Harnessing Nuclear Magnetic Resonance Spectroscopy to Decipher Structure and Dynamics of Clathrate Hydrates in Confinement: A Perspective
Abstract
:1. Introduction
2. Sample Environments Enabling In Situ NMR Spectroscopy on Clathrate Hydrates
2.1. High-Pressure Environment for In Situ Static NMR Spectroscopy
2.2. High-Pressure MAS Rotor for NMR Spectroscopy on Clathrate Hydrates
3. NMR Methods for Clathrate Hydrate Research
3.1. Absolute Quantification
3.2. Structure Elucidation
3.3. In Situ Nuclear Magnetic Resonance—Dielectric Relaxation Spectroscopy
4. Showcase Studies
4.1. In Situ Static High-Pressure NMR Spectroscopy during Clathrate Formation in Bulk and under Confinement
- Showcase study 1. In situ NMR spectroscopy during CH4 + THF hydrate formation in bulk
- Showcase study 2. In situ NMR spectroscopy of CH4 hydrate formation in confinement
- Showcase study 3. In situ NMR spectroscopy reveals direct exchange of CH4 for CO2 in nano-confined clathrate hydrate
- Showcase study 4. Identification of nano-confined H2 + THF sII clathrate
4.2. Deciphering the Interactions Governing Nano-Confined Clathrate Hydrate Formation
5. Conclusions and Outlook
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Saikia, T.; Patil, S.; Sultan, A. Hydrogen Hydrate Promoters for Gas Storage—A Review. Energies 2023, 16, 2667. [Google Scholar] [CrossRef]
- Das, S.; Tadepalli, K.M.; Roy, S.; Kumar, R. A Review of Clathrate Hydrate Nucleation, Growth and Decomposition Studied Using Molecular Dynamics Simulation. J. Mol. Liq. 2022, 348, 118025. [Google Scholar] [CrossRef]
- Gupta, A.; Baron, G.V.; Perreault, P.; Lenaerts, S.; Ciocarlan, R.G.; Cool, P.; Mileo, P.G.M.; Rogge, S.; Van Speybroeck, V.; Watson, G.; et al. Hydrogen Clathrates: Next Generation Hydrogen Storage Materials. Energy Storage Mater. 2021, 41, 69–107. [Google Scholar] [CrossRef]
- Strobel, T.A.; Koh, C.A.; Sloan, E.D. Hydrogen Storage Properties of Clathrate Hydrate Materials. Fluid Phase Equilib. 2007, 261, 382–389. [Google Scholar] [CrossRef]
- Kvenvolden, K.A. Methane Hydrate—A Major Reservoir of Carbon in the Shallow Geosphere? Chem. Geol. 1988, 71, 41–51. [Google Scholar] [CrossRef]
- Kennett, J.P.; Cannariato, K.G.; Hendy, I.L.; Behl, R.J. Methane Hydrates in Quaternary Climate Change: The Clathrate Gun Hypothesis; American Geophysical Union (AGU): Washington, DC, USA, 2003. [Google Scholar]
- Jadhawar, P.; Mohammadi, A.H.; Yang, J.; Tohidi, B. Subsurface carbon dioxide storage through clathrate hydrate formation. In Advances in the Geological Storage of Carbon Dioxide; Springer: Dordrecht, The Netherlands, 2006; pp. 111–126. [Google Scholar] [CrossRef]
- Warzinski, R.P.; Lynn, R.J.; Holder, G.D. The Impact of CO2 Clathrate Hydrate on Deep Ocean Sequestration of CO2: Experimental Observations and Modeling Results. Ann. N. Y. Acad. Sci. 2000, 912, 226–234. [Google Scholar] [CrossRef]
