, N.; Yin, X.; Wang, Z.; Liu, H.; Huang, M.; Wang, H.; Liang, D.; Hu, J. Research Progress on the Mechanism and Influencing Factors of Microorganisms to Increase Coal Bed Methane Production. Chin. J. Process Eng. 2024, 11, 1–11. [Google Scholar]
- Yan, L.; Gong, K.; Guo, H.; Zhang, Y.; Huang, Z.; Urynowicz, M. Biogenic Methane Production from Lignite in Cube: Comparison of the Inner and Outer Part of Coal. Fuel 2023, 346, 128370. [Google Scholar] [CrossRef]
- Park, S.Y.; Liang, Y. Biogenic Methane Production from Coal: A Review on Recent Research and Development on Microbially Enhanced Coalbed Methane (MECBM). Fuel 2016, 166, 258–267. [Google Scholar] [CrossRef]
- Formolo, M.; Martini, A.; Petsch, S. Biodegradation of Sedimentary Organic Matter Associated with Coalbed Methane in the Powder River and San Juan Basins, U.S.A. Int. J. Coal Geol. 2008, 76, 86–97. [Google Scholar] [CrossRef]
- Strąpoć, D.; Picardal, F.W.; Turich, C.; Schaperdoth, I.; Macalady, J.L.; Lipp, J.S.; Lin, Y.-S.; Ertefai, T.F.; Schubotz, F.; Hinrichs, K.-U.; et al. Methane-Producing Microbial Community in a Coal Bed of the Illinois Basin. Appl. Environ. Microbiol. 2008, 74, 2424–2432. [Google Scholar] [CrossRef]
- Li, Z.; Cheng, J.; Duan, K.; Cheng, Y.; Guo, H.; Huang, Z.; Urynowicz, M.; Ali, M.I. The Succession of Microorganisms and Organics in the Process of Methane Generation by Co-degradation of Anthracite and Rice Straw. Int. J. Energy Res. 2022, 46, 15116–15126. [Google Scholar] [CrossRef]
- Jones, E.J.P.; Voytek, M.A.; Corum, M.D.; Orem, W.H. Stimulation of Methane Generation from Nonproductive Coal by Addition of Nutrients or a Microbial Consortium. Appl. Environ. Microbiol. 2010, 76, 7013–7022. [Google Scholar] [CrossRef] [PubMed]
- Webster, J.; Lee, M.; Gurba, L.W.; Manefield, M.; Thomas, T. The Effect of Oxidative Treatment on Soluble Compounds from Australian Coal. Fuel 2019, 257, 116071. [Google Scholar] [CrossRef]
- Wawrik, B.; Mendivelso, M.; Parisi, V.A.; Suflita, J.M.; Davidova, I.A.; Marks, C.R.; Nostrand, J.D.; Liang, Y.; Zhou, J.; Huizinga, B.J.; et al. Field and Laboratory Studies on the Bioconversion of Coal to Methane in the San Juan Basin. FEMS Microbiol. Ecol. 2012, 81, 26–42. [Google Scholar] [CrossRef]
- Strąpoć, D.; Mastalerz, M.; Schimmelmann, A.; Drobniak, A.; Hedges, S. Variability of Geochemical Properties in a Microbially Dominated Coalbed Gas System from the Eastern Margin of the Illinois Basin, USA. Int. J. Coal Geol. 2008, 76, 98–110. [Google Scholar] [CrossRef]
- Scott, A.R.; Kaiser, W.R.; Ayers, W.B., Jr. Thermogenic and Secondary Biogenic Gases, San Juan Basin, Colorado and New Mexico--Implications for Coalbed Gas Producibility. AAPG Bull. 1994, 78, 1186–1209. [Google Scholar] [CrossRef]
- Zhang, J.; Liang, Y. Evaluating Approaches for Sustaining Methane Production from Coal through Biogasification. Fuel 2017, 202, 233–240. [Google Scholar] [CrossRef]
- Bao, Y.; Huang, H.; He, D.; Ju, Y.; Qi, Y. Microbial Enhancing Coal-Bed Methane Generation Potential, Constraints and Mechanism—A Mini-Review. J. Nat. Gas Sci. Eng. 2016, 35, 68–78. [Google Scholar] [CrossRef]
- Platt, G.A.; Davis, K.J.; Schweitzer, H.D.; Smith, H.J.; Fields, M.W.; Barnhart, E.P.; Gerlach, R. Algal Amendment Enhances Biogenic Methane Production from Coals of Different Thermal Maturity. Front. Microbiol. 2023, 14, 1097500. [Google Scholar] [CrossRef] [PubMed]
- Strąpoć, D.; Mastalerz, M.; Dawson, K.; Macalady, J.; Callaghan, A.V.; Wawrik, B.; Turich, C.; Ashby, M. Biogeochemistry of Microbial Coal-Bed Methane. Annu. Rev. Earth Planet. Sci. 2011, 39, 617–656. [Google Scholar] [CrossRef]
- Xia, D.; Gu, P.; Chen, Z.; Chen, L.; Wei, G.; Wang, Z.; Cheng, S.; Zhang, Y. Control Mechanism of Microbial Degradation on the Physical Properties of a Coal Reservoir. Processes 2023, 11, 1347. [Google Scholar] [CrossRef]
- Iram, A.; Akhtar, K.; Ghauri, M.A. Coal Methanogenesis: A Review of the Need of Complex Microbial Consortia and Culture Conditions for the Effective Bioconversion of Coal into Methane. Ann. Microbiol. 2017, 67, 275–286. [Google Scholar] [CrossRef]
- Rice, D.D.; Claypool, G.E. Claypool Generation, Accumulation, and Resource Potential of Biogenic Gas. AAPG Bull. 1981, 65, 5–25. [Google Scholar] [CrossRef]
- Haider, R.; Ghauri, M.A.; Jones, E.J.; Orem, W.H.; SanFilipo, J.R. Structural Degradation of Thar Lignite Using MW1 Fungal Isolate: Optimization Studies. Int. Biodeterior. Biodegrad. 2015, 100, 149–154. [Google Scholar] [CrossRef]
- Fallgren, P.H.; Jin, S.; Zeng, C.; Ren, Z.; Lu, A.; Colberg, P.J.S. Comparison of Coal Rank for Enhanced Biogenic Natural Gas Production. Int. J. Coal Geol. 2013, 115, 92–96. [Google Scholar] [CrossRef]
- Jones, E.J.P.; Voytek, M.A.; Warwick, P.D.; Corum, M.D.; Cohn, A.; Bunnell, J.E.; Clark, A.C.; Orem, W.H. Bioassay for Estimating the Biogenic Methane-Generating Potential of Coal Samples. Int. J. Coal Geol. 2008, 76, 138–150. [Google Scholar] [CrossRef]
- Xiao, D.; Peng, S.; Wang, B.; Yan, X. Anthracite Bio-Degradation by Methanogenic Consortia in Qinshui Basin. Int. J. Coal Geol. 2013, 116–117, 46–52. [Google Scholar] [CrossRef]
