Combined Theoretical and Experimental Investigations: Design, Synthesis, Characterization, and In Vitro Cytotoxic Activity Assessment of a Complex of a Novel Ureacellobiose Drug Carrier with the Anticancer Drug Carmustine
Abstract
:1. Introduction
2. Results
2.1. Conformational Analysis of the Drug Carrier and Carmustine
2.2. The Configurational Search, Structural, and Energetical Parameters of the TN:BCNU Complexation Process
2.3. Cytotoxicity Assay
3. Materials and Methods
Computational Details
4. Experimental Details
4.1. Synthesis of TN
4.2. Synthesis of the TN:BCNU Complex
4.3. MTT Assay
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DeVita, V.T.; Denham, C.; Davidson, J.D.; Oliverio, V.T. The Physiological Disposition of the Carcinostatic 1,3-bis(2-chloroethyU-l-nitrosourea (BCNU) in Man and Animals. Clin. Pharmacol. Ther. 1967, 8, 566–577. [Google Scholar] [CrossRef] [PubMed]
- Weiss, R.B.; Issell, B.F. The Nitrosoureas: Carmustine (BCNU) and Lomustine (CCNU). Cancer Treat. Rev. 1982, 9, 313–330. [Google Scholar] [CrossRef] [PubMed]
- Türker, L. Interaction of Carmustine Tautomers with Adenine—DFT Study. Earthline J. Chem. Sci. 2020, 5, 63–76. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. [Google Scholar] [CrossRef]
- Lipinski, C.A. Lead- and Drug-like Compounds: The Rule-of-Five Revolution. Drug Discov. Today Technol. 2004, 1, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Chmiel, T.; Mieszkowska, A.; Kempińska-Kupczyk, D.; Kot-Wasik, A.; Namieśnik, J.; Mazerska, Z. The Impact of Lipophilicity on Environmental Processes, Drug Delivery and Bioavailability of Food Components. Microchem. J. 2019, 146, 393–406. [Google Scholar] [CrossRef]
- Morak-Młodawska, B.; Jeleń, M.; Martula, E.; Korlacki, R. Study of Lipophilicity and ADME Properties of 1,9-Diazaphenothiazines with Anticancer Action. Int. J. Mol. Sci. 2023, 24, 6970. [Google Scholar] [CrossRef] [PubMed]
- Oriyama, T.; Yamamoto, T.; Nara, K.; Kawano, Y.; Nakajima, K.; Suzuki, H.; Aoyama, T. Prediction of the Permeability of Antineoplastic Agents through Nitrile Medical Gloves by Zone Classification Based on Their Physicochemical Properties. J. Pharm. Health Care Sci. 2020, 6, 23. [Google Scholar] [CrossRef] [PubMed]
- Chan, R.; De Bruyn, T.; Wright, M.; Broccatelli, F. Comparing Mechanistic and Preclinical Predictions of Volume of Distribution on a Large Set of Drugs. Pharm. Res. 2018, 35, 87. [Google Scholar] [CrossRef]
- Meulemans, A.; Giroux, B.; Hannoun, P.; Henzel, D.; Bizzari, J.P.; Mohler, J. Permeability of Two Nitrosoureas, Carmustine and Fotemustine in Rat Cortex. Chemotherapy 1989, 35, 313–319. [Google Scholar] [CrossRef]
- Waring, M.J. Lipophilicity in Drug Discovery. Expert Opin. Drug Discov. 2010, 5, 235–248. [Google Scholar] [CrossRef] [PubMed]
- Pereira, D.Y.; Yip, A.T.; Lee, B.S.; Kamei, D.T. Modeling Mass Transfer from Carmustine-Loaded Polymeric Implants for Malignant Gliomas. SLAS Technol. 2014, 19, 19–34. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yang, F.; Hu, J.; Zhang, X. Nanoparticles for Efficient Drug Delivery and Drug Resistance in Glioma: New Perspectives. CNS Neurosci. Ther. 2024, 30, 14715. [Google Scholar] [CrossRef]