- Ratcliffe, C.I. The Development of Clathrate Hydrate Science. Energy Fuels 2022, 36, 10412–10429. [Google Scholar] [CrossRef]
- Veluswamy, H.P.; Kumar, R.; Linga, P. Hydrogen Storage in Clathrate Hydrates: Current State of the Art and Future Directions. Appl. Energy 2014, 122, 112–132. [Google Scholar] [CrossRef]
- Yu, C.; Fan, S.; Lang, X.; Wang, Y.; Li, G.; Wang, S. Hydrogen and Chemical Energy Storage in Gas Hydrate at Mild Conditions. Int. J. Hydrogen Energy 2020, 45, 14915–14921. [Google Scholar] [CrossRef]
- Belosludov, V.R.; Yu Bozhko, Y.; Gets, K.V.; Subbotin, O.S.; Kawazoe, Y. Clathrate Hydrates for Energy Storage and Transportation. J. Phys. Conf. Ser. 2018, 1128, 012031. [Google Scholar] [CrossRef]
- Davoodabadi, A.; Mahmoudi, A.; Ghasemi, H. The Potential of Hydrogen Hydrate as a Future Hydrogen Storage Medium. iScience 2021, 24, 101907. [Google Scholar] [CrossRef]
- Hanssens, L.; Houlleberghs, M.; Chandran, V.; Watson, G.; Radhakrishnan, S.; Van Der Voort, P.; Denayer, J.F.M.; Kirschhock, C.E.A.; Martens, J.A.; Breynaert, E. Enabling Low-Cost Decentralized Power Reserves Adopting Carbon Dioxide for Green Methane Exchange in Stabilized Clathrate Adsorbent. J. Energy Chem. 2024, 97, 438–443. [Google Scholar] [CrossRef]
- Khan, M.N.; Peters, C.J.; Koh, C.A. Desalination Using Gas Hydrates: The Role of Crystal Nucleation, Growth and Separation. Desalination 2019, 468, 114049. [Google Scholar] [CrossRef]
- Montazeri, S.M.; Kolliopoulos, G. Hydrate Based Desalination for Sustainable Water Treatment: A Review. Desalination 2022, 537, 115855. [Google Scholar] [CrossRef]
- Babu, P.; Nambiar, A.; He, T.; Karimi, I.A.; Lee, J.D.; Englezos, P.; Linga, P. A Review of Clathrate Hydrate Based Desalination to Strengthen Energy-Water Nexus. ACS Sustain. Chem. Eng. 2018, 6, 8093–8107. [Google Scholar] [CrossRef]
- Lee, Y.; Seo, D.; Lee, S.; Park, Y. Advances in Nanomaterials for Sustainable Gas Separation and Storage: Focus on Clathrate Hydrates. Acc. Chem. Res. 2023, 56, 3111–3120. [Google Scholar] [CrossRef] [PubMed]
- Iizuka, A.; Hayashi, S.; Tajima, H.; Kiyono, F.; Yanagisawa, Y.; Yamasaki, A. Gas Separation Using Tetrahydrofuran Clathrate Hydrate Crystals Based on the Molecular Sieving Effect. Sep. Purif. Technol. 2015, 139, 70–77. [Google Scholar] [CrossRef]
- Zhang, Q.; Zheng, J.; Zhang, B.; Linga, P. Coal Mine Gas Separation of Methane via Clathrate Hydrate Process Aided by Tetrahydrofuran and Amino Acids. Appl. Energy 2021, 287, 116576. [Google Scholar] [CrossRef]
- Englezos, P. Applications of Clathrate (Gas) Hydrates. In Clathrate Hydrates: Molecular Science and Characterization; John Wiley & Sons: Hoboken, NJ, USA, 2021; Volume 1, pp. 749–781. [Google Scholar] [CrossRef]