- Guo, H.; Wang, F.; Li, Z. Research Progress of Microbially Enhanced Coalbed Methane. Microbiol. China 2015, 42, 584–590. [Google Scholar] [CrossRef]
- Fu, H.; Yan, D.; Su, X.; Wang, J.; Li, Q.; Li, X.; Zhao, W.; Zhang, L.; Wang, X.; Li, Y. Biodegradation of Early Thermogenic Gas and Generation of Secondary Microbial Gas in the Tieliekedong Region of the Northern Tarim Basin, NW China. Int. J. Coal Geol. 2022, 261, 104075. [Google Scholar] [CrossRef]
- Milkov, A.V.; Dzou, L. Geochemical Evidence of Secondary Microbial Methane from Very Slight Biodegradation of Undersaturated Oils in a Deep Hot Reservoir. Geology 2007, 35, 455. [Google Scholar] [CrossRef]
- Olawale, J.T.; Edeki, O.G.; Cowan, A.K. Bacterial Degradation of Coal Discard and Geologically Weathered Coal. Int. J. Coal Sci. Technol. 2020, 7, 405–416. [Google Scholar] [CrossRef]
- Papendick, S.L.; Downs, K.R.; Vo, K.D.; Hamilton, S.K.; Dawson, G.K.W.; Golding, S.D.; Gilcrease, P.C. Biogenic Methane Potential for Surat Basin, Queensland Coal Seams. Int. J. Coal Geol. 2011, 88, 123–134. [Google Scholar] [CrossRef]
- Beckmann, S.; Lueders, T.; Krüger, M.; Von Netzer, F.; Engelen, B.; Cypionka, H. Acetogens and Acetoclastic Methanosarcinales Govern Methane Formation in Abandoned Coal Mines. Appl. Environ. Microbiol. 2011, 77, 3749–3756. [Google Scholar] [CrossRef] [PubMed]
- Milkov, A.V. Worldwide Distribution and Significance of Secondary Microbial Methane Formed during Petroleum Biodegradation in Conventional Reservoirs. Org. Geochem. 2011, 42, 184–207. [Google Scholar] [CrossRef]
- Xiao, D.; Peng, S.-P.; Wang, E.-Y. Fermentation Enhancement of Methanogenic Archaea Consortia from an Illinois Basin Coalbed via DOL Emulsion Nutrition. PLoS ONE 2015, 10, e0124386. [Google Scholar] [CrossRef]
- Wang, A.; Shao, P.; Lan, F.; Jin, H. Organic Chemicals in Coal Available to Microbes to Produce Biogenic Coalbed Methane: A Review of Current Knowledge. J. Nat. Gas Sci. Eng. 2018, 60, 40–48. [Google Scholar] [CrossRef]
- Şener, B.; Aksoy, D.Ö.; Çelik, P.A.; Toptaş, Y.; Koca, S.; Koca, H.; Çabuk, A. Fungal Treatment of Lignites with Higher Ash and Sulphur Contents Using Drum Type Reactor. Hydrometallurgy 2018, 182, 64–74. [Google Scholar] [CrossRef]
- Szafranek-Nakonieczna, A.; Zheng, Y.; Słowakiewicz, M.; Pytlak, A.; Polakowski, C.; Kubaczyński, A.; Bieganowski, A.; Banach, A.; Wolińska, A.; Stępniewska, Z. Methanogenic Potential of Lignites in Poland. Int. J. Coal Geol. 2018, 196, 201–210. [Google Scholar] [CrossRef]
- Li, Y.; Tang, S.; Chen, J.; Xi, Z. Research Progress and Prospects on Microbial Response and Gas Potential in the Coal Gasification Process. Microorganisms 2023, 11, 1293. [Google Scholar] [CrossRef] [PubMed]
- Midgley, D.J.; Hendry, P.; Pinetown, K.L.; Fuentes, D.; Gong, S.; Mitchell, D.L.; Faiz, M. Characterisation of a Microbial Community Associated with a Deep, Coal Seam Methane Reservoir in the Gippsland Basin, Australia. Int. J. Coal Geol. 2010, 82, 232–239. [Google Scholar] [CrossRef]
- Li, Y.; Chen, J.; Tang, S.; Xi, Z. Microbial Communities Affected by Hydraulic Fracturing and Environmental Factors within an In Situ Coal Reservoir. Microorganisms 2023, 11, 1657. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Xin, M. Ecological Diversity and Industrial Application of Methanogens. Chin. J. Appl. Environ. Biol. 2009, 15, 574–578. [Google Scholar]
- Wang, B.; Liu, J.; Han, Z.; Liu, J.; Hu, B. Recent Progress and Classification of Methanogens. Genom. Appl. Biol. 2014, 33, 418–425. [Google Scholar] [CrossRef]
- Zhang, J.; Liang, Y.; Pandey, R.; Harpalani, S. Characterizing Microbial Communities Dedicated for Conversion of Coal to Methane in Situ and Ex Situ. Int. J. Coal Geol. 2015, 146, 145–154. [Google Scholar] [CrossRef]
- Willscher, S.; Knippert, D.; Ihling, H.; Kühn, D.; Starke, S. Underground Degradation of Lignite Coal Spoil Material by a Mixed Microbial Community under Acid Mine Drainage Conditions. Adv. Mater. Res. 2013, 825, 46–49. [Google Scholar]
- Sack, U.; Hofrichter, M.; Fritsche, W. Degradation of Polycyclic Aromatic Hydrocarbons by Manganese Peroxidase of Nematoloma Frowardii. FEMS Microbiol. Lett. 2006, 152, 227–234. [Google Scholar] [CrossRef]
- Ghani, M.J.; Rajoka, M.I.; Akhtar, K. Investigations in Fungal Solubilization of Coal: Mechanisms and Significance. Biotechnol. Bioprocess Eng. 2015, 20, 634–642. [Google Scholar] [CrossRef]
- Beckmann, S.; Luk, A.W.S.; Gutierrez-Zamora, M.-L.; Chong, N.H.H.; Thomas, T.; Lee, M.; Manefield, M. Long-Term Succession in a Coal Seam Microbiome during in Situ Biostimulation of Coalbed-Methane Generation. ISME J. 2019, 13, 632–650. [Google Scholar] [CrossRef] [PubMed]
- Laborda, F.; Monistrol, I.F.; Luna, N.; Fernández, M. Processes of Liquefaction/Solubilization of Spanish Coals by Microorganisms. Appl. Microbiol. Biotechnol. 1999, 52, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Hofrichter, M.; Fritsche, W. Depolymerization of Low-Rank Coal by Extracellular Fungal Enzyme Systems. II. The Ligninolytic Enzymes of the Coal-Humic-Acid-Depolymerizing Fungus Nematoloma frowardii B19. Appl. Microbiol. Biotechnol. 1997, 47, 419–424. [Google Scholar] [CrossRef]