- Bay, J.; Linassier, C.; Biron, P.; Durando, X.; Verrelle, P.; Kwiatkowski, F.; Rosti, G.; Demirer, T. Does High-dose Carmustine Increase Overall Survival in Supratentorial High-grade Malignant Glioma? An EBMT Retrospective Study. Int. J. Cancer 2007, 120, 1782–1786. [Google Scholar] [CrossRef] [PubMed]
- Pardridge, W.M. Drug Transport across the Blood–Brain Barrier. J. Cereb. Blood Flow Metab. 2012, 32, 1959–1972. [Google Scholar] [CrossRef] [PubMed]
- Schlesinger, C.; Alig, E.; Schmidt, M.U. Crystal Structure of the Anticancer Drug Carmustine Determined by X-ray Powder Diffraction. Powder Diffr. 2021, 36, 148–150. [Google Scholar] [CrossRef]
- Mody, N.; Sharma, R.; Dubey, S.; Vyas, S.P. Combating Cancer with Novel Technologies. Ann. Pharmacol. Pharm. 2017, 2, 1082. [Google Scholar]
- Mali, A.; Bhanwase, A. Brain Targeted Drug Delivery System of Carmustine: Design, Development, Characterization, in Vitro, Ex Vivo Evaluation and in Vivo Pharmacokinetic Study. Acta Chim. Slov. 2024, 71, 26–38. [Google Scholar] [CrossRef]
- van Hoogevest, P.; Liu, X.; Fahr, A. Drug Delivery Strategies for Poorly Water-Soluble Drugs: The Industrial Perspective. Expert Opin. Drug Deliv. 2011, 8, 1481–1500. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Porter, W.; Merdan, T.; Li, L.C. Recent Advances in Intravenous Delivery of Poorly Water-Soluble Compounds. Expert Opin. Drug Deliv. 2009, 6, 1261–1282. [Google Scholar] [CrossRef]
- Ma, D.Q.; Rajewski, R.A.; Vander Velde, D.; Stella, V.J. Comparative Effects of (SBE)7m-β-CD and HP-β-CD on the Stability of Two Anti-neoplastic Agents, Melphalan and Carmustine. J. Pharm. Sci. 2000, 89, 275–287. [Google Scholar] [CrossRef]
- Honmane, S.M.; Charde, M.S.; Choudhari, P.B.; Jadhav, N.R. Development and In Vitro Evaluation of Folate Conjugated Polydopamine Modified Carmustine-Loaded Liposomes for Improved Anticancer Activity. J. Drug Deliv. Sci. Technol. 2023, 90, 105145. [Google Scholar] [CrossRef]
- de Oliveira, V.A.; Negreiros, H.A.; de Sousa, I.G.B.; Farias Mendes, L.K.; Alves Damaceno Do Lago, J.P.; Alves de Sousa, A.; Alves Nobre, T.; Pereira, I.C.; Carneiro da Silva, F.C.; Lopes Magalhães, J.; et al. Application of Nanoformulations as a Strategy to Optimize Chemotherapeutic Treatment of Glioblastoma: A Systematic Review. J. Toxicol. Environ. Health Part B 2024, 27, 131–152. [Google Scholar] [CrossRef] [PubMed]
- Chima, C.M.; Louis, H.; Charlie, D.; Imojara, A.; Benjamin, I.; Uzowuru, E.E.; Adeyinka, A.S. Molecular Simulation of Cu, Ag, and Au-Decorated Molybdenum Doped Graphene Nanoflakes as Biosensor for Carmustine, an Anticancer Drug. Mater. Sci. Semicond. Process 2023, 165, 107669. [Google Scholar] [CrossRef]