- Seo, Y.; Lee, J.W.; Kumar, R.; Moudrakovski, I.L.; Lee, H.; Ripmeester, J.A. Tuning the Composition of Guest Molecules in Clathrate Hydrates: NMR Identification and Its Significance to Gas Storage. Chem. Asian J. 2009, 4, 1266–1274. [Google Scholar] [CrossRef]
- Liang, S.; Kusalik, P.G. Communication: Structural Interconversions between Principal Clathrate Hydrate Structures. J. Chem. Phys. 2015, 143, 011102. [Google Scholar] [CrossRef]
- Mileo, P.G.M.; Rogge, S.M.J.; Houlleberghs, M.; Breynaert, E.; Martens, A.; Speybroeck, V. Van Interfacial Study of Clathrates Confined in Reversed Silica Pores. J. Mater. Chem. A 2021, 9, 21835–21844. [Google Scholar] [CrossRef] [PubMed]
- Mao, W.L.; Mao, H.K.; Goncharov, A.F.; Struzhkin, V.V.; Guo, Q.; Hu, J.; Hu, J.; Hemley, R.J.; Somayazulu, M.; Zhao, Y. Hydrogen Clusters in Clathrate Hydrate. Science 2002, 297, 2247–2249. [Google Scholar] [CrossRef] [PubMed]
- Prasad, P.S.R.; Sugahara, T.; Sloan, E.D.; Sum, A.K.; Koh, C.A. Structural Transformations of SVI Tert-Butylamine Hydrates to Sil Binary Hydrates with Methane. J. Phys. Chem. A 2009, 113, 11311–11315. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, G.; Barmecha, V.; Kushwaha, O.S.; Kumar, R. Kinetic Promotion of Methane Hydrate Formation by Combining Anionic and Silicone Surfactants: Scalability Promise of Methane Storage Due to Prevention of Foam Formation. J. Chem. Thermodyn. 2018, 117, 248–255. [Google Scholar] [CrossRef]
- Chaturvedi, E.; Laik, S.; Mandal, A. A Comprehensive Review of the Effect of Different Kinetic Promoters on Methane Hydrate Formation. Chin. J. Chem. Eng. 2021, 32, 1–16. [Google Scholar] [CrossRef]
- Bavoh, C.B.; Lal, B.; Osei, H.; Sabil, K.M.; Mukhtar, H. A Review on the Role of Amino Acids in Gas Hydrate Inhibition, CO2 Capture and Sequestration, and Natural Gas Storage. J. Nat. Gas Sci. Eng. 2019, 64, 52–71. [Google Scholar] [CrossRef]
- Majid, A.A.A.; Worley, J.; Koh, C.A. Thermodynamic and Kinetic Promoters for Gas Hydrate Technological Applications. Energy Fuels 2021, 35, 19288–19301. [Google Scholar] [CrossRef]
- Veluswamy, H.P.; Kumar, S.; Kumar, R.; Rangsunvigit, P.; Linga, P. Enhanced Clathrate Hydrate Formation Kinetics at near Ambient Temperatures and Moderate Pressures: Application to Natural Gas Storage. Fuel 2016, 182, 907–919. [Google Scholar] [CrossRef]
- Zhang, Y.; Bhattacharjee, G.; Dharshini Vijayakumar, M.; Linga, P. Rapid and Energy-Dense Methane Hydrate Formation at near Ambient Temperature Using 1,3-Dioxolane as a Dual-Function Promoter. Appl. Energy 2022, 311, 118678. [Google Scholar] [CrossRef]
- Beckwée, E.J.; Watson, G.; Houlleberghs, M.; Arenas Esteban, D.; Bals, S.; Van Der Voort, P.; Breynaert, E.; Martens, J.; Baron, G.V.; Denayer, J.F.M. Enabling Hydrate-Based Methane Storage under Mild Operating Conditions by Periodic Mesoporous Organosilica Nanotubes. Heliyon 2023, 9, e17662. [Google Scholar] [CrossRef]