- Fakoussa, R.M.; Frost, P.J. In Vivo-Decolorization of Coal-Derived Humic Acids by Laccase-Excreting Fungus Trametes versicolor. Appl. Microbiol. Biotechnol. 1999, 52, 60–65. [Google Scholar] [CrossRef]
- Ralph, J.P.; Catcheside, D.E.A. Involvement of Manganese Peroxidase in the Transformation of Macromolecules from Low-Rank Coal by Phanerochaete chrysosporium. Appl. Microbiol. Biotechnol. 1998, 49, 778–784. [Google Scholar] [CrossRef]
- Ralph, J.P.; Catcheside, D.E.A. Decolourisation and Depolymerisation of Solubilised Low-Rank Coal by the White-Rot Basidiomycete Phanerochaete chrysosporium. Appl. Microbiol. Biotechnol. 1994, 42, 536–542. [Google Scholar] [CrossRef]
- Götz, G.K.E.; Fakoussa, R.M. Fungal Biosolubilization of Rhenish Brown Coal Monitored by Curie-Point Pyrolysis/Gas Chromatography/Mass Spectrometry Using Tetraethylammonium Hydroxide. Appl. Microbiol. Biotechnol. 1999, 52, 41–48. [Google Scholar] [CrossRef]
- Hofrichter, M.; Bublitz, F.; Fritsche, W. Fungal Attack on Coal: I. Modification of Hard Coal by Fungi. Fuel Process. Technol. 1997, 52, 43–53. [Google Scholar] [CrossRef]
- Yanagi, Y.; Tamaki, H.; Otsuka, H.; Fujitake, N. Comparison of Decolorization by Microorganisms of Humic Acids with Different 13C NMR Properties. Soil Biol. Biochem. 2002, 34, 729–731. [Google Scholar] [CrossRef]
- Scheibner, K.; Michels, J. Screening for Fungi Intensively Mineralizing 2,4,6-Trinitrotoluene. Appl. Microbiol. Biotechnol. 1997, 48, 431. [Google Scholar] [CrossRef] [PubMed]
- Scheibner, K.; Hofrichter, M.; Fritsche, W. Mineralization of 2-Amino-4,6-Dinitrotoluene by Manganese Peroxidase of the White-Rot Fungus Nematoloma frowardii. Biotechnol. Lett. 1997, 19, 835–839. [Google Scholar] [CrossRef]
- Liu, B.; Zhou, T.; Xue, S.; Chen, J.; Zhang, X.; Zheng, C.; Wang, J.; Li, G. Improved Formation of Biomethane by Enriched Microorganisms from Different Rank Coal Seams. ACS Omega 2024, 9, 11987–11997. [Google Scholar] [CrossRef] [PubMed]
- Steffen, K.T.; Hatakka, A.; Hofrichter, M. Degradation of Humic Acids by the Litter-Decomposing Basidiomycete Collybia dryophila. Appl. Environ. Microbiol. 2002, 68, 3442–3448. [Google Scholar] [CrossRef] [PubMed]
- Hölker, U.; Ludwig, S.; Scheel, T.; Höfer, M. Mechanisms of Coal Solubilization by the Deuteromycetes Trichoderma atroviride and Fusarium oxysporum. Appl. Microbiol. Biotechnol. 1999, 52, 57–59. [Google Scholar] [CrossRef] [PubMed]
- Yanagi, Y.; Hamaguchi, S.; Tamaki, H.; Suzuki, T.; Otsuka, H.; Fujitake, N. Relation of Chemical Properties of Soil Humic Acids to Decolorization by White Rot Fungus—Coriolus consors. Soil Sci. Plant Nutr. 2003, 49, 201–206. [Google Scholar] [CrossRef]
- Belcarz, A.; Ginalska, G.; Kornillowicz-Kowalska, T. Extracellular Enzyme Activities of Bjerkandera adusta R59 Soil Strain, Capable of Daunomycin and Humic Acids Degradation. Appl. Microbiol. Biotechnol. 2005, 68, 686–694. [Google Scholar] [CrossRef] [PubMed]
- Ding, P.; Wu, P.; Cao, Q.; Liu, H.; Chen, C.; Cui, M.-H.; Liu, H. Advantages of Residual Phenol in Coal Chemical Wastewater as a Co-Metabolic Substrate for Naphthalene Degradation by Microbial Electrolysis Cell. Sci. Total Environ. 2023, 901, 166342. [Google Scholar] [CrossRef]
- Shen, W.; Liu, X.; Shi, C.; Yang, J.; Zhao, S.; Yang, Z.; Wang, D. Influences of Four Kinds of Surfactants on Biodegradations of Tar-Rich Coal in the Ordos Basin by Bacillus bicheniformis. Microorganisms 2023, 11, 2397. [Google Scholar] [CrossRef]
- Gupta, R.K.; Deobald, L.A. Depolymerization and Chemical Modification of Lignite Coal by Pseudomonas cepacta Strain DLC-07. Appl. Biochem. Biotechnol. 1990, 24, 899–911. [Google Scholar] [CrossRef]
- Kilbane, J.J.; Chatterjee, D.K.; Karns, J.S.; Kellogg, S.T.; Chakrabarty, A.M. Biodegradation of 2,4,5-Trichlorophenoxyacetic Acid by a Pure Culture of Pseudomonas cepacia. Appl. Environ. Microbiol. 1982, 44, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Kordel, M.; Hofmann, B.; Schomburg, D.; Schmid, R.D. Extracellular Lipase of Pseudomonas sp. Strain ATCC 21808: Purification, Characterization, Crystallization, and Preliminary X-ray Diffraction Data. J. Bacteriol. 1991, 173, 4836–4841. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Qin, T.; Liang, Z.; Zheng, C. Oil Has a Higher Methanogenic Potential than Coal in an Oil-Bearing Coal Seam. ACS Omega 2023, 8, 23880–23888. [Google Scholar] [CrossRef] [PubMed]
- Campbell, B.C.; Tran-Dinh, N.; Greenfield, P.; Gong, S.; Midgley, D.J.; Paulsen, I.T.; George, S.C. A Novel Tail: One Story from the Rare Taxa of the Coal Seam Microbiome. Int. J. Coal Geol. 2023, 279, 104371. [Google Scholar] [CrossRef]
- Machnikowska, H.; Pawelec, K.; Podgórska, A. Microbial Degradation of Low Rank Coals. Fuel Process. Technol. 2002, 77–78, 17–23. [Google Scholar] [CrossRef]