- Majumder, R.; Karmakar, S.; Mishra, S.; Mallick, A.B.; Das Mukhopadhyay, C. Functionalized Carbon Nano-Onions as a Smart Drug Delivery System for the Poorly Soluble Drug Carmustine for the Management of Glioblastoma. ACS Appl. Bio Mater. 2024, 7, 154–167. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, R.; Solimannejad, M. In Silico Study of B3O3 Nanosheet as a Disposable Platform for Sensing and Delivery of Carmustine Anticancer Drug. J. Drug Deliv. Sci. Technol. 2023, 87, 104828. [Google Scholar] [CrossRef]
- Bin Iqbal, A.J.; Shahriar, R.; Zubair, A. First-Principles Study of a SiC Nanosheet as an Effective Material for Nitrosourea and Carmustine Anti-Cancer Drug Delivery. Nanoscale Adv. 2024, 6, 2968–2979. [Google Scholar] [CrossRef]
- Li, D.; Ren, T.; Wang, X.; Xiao, Z.; Sun, G.; Zhang, N.; Zhao, L.; Zhong, R. Development and in Vitro Evaluation of Carmustine Delivery Platform: A Hypoxia-Sensitive Anti-Drug Resistant Nanomicelle with BBB Penetrating Ability. Biomed. Pharmacother. 2023, 167, 115631. [Google Scholar] [CrossRef]
- Rani, V.; Venkatesan, J.; Prabhu, A. Carmustine-Loaded Liposomal Delivery Effectively Targets Malignant Glioma Cells and Seizes Endothelial Sprouting In Vitro. J. Clust. Sci. 2024, 35, 1211–1221. [Google Scholar] [CrossRef]
- Omidian, H.; Wilson, R.L. Long-Acting Gel Formulations: Advancing Drug Delivery across Diverse Therapeutic Areas. Pharmaceuticals 2024, 17, 493. [Google Scholar] [CrossRef]
- Champeaux-Depond, C.; Jecko, V.; Weller, J.; Constantinou, P.; Tuppin, P.; Metellus, P. Newly Diagnosed High-Grade Glioma Surgery with Carmustine Wafers Implantation. A Long-Term Nationwide Retrospective Study. World Neurosurg. 2023, 173, e778–e786. [Google Scholar] [CrossRef] [PubMed]
- Champeaux-Depond, C.; Jecko, V.; Weller, J.; Constantinou, P.; Tuppin, P.; Metellus, P. Recurrent High Grade Glioma Surgery with Carmustine Wafers Implantation: A Long-Term Nationwide Retrospective Study. J. Neurooncol. 2023, 162, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.H.; Kleinberg, L.R. Carmustine Wafers: Localized Delivery of Chemotherapeutic Agents in CNS Malignancies. Expert Rev. Anticancer Ther. 2008, 8, 343–359. [Google Scholar] [CrossRef] [PubMed]
- Roux, A.; Aboubakr, O.; Elia, A.; Moiraghi, A.; Benevello, C.; Fathallah, H.; Parraga, E.; Oppenheim, C.; Chretien, F.; Dezamis, E.; et al. Carmustine Wafer Implantation for Supratentorial Glioblastomas, IDH-Wildtype in “Extreme” Neurosurgical Conditions. Neurosurg. Rev. 2023, 46, 140. [Google Scholar] [CrossRef] [PubMed]
- Nozhat, Z.; Heydarzadeh, S.; Shahriari-Khalaji, M.; Wang, S.; Iqbal, M.Z.; Kong, X. Advanced Biomaterials for Human Glioblastoma Multiforme (GBM) Drug Delivery. Biomater. Sci. 2023, 11, 4094–4131. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.-Z.; Wang, Z.-F.; Lan, T.; Huang, W.-H.; Zhao, Y.-H.; Ma, C.; Li, Z.-Q. Carmustine as a Supplementary Therapeutic Option for Glioblastoma: A Systematic Review and Meta-Analysis. Front. Neurol. 2020, 11, 1036. [Google Scholar] [CrossRef] [PubMed]
- Jones, T.; Zhang, B.; Major, S.; Webb, A. All-trans Retinoic Acid Eluting Poly(Diol Citrate) Wafers for Treatment of Glioblastoma. J. Biomed. Mater. Res. B Appl. Biomater. 2020, 108, 619–628. [Google Scholar] [CrossRef]