- Beckwée, E.J.; Houlleberghs, M.; Ciocarlan, R.G.; Chandran, C.V.; Radhakrishnan, S.; Hanssens, L.; Cool, P.; Martens, J.; Breynaert, E.; Baron, G.V.; et al. Structure I Methane Hydrate Confined in C8-Grafted SBA-15: A Highly Efficient Storage System Enabling Ultrafast Methane Loading and Unloading. Appl. Energy 2024, 353, 122120. [Google Scholar] [CrossRef]
- Kummamuru, N.B.; Ciocarlan, R.G.; Houlleberghs, M.; Martens, J.; Breynaert, E.; Verbruggen, S.W.; Cool, P.; Perreault, P. Surface Modification of Mesostructured Cellular Foam to Enhance Hydrogen Storage in Binary THF/H2 Clathrate Hydrate. Sustain. Energy Fuels 2024, 8, 2824–2838. [Google Scholar] [CrossRef]
- Shoolery, J.N. High-Resolution NMR: A Dream Come True. In eMagRes; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar] [CrossRef]
- Houlleberghs, M.; Hoffmann, A.; Dom, D.; Kirschhock, C.E.A.; Taulelle, F.; Martens, J.A.; Breynaert, E. Absolute Quantification of Water in Microporous Solids with 1H Magic Angle Spinning NMR and Standard Addition. Anal. Chem. 2017, 89, 6940–6943. [Google Scholar] [CrossRef]
- Vanderschaeghe, H.; Houlleberghs, M.; Verheyden, L.; Dom, D.; Chandran, C.V.; Radhakrishnan, S.; Martens, J.A.; Breynaert, E. Absolute Quantification of Residual Solvent in Mesoporous Silica Drug Formulations Using Magic-Angle Spinning NMR Spectroscopy. Anal. Chem. 2022, 95, 1880–1887. [Google Scholar] [CrossRef]
- Radhakrishnan, S.; Lauwers, K.; Chandran, C.V.; Trébosc, J.; Pulinthanathu Sree, S.; Martens, J.A.; Taulelle, F.; Kirschhock, C.E.A.; Breynaert, E. NMR Crystallography Reveals Carbonate Induced Al-Ordering in ZnAl Layered Double Hydroxide. Chem. Eur. J. 2021, 27, 15944–15953. [Google Scholar] [CrossRef]
- Radhakrishnan, S.; Lejaegere, C.; Duerinckx, K.; Lo, W.S.; Morais, A.F.; Dom, D.; Chandran, C.V.; Hermans, I.; Martens, J.A.; Breynaert, E. Hydrogen Bonding to Oxygen in Siloxane Bonds Drives Liquid Phase Adsorption of Primary Alcohols in High-Silica Zeolites. Mater. Horiz. 2023, 10, 3702–3711. [Google Scholar] [CrossRef]
- Khodov, I.; Sobornova, V.; Mulloyarova, V.; Belov, K.; Dyshin, A.; Tolstoy, P.; Kiselev, M. Exploring the Conformational Equilibrium of Mefenamic Acid Released from Silica Aerogels via NMR Analysis. Int. J. Mol. Sci. 2023, 24, 6882. [Google Scholar] [CrossRef]
- Khodov, I.; Dyshin, A.; Sergey, E.; Ivlev, D.; Kiselev, M. High-Pressure NMR Spectroscopy in Studies of the Conformational Composition of Small Molecules in Supercritical Carbon Dioxide. J. Mol. Liq. 2020, 309, 113113. [Google Scholar] [CrossRef]
- Asselman, K.; Pellens, N.; Radhakrishnan, S.; Chandran, C.V.; Martens, J.A.; Taulelle, F.; Verstraelen, T.; Hellström, M.; Breynaert, E.; Kirschhock, C.E.A. Super-Ions of Sodium Cations with Hydrated Hydroxide Anions: Inorganic Structure-Directing Agents in Zeolite Synthesis. Mater. Horiz. 2021, 8, 2576–2583. [Google Scholar] [CrossRef]