- Quigley, D.R.; Ward, B.; Crawford, D.L.; Hatcher, H.J.; Dugan, P.R. Evidence That Microbially Produced Alkaline Materials Are Involved in Coal Biosolubilization. Appl. Biochem. Biotechnol. 1989, 20–21, 753–763. [Google Scholar] [CrossRef]
- Igbinigie, E.E.; Aktins, S.; Van Breugel, Y.; Van Dyke, S.; Davies-Coleman, M.T.; Rose, P.D. Fungal Biodegradation of Hard Coal by a Newly Reported Isolate, Neosartorya Fischeri. Biotechnol. J. 2008, 3, 1407–1416. [Google Scholar] [CrossRef] [PubMed]
- Mayumi, D.; Mochimaru, H.; Tamaki, H.; Yamamoto, K.; Yoshioka, H.; Suzuki, Y.; Kamagata, Y.; Sakata, S. Methane Production from Coal by a Single Methanogen. Science 2016, 354, 222–225. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.; Tao, X.; Shi, K. The Role of Surfactants in Coal Bio-Solubilisation. Fuel Process. Technol. 2011, 92, 1554–1559. [Google Scholar] [CrossRef]
- Ulrike, T.; Horst, M.; Claudia, E. Extracellular Phenol Oxidase Patterns during Depolymerization of Low-Rank Coal by Three Basidiomycetes. Fuel Energy Abstr. 2001, 42, 5. [Google Scholar] [CrossRef]
- Willmann, G.; Fakoussa, R.M. Extracellular Oxidative Enzymes of Coal-Attacking Fungi. Fuel Process. Technol. 1997, 52, 27–41. [Google Scholar] [CrossRef]
- Bucha, M.; Bucha, M.; Detman, A.; Pleśniak, Ł.; Drzewicki, W.; Kufka, D.; Chojnacka, A.; Mielecki, D.; Krajniak, J.; Jędrysek, M.O.; et al. Microbial Methane Formation from Different Lithotypes of Miocene Lignites from the Konin Basin, Poland: Geochemistry of the Gases and Composition of the Microbial Communities. Int. J. Coal Geol. 2020, 229, 103558. [Google Scholar] [CrossRef]
- Haider, R.; Ghauri, M.A.; Rahim, M.U. On Comparison between Fungal and Bacterial Pretreatment of Coal for Enhanced Biogenic Methane Generation. Geomicrobiol. J. 2018, 35, 432–437. [Google Scholar] [CrossRef]
- Vengosh, A.; Jackson, R.B.; Warner, N.; Darrah, T.H.; Kondash, A. A Critical Review of the Risks to Water Resources from Unconventional Shale Gas Development and Hydraulic Fracturing in the United States. Environ. Sci. Technol. 2014, 48, 8334–8348. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Cheng, Y.; Huang, Z.; Urynowicz, M.A.; Liang, W.; Han, Z.; Liu, J. Factors Affecting Co-Degradation of Coal and Straw to Enhance Biogenic Coalbed Methane. Fuel 2019, 244, 240–246. [Google Scholar] [CrossRef]
- Guo, H.; Dong, Z.; Su, X.; Liu, S.; Jia, J.; Yu, H.; Xia, D. Synergistic Biodegradation of Coal Combined with Corn Straw as a Substrate to Methane and the Prospects for Its Application. Energy Fuels 2018, 32, 7011–7016. [Google Scholar] [CrossRef]
- Li, Y.; Qin, T.; Feng, F.; Zhang, Y.; Xue, S. Nitrogen Amendment Enhances the Biological Methanogenic Potential of Bituminous Coal. Fuel 2023, 351, 128932. [Google Scholar] [CrossRef]
- Kurnani, T.B.A.; Harlia, E.; Hidayati, Y.A.; Marlina, E.T.; Sugiarto, A.N.; Rahmah, K.N.; Joni, I.M. Biogas Production from Various Coal Types Using Beef Cattle Rumen’s Liquid as a Source of Microorganisms Consortium. In Proceedings of the 1st International Conference and Exhibition on Powder Technology Indonesia (ICePTi) 2017, Jatinangor, Indonesia, 8–9 August 2017; p. 030015. [Google Scholar] [CrossRef]
- Haider, R.; Ghauri, M.A.; SanFilipo, J.R.; Jones, E.J.; Orem, W.H.; Tatu, C.A.; Akhtar, K.; Akhtar, N. Fungal Degradation of Coal as a Pretreatment for Methane Production. Fuel 2013, 104, 717–725. [Google Scholar] [CrossRef]
- Chen, T.; Rodrigues, S.; Golding, S.D.; Rudolph, V. Improving Coal Bioavailability for Biogenic Methane Production via Hydrogen Peroxide Oxidation. Int. J. Coal Geol. 2018, 195, 402–414. [Google Scholar] [CrossRef]
- Xia, D.; Zhang, H.; Su, X.; Deng, Z.; Wang, Q. Adsorption and Heat Characteristics of Coal-Microorganisms during the Cogeneration of H2 and CH4 Following Pretreatment with White Rot Fungi. J. Clean. Prod. 2020, 255, 120242. [Google Scholar] [CrossRef]
- Ritter, D.; Vinson, D.; Barnhart, E.; Akob, D.M.; Fields, M.W.; Cunningham, A.B.; Orem, W.; McIntosh, J.C. Enhanced Microbial Coalbed Methane Generation: A Review of Research, Commercial Activity, and Remaining Challenges. Int. J. Coal Geol. 2015, 146, 28–41. [Google Scholar] [CrossRef]
- North China Oilfield Opens up New Avenues for Coalbed Methane Production Increase Research. Available online: http://www.cps.org.cn/show-29-1017.html (accessed on 7 June 2024).
- China Resources Gas Group Limited. Bio-Coalbed Methane Technology to Be Popularised in Yunnan on a Large Scale. Available online: https://www.crcgas.com/news/industry/201303/t20130330_287939.html (accessed on 7 June 2024).
- People’s Daily: Why Is Daqing Forever Young. Available online: https://www.chinacoal.com/art/2019/10/16/art_32_183313.html (accessed on 7 June 2024).
- Walia, D. A Balanced Sustainable Climate Change Solution for Fast Track to Net Zero Carbon & Enable Must Haves with MicGASTM Coal Biotechnology; ARCTECH: Centreville, VA, USA, 2023. [Google Scholar]
- Qin, X.; Li, J. Xinjiang Colinstead New-Source Energy Co.: Launch of Two Xinjiang’s Largest Fracked Coalbed Methane Test Wells. Available online: http://www.xj.xinhuanet.com/zt/2023-08/24/c_1129820442.htm (accessed on 7 June 2024).