- De Bonis, P.; Anile, C.; Pompucci, A.; Fiorentino, A.; Balducci, M.; Chiesa, S.; Maira, G.; Mangiola, A. Safety and Efficacy of Gliadel Wafers for Newly Diagnosed and Recurrent Glioblastoma. Acta Neurochir. 2012, 154, 1371–1378. [Google Scholar] [CrossRef] [PubMed]
- Gokel, G.W.; Leevy, W.M.; Weber, M.E. Crown Ethers: Sensors for Ions and Molecular Scaffolds for Materials and Biological Models. Chem. Rev. 2004, 104, 2723–2750. [Google Scholar] [CrossRef]
- Rounaghi, G.H.; Mohajeri, M.; Ashrafi, S.; Ghasemi, H.; Sedaghat, S.; Tavakoli, M. Complex Formation of 1,10-Dibenzyl-1,10-Diaza-18-Crown-6 with Ni2+, Cu2+, Ag+ and Cd2+ Metal Cations in Acetonitrile–Dimethylformamide Binary Solutions. J. Incl. Phenom. Macrocycl. Chem. 2007, 58, 1–6. [Google Scholar] [CrossRef]
- Pastuch-Gawołek, G.; Szreder, J.; Domińska, M.; Pielok, M.; Cichy, P.; Grymel, M. A Small Sugar Molecule with Huge Potential in Targeted Cancer Therapy. Pharmaceutics 2023, 15, 913. [Google Scholar] [CrossRef] [PubMed]
- Porwanski, S.; Dumarcay-Charbonnier, F.; Menuel, S.; Joly, J.-P.; Bulach, V.; Marsura, A. Bis-β-Cyclodextrinyl- and Bis-Cellobiosyl-Diazacrowns: Synthesis and Molecular Complexation Behaviors toward Busulfan Anticancer Agent and Two Basic Aminoacids. Tetrahedron 2009, 65, 6196–6203. [Google Scholar] [CrossRef]
- George, A. Jeffrey An Introduction to Hydrogen Bonding; Oxford University Press: Oxford, UK, 1997. [Google Scholar]
- Kamel, M.; Mohammadi, M.; Mohammadifard, K.; Mahmood, E.A.; Poor Heravi, M.R.; Heshmati, J.M.A.; Hossaini, Z. Comprehensive Theoretical Prediction of the Stability and Electronic Properties of Hydroxyurea and Carmustine Drugs on Pristine and Chitosan-Functionalized Graphitic Carbon Nitride in Vacuum and Aqueous Environment. Vacuum 2023, 207, 111565. [Google Scholar] [CrossRef]
- Maranhão, R.C.; Vital, C.G.; Tavoni, T.M.; Graziani, S.R. Clinical Experience with Drug Delivery Systems as Tools to Decrease the Toxicity of Anticancer Chemotherapeutic Agents. Expert Opin. Drug Deliv. 2017, 14, 1217–1226. [Google Scholar] [CrossRef] [PubMed]
- HyperChem(TM). HyperChem(TM) Professional 8.0; Hypercube, Inc.: Gainesville, FL, USA, 2008. [Google Scholar]
- Weiner, S.J.; Kollman, P.A.; Case, D.A.; Singh, U.C.; Ghio, C.; Alagona, G.; Profeta, S.; Weiner, P. A New Force Field for Molecular Mechanical Simulation of Nucleic Acids and Proteins. J. Am. Chem. Soc. 1984, 106, 765–784. [Google Scholar] [CrossRef]
- Weiner, S.J.; Kollman, P.A.; Nguyen, D.T.; Case, D.A. An All Atom Force Field for Simulations of Proteins and Nucleic Acids. J. Comput. Chem. 1986, 7, 230–252. [Google Scholar] [CrossRef] [PubMed]
- Stewart, J.J.P. Optimization of Parameters for Semiempirical Methods VI: More Modifications to the NDDO Approximations and Re-Optimization of Parameters. J. Mol. Model 2013, 19, 1–32. [Google Scholar] [CrossRef] [PubMed]
- James, J.P. Stewart MOPAC2016; Stewart Computational Chemistry: Colorado Springs, CO, USA, 2016; Available online: http://openmopac.net/ (accessed on 14 June 2024).