- Houlleberghs, M.; Verheyden, L.; Voorspoels, F.; Chandran, C.V.; Duerinckx, K.; Radhakrishnan, S.; Martens, J.A.; Breynaert, E. Magneto-Hydrodynamic Mixing: A New Technique for Preparing Carbomer Hydrogels. AIChE J. 2023, 69, e17911. [Google Scholar] [CrossRef]
- Wang, Y.; Glazyrin, K.; Roizen, V.; Oganov, A.R.; Chernyshov, I.; Zhang, X.; Greenberg, E.; Prakapenka, V.B.; Yang, X.; Jiang, S.Q.; et al. Novel Hydrogen Clathrate Hydrate. Phys. Rev. Lett. 2020, 125, 255702. [Google Scholar] [CrossRef] [PubMed]
- Uchida, T.; Sum, A.K. IR and R Aman Spectroscopy of Clathrate Hydrates. In Clathrate Hydrates: Molecular Science and Characterization; John Wiley & Sons: Hoboken, NJ, USA, 2021; Volume 1, pp. 569–629. [Google Scholar] [CrossRef]
- Kumar, R.; Klug, D.D.; Ratcliffe, C.I.; Tulk, C.A.; Ripmeester, J.A. Low-Pressure Synthesis and Characterization of Hydrogen-Filled Ice Ic. Angew. Chem. Int. Ed. 2013, 52, 1531–1534. [Google Scholar] [CrossRef] [PubMed]
- Strobel, T.A.; Sloan, E.D.; Koh, C.A. Raman Spectroscopic Studies of Hydrogen Clathrate Hydrates. J. Chem. Phys. 2009, 130, 014506. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, Y.; Stewart, S.T.; Mao, H.K.; Hemley, R.J. In Situ Raman Spectroscopy of Low-Temperature/High-Pressure Transformations of H2O. J. Chem. Phys. 2007, 126, 174505. [Google Scholar] [CrossRef] [PubMed]
- Celli, M.; Ulivi, L.; Del Rosso, L. Raman Investigation of the Ice Ic-Ice Ih Transformation. J. Phys. Chem. C 2020, 124, 17135–17140. [Google Scholar] [CrossRef]
- Futera, Z.; Celli, M.; Del Rosso, L.; Burnham, C.J.; Ulivi, L.; English, N.J. Vibrational Modes of Hydrogen Hydrates: A First-Principles Molecular Dynamics and Raman Spectra Study. J. Phys. Chem. C 2017, 121, 3690–3696. [Google Scholar] [CrossRef]
- Del Rosso, L.; Celli, M.; Ulivi, L. New Porous Water Ice Metastable at Atmospheric Pressure Obtained by Emptying a Hydrogen-Filled Ice. Nat. Commun. 2016, 7, 13394. [Google Scholar] [CrossRef] [PubMed]
- Rosay, M.; Tometich, L.; Pawsey, S.; Bader, R.; Schauwecker, R.; Blank, M.; Borchard, P.M.; Cauffman, S.R.; Felch, K.L.; Weber, R.T.; et al. Solid-state dynamic nuclear polarization at 263 GHz: Spectrometer design and experimental results. Phys. Chem. Chem. Phys. 2010, 12, 5850. [Google Scholar] [CrossRef]
- Torres, F.; Bu, M.; Stadler, G.R.; Renn, A.; Kadavath, H.; Bobrovs, R.; Jaudzems, K.; Riek, R. Ultrafast Fragment Screening Using Photo-Hyperpolarized (CIDNP) NMR. J. Am. Chem. Soc. 2023, 145, 12066–12080. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Hall, A.M.R.; Fohn, N.A.; King, E.J.; Mitchell, L.A.L.; Steedman, G.A.; Lloyd-Jones, G.C. A Simple Device for Automated Mixing of Heterogeneous Solid-Liquid Reactions during In-Situ Monitoring by NMR Spectroscopy. Eur. J. Org. Chem. 2024, 27, 202400095. [Google Scholar] [CrossRef]