- Bhatia, L.; Johri, S.; Ahmad, R. An Economic and Ecological Perspective of Ethanol Production from Renewable Agro Waste: A Review. AMB Express 2012, 2, 65. [Google Scholar] [CrossRef] [PubMed]
- Claassen, P.A.M.; Van Lier, J.B.; Lopez Contreras, A.M.; Van Niel, E.W.J.; Sijtsma, L.; Stams, A.J.M.; De Vries, S.S.; Weusthuis, R.A. Utilisation of Biomass for the Supply of Energy Carriers. Appl. Microbiol. Biotechnol. 1999, 52, 741–755. [Google Scholar] [CrossRef]
- Saravanakumar, K.; Senthilraja, P.; Kathiresan, K. Bioethanol Production by Mangrove-Derived Marine Yeast, Sacchromyces cerevisiae. J. King Saud Univ.—Sci. 2013, 25, 121–127. [Google Scholar] [CrossRef]
- Byadgi, S.A.; Kalburgi, P.B. Production of Bioethanol from Waste Newspaper. Procedia Environ. Sci. 2016, 35, 555–562. [Google Scholar] [CrossRef]
- Bao, Y.; Hu, Y.; Huang, H.; Meng, J.; Zheng, R. Evidence of Coal Biodegradation from Coalbed-Produced Water—A Case Study of Dafosi Gas Field, Ordos Basin, China. ACS Omega 2023, 8, 41885–41896. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Feng, R.; Liu, J.; Pandey, R. A Simplified Transient Technique for Porosity and Permeability Determination in Tight Formations: Numerical Simulation and Experimental Validation. Energy Sci. Eng. 2021, 9, 375–389. [Google Scholar] [CrossRef]
- Ponomareva, A.A.; Ivanova, A.G.; Shilova, O.A.; Kruchinina, I.Y. Current State and Prospects of Manufacturing and Operation of Methane Based Fuel Cells (Review). Glass Phys. Chem. 2016, 42, 1–19. [Google Scholar] [CrossRef]
- Chen, J.; Nan, J.; Xu, D.; Mo, L.; Zheng, Y.; Chao, L.; Qu, H.; Guo, Y.; Li, F.; Bao, Y. Response Differences between Soil Fungal and Bacterial Communities under Opencast Coal Mining Disturbance Conditions. CATENA 2020, 194, 104779. [Google Scholar] [CrossRef]
- Chen, J.; Mo, L.; Zhang, Z.; Nan, J.; Xu, D.; Chao, L.; Zhang, X.; Bao, Y. Evaluation of the Ecological Restoration of a Coal Mine Dump by Exploring the Characteristics of Microbial Communities. Appl. Soil Ecol. 2020, 147, 103430. [Google Scholar] [CrossRef]
- Bumpus, J.A.; Senko, J.; Lynd, G.; Morgan, R.; Sturm, K.; Stimpson, J.; Roe, S. Biomimetic Solubilization of a Low Rank Coal: Implications for Its Use in Methane Production. Energy Fuels 1998, 12, 664–671. [Google Scholar] [CrossRef]
- Moore, T.A. Coalbed Methane: A Review. Int. J. Coal Geol. 2012, 101, 36–81. [Google Scholar] [CrossRef]
- Ekundayo, J.M.; Rezaee, R. Volumetric Measurements of Methane-Coal Adsorption and Desorption Isotherms—Effects of Equations of State and Implication for Initial Gas Reserves. Energies 2019, 12, 2022. [Google Scholar] [CrossRef]
- Lyles, C.N.; Parisi, V.A.; Beasley, W.H.; Van Nostrand, J.D.; Zhou, J.; Suflita, J.M. Elucidation of the Methanogenic Potential from Coalbed Microbial Communities Amended with Volatile Fatty Acids. FEMS Microbiol. Ecol. 2017, 93, fix040. [Google Scholar] [CrossRef] [PubMed]
- Kirk, M.F.; Wilson, B.H.; Marquart, K.A.; Zeglin, L.H.; Vinson, D.S.; Flynn, T.M. Solute Concentrations Influence Microbial Methanogenesis in Coal-Bearing Strata of the Cherokee Basin, USA. Front. Microbiol. 2015, 6, 1287. [Google Scholar] [CrossRef] [PubMed]
- Rathi, R.; Priya, A.; Vohra, M.; Lavania, M.; Lal, B.; Sarma, P.M. Development of a Microbial Process for Methane Generation from Bituminous Coal at Thermophilic Conditions. Int. J. Coal Geol. 2015, 147–148, 25–34. [Google Scholar] [CrossRef]
- Green, M.S.; Flanegan, K.C.; Gilcrease, P.C. Characterization of a Methanogenic Consortium Enriched from a Coalbed Methane Well in the Powder River Basin, U.S.A. Int. J. Coal Geol. 2008, 76, 34–45. [Google Scholar] [CrossRef]
- Ma, J.; Wei, H.; Su, Y.; Gu, W.; Wang, B.; Xie, B. Powdered Activated Carbon Facilitates Methane Productivity of Anaerobic Co-Digestion via Acidification Alleviating: Microbial and Metabolic Insights. Bioresour. Technol. 2020, 313, 123706. [Google Scholar] [CrossRef] [PubMed]
- Hildenbrand, A.; Krooss, B.M.; Busch, A.; Gaschnitz, R. Evolution of Methane Sorption Capacity of Coal Seams as a Function of Burial History—A Case Study from the Campine Basin, NE Belgium. Int. J. Coal Geol. 2006, 66, 179–203. [Google Scholar] [CrossRef]
- Hamilton, S.K.; Golding, S.D.; Baublys, K.A.; Esterle, J.S. Conceptual Exploration Targeting for Microbially Enhanced Coal Bed Methane (MECoM) in the Walloon Subgroup, Eastern Surat Basin, Australia. Int. J. Coal Geol. 2015, 138, 68–82. [Google Scholar] [CrossRef]
- Bi, Z.; Zhang, J.; Park, S.; Harpalani, S.; Liang, Y. A Formation Water-Based Nutrient Recipe for Potentially Increasing Methane Release from Coal in Situ. Fuel 2017, 209, 498–508. [Google Scholar] [CrossRef]
- Ünal, B.; Perry, V.R.; Sheth, M.; Gomez-Alvarez, V.; Chin, K.-J.; Nüsslein, K. Trace Elements Affect Methanogenic Activity and Diversity in Enrichments from Subsurface Coal Bed Produced Water. Front. Microbiol. 2012, 3, 19053. [Google Scholar] [CrossRef] [PubMed]
- Fallgren, P.H.; Zeng, C.; Ren, Z.; Lu, A.; Ren, S.; Jin, S. Feasibility of Microbial Production of New Natural Gas from Non-Gas-Producing Lignite. Int. J. Coal Geol. 2013, 115, 79–84. [Google Scholar] [CrossRef]
- Bai, H.; Chen, J.; Hu, Y.; Wang, G.; Liu, W.; Lamy, E. Biocolloid Transport and Deposition in Porous Media: A Review. Korean J. Chem. Eng. 2022, 39, 38–57. [Google Scholar] [CrossRef]
- Halla, F.F.; Massawa, S.M.; Joseph, E.K.; Acharya, K.; Sabai, S.M.; Mgana, S.M.; Werner, D. Attenuation of Bacterial Hazard Indicators in the Subsurface of an Informal Settlement and Their Application in Quantitative Microbial Risk Assessment. Environ. Int. 2022, 167, 107429. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Liu, X.; Zhao, S.; Yang, Z.; Lu, X.; Tong, M. Sequential Degradations of Dananhu lignites by Nocardia mangyaensis and Bacillus licheniformis. Fuel 2022, 318, 123623. [Google Scholar] [CrossRef]
- Su, X.; Zhao, W.; Xia, D.; Hou, S.; Fu, H.; Zhou, Y. Experimental Study of Advantages of Coalbed Gas Bioengineering. J. Nat. Gas Sci. Eng. 2022, 102, 104585. [Google Scholar] [CrossRef]