- Adamiak, M.; Porwański, S.; Ignaczak, A. Conformational Search and Spectroscopic Analysis of Bis -β- d -Glucopyranosyl Azacrown Derivative. Tetrahedron 2018, 74, 2166–2173. [Google Scholar] [CrossRef]
- Adamiak, M.; Ignaczak, A. Quantum Chemical Study of the Complexation Process of Bis-β-d-Glucopyranosyl Diazacrown Derivative with Aspirin and Paracetamol Molecules. Comput. Theor. Chem. 2019, 1167, 112591. [Google Scholar] [CrossRef]
- Adamiak, M.; Ignaczak, A. DFT Studies on the Physicochemical Properties of a New Potential Drug Carrier Containing Cellobiose Units and Its Complex with Paracetamol. Struct. Chem. 2022, 33, 1365–1378. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar] [CrossRef]
- Rassolov, V.A.; Ratner, M.A.; Pople, J.A.; Redfern, P.C.; Curtiss, L.A. 6-31G* Basis Set for Third-row Atoms. J. Comput. Chem. 2001, 22, 976–984. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 15. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.01 2016; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Funes-Ardoiz, I.; Robert, S. Paton GoodVibes; Version 2.0.3 (v2.0.3); Zenodo: Meyrin, Switzerland, 2018; Available online: https://zenodo.org/records/1435820 (accessed on 14 June 2024).
- Luchini, G.; Alegre-Requena, J.V.; Funes-Ardoiz, I.; Paton, R.S. GoodVibes: Automated Thermochemistry for Heterogeneous Computational Chemistry Data. F1000Res 2020, 9, 291. [Google Scholar] [CrossRef]
- Staudinger, H. Über Polymerisation. Berichte Dtsch. Chem. Ges. 1920, 53, 1073–1085. [Google Scholar] [CrossRef]
- Wittig, G.; Geissler, G. Zur Reaktionsweise Des Pentaphenyl-phosphors Und Einiger Derivate. Justus Liebigs Ann. Chem. 1953, 580, 44–57. [Google Scholar] [CrossRef]
- Pintér, I.; Kovács, J.; Tóth, G. Synthesis of Sugar Ureas via Phosphinimines. Carbohydr. Res. 1995, 273, 99–108. [Google Scholar] [CrossRef]
- Kovács, J.; Pintér, I.; Messmer, A.; Tóth, G.; Duddeck, H. A New Route to Cyclic Urea Derivatives of Sugars via Phosphinimines. Carbohydr. Res. 1987, 166, 101–111. [Google Scholar] [CrossRef]
- Knox, C.; Wilson, M.; Klinger, C.M.; Franklin, M.; Oler, E.; Wilson, A.; Pon, A.; Cox, J.; Chin, N.E. (Lucy); Strawbridge, S.A.; et al. DrugBank 6.0: The DrugBank Knowledgebase for 2024. Nucleic. Acids Res. 2024, 52, D1265–D1275. [Google Scholar] [CrossRef] [PubMed]
- Hocquet, A.; Langgård, M. An Evaluation of the MM+ Force Field. J. Mol. Model. 1998, 4, 94–112. [Google Scholar] [CrossRef]
- Brooks, B.R.; Bruccoleri, R.E.; Olafson, B.D.; States, D.J.; Swaminathan, S.; Karplus, M. CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations. J. Comput. Chem. 1983, 4, 187–217. [Google Scholar] [CrossRef]
- Guarnieri, F.; Still, W.C. A Rapidly Convergent Simulation Method: Mixed Monte Carlo/Stochastic Dynamics. J. Comput. Chem. 1994, 15, 1302–1310. [Google Scholar] [CrossRef]
- Mardirossian, N.; Head-Gordon, M. How Accurate Are the Minnesota Density Functionals for Noncovalent Interactions, Isomerization Energies, Thermochemistry, and Barrier Heights Involving Molecules Composed of Main-Group Elements? J. Chem. Theory Comput. 2016, 12, 4303–4325. [Google Scholar] [CrossRef]
- Ditchfield, R. Self-Consistent Perturbation Theory of Diamagnetism. Mol. Phys. 1974, 27, 789–807. [Google Scholar] [CrossRef]
- Tantillo, D.J. Chemical Shift Repository. Available online: http://cheshirenmr.info/ (accessed on 14 June 2024).