- Vaneeckhaute, E.; Tyburn, J.-M.; Kilgour, D.; Kempf, J.G.; Taulelle, F.; Martens, J.A.; Breynaert, E. Hyperpolarized Magnetic Resonance of Exchangeable Protons Using Parahydrogen and Aminosilane. J. Phys. Chem. C 2020, 124, 14541–14549. [Google Scholar] [CrossRef]
- Schönzart, J.; Han, R.; Gennett, T.; Rienstra, C.M.; Stringer, A. Magnetic Susceptibility Modeling of Magic-Angle Spinning Modules for Part Per Billion Scale Field Homogeneity. J. Magn. Reson. 2024, 364, 107704. [Google Scholar] [CrossRef] [PubMed]
- Vaneeckhaute, E.; Tyburn, J.; Kempf, J.G.; Martens, J.A.; Breynaert, E. Reversible Parahydrogen Induced Hyperpolarization of 15 N in Unmodified Amino Acids Unraveled at High Magnetic Field. Adv. Sci. 2023, 10, 2207112. [Google Scholar] [CrossRef] [PubMed]
- Walter, E.D.; Qi, L.; Chamas, A.; Mehta, H.S.; Sears, J.A.; Scott, S.L.; Hoyt, D.W. Operando MAS NMR Reaction Studies at High Temperatures and Pressures. J. Phys. Chem. C 2018, 122, 8209–8215. [Google Scholar] [CrossRef]
- Houlleberghs, M.; Helsper, S.; Dom, D.; Dubroca, T.; Trociewitz, B.; Schurko, R.W.; Radhakrishnan, S.; Breynaert, E. Building a Cost-Efficient High-Pressure Cell for Online High-Field NMR and MRI Using Standard Static Probe Heads: An In Situ Demonstration on Clathrate Hydrate Formation. Anal. Chem. 2023, 95, 16936–16942. [Google Scholar] [CrossRef] [PubMed]
- Breynaert, E.; Houlleberghs, M.; Radhakrishnan, S.; Grübel, G.; Taulelle, F.; Martens, J.A. Water as a Tuneable Solvent: A Perspective. Chem. Soc. Rev. 2020, 49, 2557–2569. [Google Scholar] [CrossRef] [PubMed]
- Van Der Voort, P.; Esquivel, D.; De Canck, E.; Goethals, F.; Van Driessche, I.; Romero-Salguero, F.J. Periodic Mesoporous Organosilicas: From Simple to Complex Bridges; a Comprehensive Overview of Functions, Morphologies and Applications. Chem. Soc. Rev. 2013, 42, 3913–3955. [Google Scholar] [CrossRef] [PubMed]
- Croissant, J.G.; Cattoën, X.; Wong Chi Man, M.; Durand, J.O.; Khashab, N.M. Syntheses and Applications of Periodic Mesoporous Organosilica Nanoparticles. Nanoscale 2015, 7, 20318–20334. [Google Scholar] [CrossRef] [PubMed]
- Weng, C.; Yuan, H.; Chen, L.; Zhang, X.; Zhang, Q.; Ma, L.; Liu, J. Design, Synthesis, and Progress of Covalent Organic Frameworks (COFs)-Based Electrocatalysts for Valorisation of Biomass-Derived Platform Chemicals. Mater. Today Adv. 2024, 21, 100473. [Google Scholar] [CrossRef]
- Mietner, J.B.; Brieler, F.J.; Lee, Y.J.; Fröba, M. Properties of Water Confined in Periodic Mesoporous Organosilicas: Nanoimprinting the Local Structure. Angew. Chem. Int. Ed. 2017, 56, 12348–12351. [Google Scholar] [CrossRef]