- Rahimi, E.; Liu, S.; Wang, M. Investigation of Methane-Rich Gas Production from the Co-Bioconversion of Coal and Anaerobic Digestion Sludge. Fuel 2024, 357, 129565. [Google Scholar] [CrossRef]
- Xia, D.; Niu, Y.; Tian, J.; Su, X.; Wei, G.; Jian, K.; Wang, Z.; Zhang, Y.; Zhao, W. Degradation Metabolic Pathway of Low-Rank Coal Using Single Hydrolytic Bacteria. Fuel 2024, 364, 130917. [Google Scholar] [CrossRef]
- Geng, H.; Xu, Y.; Zheng, L.; Liu, H.; Dai, X. Cation Exchange Resin Pretreatment Enhancing Methane Production from Anaerobic Digestion of Waste Activated Sludge. Water Res. 2022, 212, 118130. [Google Scholar] [CrossRef]
- Bland, D.M. Coalbed Methane from the Fruitland Formation, San Juan Basin, New Mexico. In Proceedings of the 2024 NMGS Fall Field Conference, Bernalillo, NM, USA, 23–26 October 2024; San Juan Basin IV. New Mexico Geological Society: Socorro, NM, USA, 1992; pp. 373–383. [Google Scholar] [CrossRef]
- Gentzis, T. Coalbed Methane Potential of the Paleocene Fort Union Coals in South-Central Wyoming, USA. Int. J. Coal Geol. 2013, 108, 27–34. [Google Scholar] [CrossRef]
- Ju, F.; Wang, Y.; Lau, F.T.K.; Fung, W.C.; Huang, D.; Xia, Y.; Zhang, T. Anaerobic Digestion of Chemically Enhanced Primary Treatment (CEPT) Sludge and the Microbial Community Structure. Appl. Microbiol. Biotechnol. 2016, 100, 8975–8982. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Gupta, A. Biogas Production from Coal via Anaerobic Fermentation. Fuel 2014, 118, 238–242. [Google Scholar] [CrossRef]
- Robbins, S.J.; Evans, P.N.; Esterle, J.S.; Golding, S.D.; Tyson, G.W. The Effect of Coal Rank on Biogenic Methane Potential and Microbial Composition. Int. J. Coal Geol. 2016, 154–155, 205–212. [Google Scholar] [CrossRef]
- Wang, A.; Shao, P.; Wang, Q. Biogenic Gas Generation Effects on Anthracite Molecular Structure and Pore Structure. Front. Earth Sci. 2021, 15, 272–282. [Google Scholar] [CrossRef]
- Pant, L.M.; Huang, H.; Secanell, M.; Larter, S.; Mitra, S.K. Multi Scale Characterization of Coal Structure for Mass Transport. Fuel 2015, 159, 315–323. [Google Scholar] [CrossRef]
- Guo, H.; Li, Y.; Wang, Q.; Zhao, W.; Jia, J.; Lv, J.; Liu, S.; Xia, D. Feasibility Analysis of the in Situ Conversion of Biomethane in Surface Weathered Coal. Fuel 2020, 268, 117273. [Google Scholar] [CrossRef]
- Barnhart, E.P.; Davis, K.J.; Varonka, M.; Orem, W.; Cunningham, A.B.; Ramsay, B.D.; Fields, M.W. Enhanced Coal-Dependent Methanogenesis Coupled with Algal Biofuels: Potential Water Recycle and Carbon Capture. Int. J. Coal Geol. 2017, 171, 69–75. [Google Scholar] [CrossRef]
- Wang, Q.; Guo, H.; Wang, H.; Urynowicz, M.A.; Hu, A.; Yu, C.-P.; Fallgren, P.; Jin, S.; Zheng, H.; Zeng, R.J.; et al. Enhanced Production of Secondary Biogenic Coalbed Natural Gas from a Subbituminous Coal Treated by Hydrogen Peroxide and Its Geochemical and Microbiological Analyses. Fuel 2019, 236, 1345–1355. [Google Scholar] [CrossRef]
- Zhang, M.; Guo, H.; Xia, D.; Dong, Z.; Liu, X.; Zhao, W.; Jia, J.; Yin, X. Metagenomic Insight of Corn Straw Conditioning on Substrates Metabolism during Coal Anaerobic Fermentation. Sci. Total Environ. 2022, 808, 152220. [Google Scholar] [CrossRef]
- Chen, L.; Li, C.; Xu, B.; Xing, B.; Yi, G.; Huang, G.; Zhang, C.; Liu, J. Microbial Degradation of Organic Pollutants in Groundwater Related to Underground Coal Gasification. Energy Sci. Eng. 2019, 7, 2098–2111. [Google Scholar] [CrossRef]
- Shi, J.; Han, Y.; Xu, C.; Han, H. Enhanced Biodegradation of Coal Gasification Wastewater with Anaerobic Biofilm on Polyurethane (PU), Powdered Activated Carbon (PAC), and Biochar. Bioresour. Technol. 2019, 289, 121487. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yip, C.; Xia, C.; Liang, Y. Evaluation of Methane Release from Coals from the San Juan Basin and Powder River Basin. Fuel 2019, 244, 388–394. [Google Scholar] [CrossRef]
- Zheng, M.; Xu, C.; Zhong, D.; Han, Y.; Zhang, Z.; Zhu, H.; Han, H. Synergistic Degradation on Aromatic Cyclic Organics of Coal Pyrolysis Wastewater by Lignite Activated Coke-Active Sludge Process. Chem. Eng. J. 2019, 364, 410–419. [Google Scholar] [CrossRef]
- Zheng, M.; Han, Y.; Han, H.; Xu, C.; Zhang, Z.; Ma, W. Synergistic Degradation on Phenolic Compounds of Coal Pyrolysis Wastewater (CPW) by Lignite Activated Coke-Active Sludge (LAC-AS) Process: Insights into Succession of Microbial Community under Selective Pressure. Bioresour. Technol. 2019, 281, 126–134. [Google Scholar] [CrossRef]
Mechanisms of Microbial Degradation and Transformation | Types of Microorganisms | Bibliography | |||
---|---|---|---|---|---|
Mechanism of enzyme action | Peroxidase | Lignin peroxidase | Fungi | Aspergillus Nematoloma frowardii Phanerochaete chrysosporium Coriolus versicolor Pycnoporus cinnabarinus Candida Fomes Edible tree fungus Trichoderma citrinoviride Polystictus Penicillium Coprinus sclerotigenis Stereum hirsutum | Laborda et al. [74] Yan et al. [32] Hofrichter and Fritsche [75] Fakoussa and Frost [76] Ralph and Catcheside [77,78] Gotz and Fakoussa [79] Li et al. [64] Laborda et al. [74] Hofrichter et al. [80] Yanagi et al. [81] Feng et al. [7] |
Manganese peroxidase | Fungi | Clitocybula dusenii Pleurotus ostreatus Nematoloma frowardii Collybia dryophila Lentinula edodes Fonticella | Scheibner [82,83] Liu et al. [84] Hofrichter and Fritsche [71,80] Gotz and Fakoussa [79] Laborda et al. [74] Fakoussa and Frost [76] Steffen et al. [85] | ||
Phenoloxidase | Laccase | Fungi | Trichoderma Aspergillus Trichoderma citrinoviride Lentinula edodes Nematoloma frowardii Polyporus versicolor Poria monticola Coprinus sclerotigenis Alternaria Polystictus consors (Berk.) Teng Coriolus hirsutus(Wulf: Fr.) Quel Bjerkandera adusta (Willd.: Fr.) Karst R59 Azoarcus Paecilomyces Bain Coriolus versicolor | Fakoussa and Frost [76] Gotz and Fakoussa [79] Hofrichter and Fritsche [83] Cohen and Gabriele. [11] Holker et al. [86] Hofrichter et al. [80] Yan et al. [32] Yanagi et al. [87] Yanagi et al. [81] Feng et al. [7] Belcarz et al. [88] Fu et al. [54] | |
Bacteria | Bacillus licheniformis Alicycliphilus Pseudomonas adaceae Polaromonas Geobacter Mycobacterium Sphingomonas sp. | Wu et al. [4] Ding et al. [89] Fu et al. [54] Shen et al. [90] | |||