Molecule | EdefTN | EdefBCNU | Etot | |||
---|---|---|---|---|---|---|
AS | −27.26 | 1.86 | 4.92 | 6.78 | −8.98 | −18.75 |
US | −21.25 | 1.56 | 2.80 | 4.36 | −5.88 | −15.47 |
LS | −17.98 | 0.48 | 2.08 | 2.55 | −5.14 | −14.10 |
BS | −17.43 | 0.53 | 2.61 | 3.14 | −4.07 | −12.76 |
RS | −21.50 | 7.08 | 1.50 | 8.58 | −0.92 | −10.70 |
FS | −15.25 | 0.55 | 2.32 | 2.86 | −3.18 | −11.33 |
TN in Complex | BCNU in Complex | ||||||||
---|---|---|---|---|---|---|---|---|---|
Number of Atoms (Figure 1) | δCAL of TN in AS | δEXP of TN in Complex | ΔδCAL | ΔδEXP | Number of Atoms (Figure 1) | δCAL of BCNU in AS | δEXP of BCNU in Complex | ΔδCAL | ΔδEXP |
H-1 | 5.11 | 4.68 | 0.17 | −0.002 | NH | 7.67 | 8.96 | 0.63 | −0.0012 |
H-2 | 3.14 | 3.23 | −0.02 | −0.0014 | H-8 | 3.87 | 3.62 | −0.09 | −0.001 |
H-3 | 3.75 | 3.06 | 0.13 | −0.0005 | H-11 | 3.71 | 3.76 | 0.34 | −0.0008 |
H-4 | 3.57 | 3.29 | −0.05 | −0.0006 | H-15 | 3.21 | 3.76 | −0.27 | 0.1295 |
H-5 | 3.62 | 3.23 | 0.03 | 0.035 | H-18 | 3.99 | 4.10 | 0.33 | 0.0008 |
H-6a | 4.04 | 3.69 | 0.02 | −0.0121 | |||||
H-6b | 3.41 | 3.44 | −0.05 | −0.0029 | |||||
H-1′ | 4.40 | 4.27 | 0.01 | −0.0001 | |||||
H-2′ | 3.32 | 3.06 | 0.02 | 0.0525 | |||||
H-3′ | 3.41 | 3.16 | 0.09 | −0.0042 | |||||
H-4′ | 3.07 | 3.34 | 0.06 | 0.0075 | |||||
H-5′ | 3.67 | 3.23 | 0.14 | −0.001 | |||||
H-6a’ | 3.76 | 3.69 | 0.00 | 0.0119 | |||||
H-6b’ | 3.50 | 3.60 | 0.02 | 0.0002 |
Cell Lines | Carmustine | TN:BCNU |
---|---|---|
CCD-Co18 | 63.09 ± 4.4 | 199.52 ± 5.9 |
HT29 | 56.23 ± 3.3 | 158.49 ± 7.8 |
MCF10A | 282.84 ± 6.2 | - |
MCF7 | 27.18 ± 1.4 | 89.12 ± 2.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoelm, M.; Porwański, S.; Jóźwiak, P.; Krześlak, A. Combined Theoretical and Experimental Investigations: Design, Synthesis, Characterization, and In Vitro Cytotoxic Activity Assessment of a Complex of a Novel Ureacellobiose Drug Carrier with the Anticancer Drug Carmustine. Molecules 2024, 29, 3359. https://doi.org/10.3390/molecules29143359
Hoelm M, Porwański S, Jóźwiak P, Krześlak A. Combined Theoretical and Experimental Investigations: Design, Synthesis, Characterization, and In Vitro Cytotoxic Activity Assessment of a Complex of a Novel Ureacellobiose Drug Carrier with the Anticancer Drug Carmustine. Molecules. 2024; 29(14):3359. https://doi.org/10.3390/molecules29143359
Chicago/Turabian StyleHoelm, Marta, Stanisław Porwański, Paweł Jóźwiak, and Anna Krześlak. 2024. "Combined Theoretical and Experimental Investigations: Design, Synthesis, Characterization, and In Vitro Cytotoxic Activity Assessment of a Complex of a Novel Ureacellobiose Drug Carrier with the Anticancer Drug Carmustine" Molecules 29, no. 14: 3359. https://doi.org/10.3390/molecules29143359
APA StyleHoelm, M., Porwański, S., Jóźwiak, P., & Krześlak, A. (2024). Combined Theoretical and Experimental Investigations: Design, Synthesis, Characterization, and In Vitro Cytotoxic Activity Assessment of a Complex of a Novel Ureacellobiose Drug Carrier with the Anticancer Drug Carmustine. Molecules, 29(14), 3359. https://doi.org/10.3390/molecules29143359