- Malfait, B.; Moréac, A.; Jani, A.; Lefort, R.; Huber, P.; Fröba, M.; Morineau, D. Structure of Water at Hydrophilic and Hydrophobic Interfaces: Raman Spectroscopy of Water Confined in Periodic Mesoporous (Organo)Silicas. J. Phys. Chem. C 2022, 126, 3520–3531. [Google Scholar] [CrossRef]
- Gießelmann, N.C.; Lenz, P.; Meinert, S.M.; Simon, T.; Jo, W.; Striker, N.N.; Fröba, M.; Lehmkühler, F. Structure of Water under Confinement in Periodic Mesoporous Organosilicas Investigated by X-ray Scattering. J. Phys. Chem. C 2024, 128, 499–507. [Google Scholar] [CrossRef]
- Radhakrishnan, S.; Colaux, H.; Chandran, C.V.; Dom, D.; Verheyden, L.; Taulelle, F.; Martens, J.; Breynaert, E. Trace Level Detection and Quantification of Crystalline Silica in an Amorphous Silica Matrix with Natural Abundance 29Si NMR. Anal. Chem. 2020, 92, 13004–13009. [Google Scholar] [CrossRef] [PubMed]
- Feike, M.; Demco, D.E.; Graf, R.; Gottwald, J.; Hafner, S.; Spiess, H.W. Broadband Multiple-Quantum NMR Spectroscopy. J. Magn. Reson. Ser. A 1996, 122, 214–221. [Google Scholar] [CrossRef]
- Vallaey, B.; Radhakrishnan, S.; Heylen, S.; Chandran, C.V.; Taulelle, F.; Breynaert, E.; Martens, J.A. Reversible Room Temperature Ammonia Gas Absorption in Pore Water of Microporous Silica-Alumina for Sensing Applications. Phys. Chem. Chem. Phys. 2018, 20, 13528–13536. [Google Scholar] [CrossRef] [PubMed]
- Bennett, A.E.; Ok, J.H.; Griffin, R.G.; Vega, S. Chemical Shift Correlation Spectroscopy in Rotating Solids: Radio Frequency-Driven Dipolar Recoupling and Longitudinal Exchange. J. Chem. Phys. 1992, 96, 8624–8627. [Google Scholar] [CrossRef]
- Bennett, A.E.; Rienstra, C.M.; Griffiths, J.M.; Zhen, W.; Lansbury, P.T.; Griffin, R.G. Homonuclear Radio Frequency-Driven Recoupling in Rotating Solids. J. Chem. Phys. 1998, 108, 9463–9479. [Google Scholar] [CrossRef]
- Haro Mares, N.B.; Döller, S.C.; Wissel, T.; Hoffmann, M.; Vogel, M.; Buntkowsky, G. Structures and Dynamics of Complex Guest Molecules in Confinement, Revealed by Solid-State NMR, Molecular Dynamics, and Calorimetry. Molecules 2024, 29, 1669. [Google Scholar] [CrossRef] [PubMed]
- Morais, A.F.; Radhakrishnan, S.; Arbiv, G.; Dom, D.; Duerinckx, K.; Chandran, V.; Martens, J.A.; Breynaert, E. Non-Contact In Situ Multi-Diagnostic NMR/Dielectric Spectroscopy. Anal. Chem. 2024, 96, 5071–5077. [Google Scholar] [CrossRef]
- Seo, Y.T.; Lee, H. 13C NMR Analysis and Gas Uptake Measurements of Pure and Mixed Gas Hydrates: Development of Natural Gas Transport and Storage Method Using Gas Hydrate. Korean J. Chem. Eng. 2003, 20, 1085–1091. [Google Scholar] [CrossRef]
- Ok, S.; Gautam, S.; Liu, K.H.; Cole, D.R. Surface Interactions and Nanoconfinement of Methane and Methane plus CO2 Revealed by High-Pressure Magic Angle Spinning NMR Spectroscopy and Molecular Dynamics. Membranes 2022, 12, 1273. [Google Scholar] [CrossRef] [PubMed]