Hydrolysis enzyme | Lipase | Fungi | Trichoderma longibrachiatum Rifai Karst R59 Mortierella sp. Bjerkandera adusta (Willd.: Fr.) Aspergillus Fusarium oxysporum Schltdl. | Holker et al. [86] Belcarz et al. [88] Yan et al. [32] | |
Bacteria | Pseudomonas cepacia 122 Pseudomonas cepacia AC100 Pseudomonas cepacia ATCC 21808 Acidovorax Sedimentibacter Proteobacteria Enterobacter Betaproteobacteria Deltaproteobacteria Clostridium Pseudomonas cepacia DLC-07 Alphaproteobacteria Gammaproteobacteria | Gupta et al. [91] Kilbane et al. [92] Kordel et al. [93] Li et al. [94] Li et al. [66] Fu et al. [54] | |||
Proteobacteria | Desulfovibrio Desulfobacterota Geobacter Desulfococcus oleovorans Hxd3 Syntrophobacter Syntrophomonas | Li et al. [64] Fu et al. [54] Campbell et al. [95] | |||
Mechanism of alkali dissolution | Bacteria | Bacillus cereus Bacillus pumilus Bacillus subtilis Pseudomonas putida | Maka et al. [65] Machnikowska et al. [96] | ||
Actinomycetes | Streptomyces badius. Streptomyces viridosporus | Quigley et al. [97] Wu et al. [4] | |||
Fungi | Fusarium oxysporum Schltdl. Trichoderma longibrachiatum Rifai | Holker et al. [86] | |||
Reductase | Bacteria | Campilobacterota Firmicutes Acetobacterium Smithella | Fu et al. [54] | ||
Surfactant mechanism of action | Actinomycetes | Streptomyces viridosporus Streptomyces flavovirens | Wu et al. [4] | ||
Fungi | Neosartorya fischeri | Lgbinigie. [98] | |||
Mechanism of action of chelating agents | Fungi | Trichoderma longibrachiatum Rifai Fusarium oxysporum Schltdl. | Holker et al. [86] | ||
Methoxydotrophic mechanism of action | Bacteria | Acetoclastic Methanosarcina Methanobacteriaes Candidatus Methanothrix Paradoxum Methanofastidiosa Methermicoccus shengliensis Euryarchaeota Thermovirga Clostridiales Methanomicrobiales Methermicoccus shengliensis AmaM Methermicoccus shengliensis ZC-1 | Mayumi et al. [99] Li et al. [64] Li et al. [66] Fu et al. [54] |
Treatment | Materials | Effect | Bibliography |
---|---|---|---|
In situ nutritional modification | Rice straw | Methane yield of 684.83 µmol/g coal; | Li et al. [36] Guo et al. [106] Guo et al. [107] |
Sweet sorghum straw | Methane yield of 612.98 µmol/g coal; | ||
Wheat straw | Methane yield of 537.31 µmol/g coal; | ||
Corn straw | Methane yield of 46.95 µmol/g coal; | ||
Rice straw | Methane yield of 93.65 µmol/g coal; Plant roots, stems, and leaves, corresponding to different qualities of coal, can produce different effects. | ||
Enrichment culture | Nitrogen amendment | Increased 1.89 to 3.43 times; | Li et al. [108] Kurnani et al. [109] |
Rumen liquid from beef cattle | The powdered rumen in 10−7 dilution can be used to increase methane production in lignite, subbituminous, and bituminous reserves. | ||
Physical fracturing | Hydraulic fracturing | Significant increase in degradation strains. | Li et al. [66] Robbins et al. [108] |
Biological/non-biological pretreatment | Aerobic fungi or bacteria | Bacterial pretreatment products mainly include single-ring aromatics, long-chain alkanes, and long-chain fatty acids. Fungal pretreatments were predominantly identified as polyaromatic hydrocarbons, single-ring aromatics, aromatic nitrogen compounds, and some aliphatics. | Liu et al. [16] Haide et al. [104] Haide et al. [110] Chen et al. [111] Xia et al. [112] |
H2O2 | Methane production of 529.3 µmol/g; | ||
The methane production of the sub-bituminous coal PEN9-003 increased up to 10 times to 223.7 μmol/g; | |||
White-rot fungi | Hydrogen production was 1.32 mL/g and methane production was 5.78 mL/g. |
Time | Mechanism | Site | Projects and Effects | Bibliography |
---|---|---|---|---|
2006 | Luca Technologies | Powder River Basin of northeastern Wyoming and southeastern Montana in the western USA | Methane production increased in 58 wells, with an efficiency rate of 22%. | Ritter et al. [113] |
2012 | Ciris | Powder River Basin of northeastern Wyoming and southeastern Montana in the western USA; Headquartered in Centennial, Colorado. | Nutrient infusion was carried out and, after a long period of testing, an increase in yield was observed. | Ritter et al. [113] |
2013 | Next FUEL | Powder River Basin of northeastern Wyoming and southeastern Montana in the western USA; Headquartered in Sheridan, Wyoming | Nutrient introduction was mainly carried out. | Ritter et al. [113] |
2013 | North China Oilfield | It is located in the North China Oilfield area in Hebei Province, China. | After 1 year, 8 orthogonal experimental designs, and more than 200 sampling tests, the gas content of microbial methane was increased from the initial 4.1% to 97.8%. | North China Oilfield [114] |
2013 | Yunnan Provincial Energy Investment Group Co., Ltd. and Yunnan Baocheng New Energy Co., Ltd. in collaboration with Next Fuel Inc. | Located in Huaning County, Yuxi City, Yunnan Province, China. | A commercialization project using Biological Coalbed Methane Technology (BCTG) was carried out and achieved remarkable results. | Yunnan Provincial Energy Investment Group Co., Ltd. and Yunnan Baocheng New Energy Co., Ltd. in collaboration with Next Fuel Inc. [115] |
2019 | Daqing Oilfield | It is located in the northern part of the Songnen Plain in Heilongjiang Province and Daqing City, China. | It was found that when using microbial oil drive, the annual gas production per gram of crude oil can be more than 150 mL, and the oil and gas conversion rate is more than 10%. | Daqing Oilfield [116] |
2023 | Arctech | Located in Centerville, Virginia, USA | ARCTECH developed MicGASTM technology by adapting wood termites to eat coal and then using the microbes isolated from their guts to digest coals in the presence of appropriate nutrient components. This technology can be applied to low-cost installations in wastewater treatment plants. This technology has also been used to convert residual oil from unminable coal, shale, and reservoirs into clean methane gas. The solid residues from anaerobic treatment are also not waste, but are rich in organic humus. | Arctech [117] |