- Turov, V.V.; Turova, A.A.; Goncharuk, E.V.; Gun’ko, V.M. Adsorption of Methane with the Presence of Water on Oxide, Polymer and Carbon Adsorbents Studied Using 1H NMR Spectroscopy at Low Temperatures. Appl. Surf. Sci. 2008, 255, 3310–3317. [Google Scholar] [CrossRef]
- Andres-Garcia, E.; Dikhtiarenko, A.; Fauth, F.; Silvestre-Albero, J.; Ramos-Fernández, E.V.; Gascon, J.; Corma, A.; Kapteijn, F. Methane Hydrates: Nucleation in Microporous Materials. Chem. Eng. J. 2019, 360, 569–576. [Google Scholar] [CrossRef]
- Cha, M.; Shin, K.; Lee, H.; Moudrakovski, I.; Ripmeester, J.A.; Seo, Y. Kinetics of Methane Hydrate Replacement with Carbon Dioxide and Nitrogen Gas Mixture Using In-Situ NMR Spectroscopy. Environ. Sci. Technol. 2015, 49, 1964–1971. [Google Scholar] [CrossRef] [PubMed]
- Moudrakovski, I.L.; Udachin, K.A.; Alavi, S.; Ratcliffe, C.I.; Ripmeester, J.A. Facilitating Guest Transport in Clathrate Hydrates by Tuning Guest-Host Interactions. J. Chem. Phys. 2015, 142, 074705. [Google Scholar] [CrossRef] [PubMed]
- Sum, A.K.; Koh, C.A.; Sloan, E.D. Clathrate Hydrates: From Laboratory Science to Engineering Practice. Ind. Eng. Chem. Res. 2009, 48, 7457–7465. [Google Scholar] [CrossRef]
- Meynen, V.; Cool, P.; Vansant, E.F. Verified Syntheses of Mesoporous Materials. Microporous Mesoporous Mater. 2009, 125, 170–223. [Google Scholar] [CrossRef]
- Van Beek, W.; Safonova, O.V.; Wiker, G.; Emerich, H. SNBL, a Dedicated Beamline for Combined In Situ X-ray Diffraction, X-ray Absorption and Raman Scattering Experiments. Phase Transit. 2011, 84, 726–732. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Houlleberghs, M.; Radhakrishnan, S.; Chandran, C.V.; Morais, A.F.; Martens, J.A.; Breynaert, E. Harnessing Nuclear Magnetic Resonance Spectroscopy to Decipher Structure and Dynamics of Clathrate Hydrates in Confinement: A Perspective. Molecules 2024, 29, 3369. https://doi.org/10.3390/molecules29143369
Houlleberghs M, Radhakrishnan S, Chandran CV, Morais AF, Martens JA, Breynaert E. Harnessing Nuclear Magnetic Resonance Spectroscopy to Decipher Structure and Dynamics of Clathrate Hydrates in Confinement: A Perspective. Molecules. 2024; 29(14):3369. https://doi.org/10.3390/molecules29143369
Chicago/Turabian StyleHoulleberghs, Maarten, Sambhu Radhakrishnan, C. Vinod Chandran, Alysson F. Morais, Johan A. Martens, and Eric Breynaert. 2024. "Harnessing Nuclear Magnetic Resonance Spectroscopy to Decipher Structure and Dynamics of Clathrate Hydrates in Confinement: A Perspective" Molecules 29, no. 14: 3369. https://doi.org/10.3390/molecules29143369
APA StyleHoulleberghs, M., Radhakrishnan, S., Chandran, C. V., Morais, A. F., Martens, J. A., & Breynaert, E. (2024). Harnessing Nuclear Magnetic Resonance Spectroscopy to Decipher Structure and Dynamics of Clathrate Hydrates in Confinement: A Perspective. Molecules, 29(14), 3369. https://doi.org/10.3390/molecules29143369