2023 | Xinjiang Kelinside New Energy Co., Ltd. | It is located in Fukang City, Changji Hui Autonomous Prefecture, Xinjiang Uygur Autonomous Region, China. | Fracture testing was formally initiated on the FK18-2L horizontal well and continued for 15 days. | Xinjiang Kelinside New Energy Co., Ltd. [118] |
Microbiology | Microbial Source | Coal Type | T/°C | pH | Methane Yield | Metabolite | Bibliography |
---|---|---|---|---|---|---|---|
Nocardia mangyaensis (N. mangyaensis; CICC11046) | The China Center of Industrial Culture Collection (CICC) | Fresh coal samples | 30 °C | — | The biodegradation rate was 65.2%. | Phenol; alcohol; ether; ester | Shi et al. [143] |
Bacillus licheniformis (B. licheniformis; CICC10092) | Fresh coal samples | 30 °C | — | The biodegradation rate was 58.5%. | |||
Nocardia mangyaensis (N. mangyaensis; CICC11046) and Bacillus licheniformis (B. licheniformis; CICC10092) | Fresh coal samples | 30 °C | — | The biodegradation rate for degradation order N→B was 82.1%. | |||
Fresh coal samples | 30 °C | — | The biodegradation rate for degradation order B→N was 75.5%. | ||||
Fresh coal samples | 30 °C | — | The biodegradation rate of the two microorganisms together was 48.3%. | ||||
Petrimonas, Lysinibacillus, Proteiniphilum, Bacillus, Cloacibacillus, Methanomassiliicoccus, and Methanosarcina. | Huainan | Fresh coal samples | — | 6.8 | The cumulative methane yield was 4.521 mL/g. | Alkanes; aromatics; amines; unsaturated fatty acids; esters | Su et al. [144] |
Hebi | Fresh coal samples | — | 6.8 | The cumulative methane yield was 3.151 mL/g. | |||
Zhaogu | Fresh coal samples | — | 6.8 | The cumulative methane yield was 2.013 mL/g. | |||
— | The Ordos Basin | Fresh coal samples | 60 °C | — | The majority of the products were alkanes, with concentrations ranging from 64.2 to 220.6 ng/L. | Aliphatic hydrocarbons; polycyclic aromatic hydrocarbons; heterocyclic phenols; esters; ethers; alcohols; other aromatic compounds | Bao et al. [123] |
— | Domesticated mixed fermentation microorganisms | Fresh coal samples | 35 °C | — | Gas production was not examined and pore changes (transformation of micropores into transition and mesopores) were detected. | — | Li et al. [22] |
Methanobacteriales, Methanocellales, Methanococcales, Methanobacteriales, Methanomicrobiales, and Methanosarcinales. | Huangling Coal Mine at Shaanxi Huangling Mining Co., Ltd., China. | Fresh coal samples | 37 °C | — | By day 90, the methane yield was 1.06 µmol/(g·d). | Benzenoids (108 metabolites); organoheterocyclic compounds (125 metabolites); phenylpropanoids and polyketides (48 metabolites); lipids and lipid-like molecules (48 metabolites); fatty acyls (16 metabolites), etc.; | Li et al. [94] |
Methanobacterium, Methanobrevibacter, Methanoculleus, and Methanosarcina. | Crude oil | 37 °C | — | By day 90, the methane yield was 2.29 µmol/(g·d). | 82 organoheterocyclic compounds; 58 benzenoids; 46 organic acids and derivatives; 18 fatty acyls | ||
— | The deep mine water of the Guhanshan Mine in Jiaozuo City, Henan Province. | Low-rank lignite | 35 °C | 7.0 ± 0.05 | The cumulative methane yield was 152.11 µmol/g. | — | Xia et al. [46] |
The deep mine water of the Guhanshan Mine in Jiaozuo City, Henan Province | Medium-rank bituminous coal | 35 °C | 7.0 ± 0.05 | The cumulative methane yield was 80.57 µmol/g. | — | ||
Mortieralla, Cladosporium, Alternaria, Cladosporium, Fusarium, Aspergillus, and Methanosarcina. | Qinshui Basin | Lignite | 35 °C | — | The maximum methane production was 6578.51 μmol. | Fatty acids; amino acids; nitrogenous compounds; alcohols; aromatic acid | Yan et al. [32] |
Methanosarcina, Methanobacterium, Methanomassiliicoccus, Methanothrix, and Methanoculleus. | Low-volatility anthracite (Sihe No. 2 Coal Mine) | High-volatility bituminous coal | 30 °C | Fell to 6.11 ± 0.1 during days 1–5; increased to 8.11 ± 0.3 on days 5–40. | The cumulative methane production rate was 207.3 μmol/g. | Heterocyclics; benzenoids; aliphatic acids; polymers (mass charge ratio >400) | Liu et al. [84] |
High-volatility bituminous coal (Panji No. 3 Coal Mine) | High-volatility bituminous coal | 30 °C | Fell to 6.11 ± 0.1 during days 1–5; increased to 8.25 ± 0.2 on days 5–40. | The cumulative methane production rate was 243.3 μmol/g. | |||
Medium-volatility coking coal (Pinggou Coal Mine) | High-volatility bituminous coal | 30 °C | Fell to 6.11 ± 0.1 during days 1–5; increased to 7.76 ± 0.2 on days 5–40. | The cumulative methane production rate was 163.1 μmol/g. | |||
— | An active mine site in the U.S. | Lignite and subbituminous | 35 °C | Around 7.2 | The cumulative amounts of produced biogas at day 40 were 62.3 mL/g sludge, 62.8 mL/g sludge, and 67.1 mL/g sludge, respectively; these values eventually reached 120.9 mL per gram of sludge (mL/g sludge), 144.4 mL/g sludge, and 161.3 mL/g sludge in blank, subbituminous, and lignite, respectively. | — | Rahimi et al. [145] |
— | Guhanshan Mine, Jiaozuo, Henan, China. | Long-flame coal | 35 °C | — | The methane production rate was 53.6%, and cumulative methane production was 4.28 mL/g. | Monosaccharides; different amino acids; large amounts of fatty acids and glycerol | Xia et al. [146] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, Y.; Wang, Z.; Xiong, Y.; Wang, Y.; Chai, L.; Guo, C. Exploring the Potential of Microbial Coalbed Methane for Sustainable Energy Development. Molecules 2024, 29, 3494. https://doi.org/10.3390/molecules29153494
Niu Y, Wang Z, Xiong Y, Wang Y, Chai L, Guo C. Exploring the Potential of Microbial Coalbed Methane for Sustainable Energy Development. Molecules. 2024; 29(15):3494. https://doi.org/10.3390/molecules29153494
Chicago/Turabian StyleNiu, Yu, Zhiqian Wang, Yingying Xiong, Yuqi Wang, Lin Chai, and Congxiu Guo. 2024. "Exploring the Potential of Microbial Coalbed Methane for Sustainable Energy Development" Molecules 29, no. 15: 3494. https://doi.org/10.3390/molecules29153494
APA StyleNiu, Y., Wang, Z., Xiong, Y., Wang, Y., Chai, L., & Guo, C. (2024). Exploring the Potential of Microbial Coalbed Methane for Sustainable Energy Development. Molecules, 29(15), 3494. https://doi.org/10.3390/molecules29153494