Catalytic Performance of CuZnAl Hydrotalcite-Derived Materials in the Continuous-Flow Chemoselective Hydrogenation of 2-Methyl-2-pentanal toward Fine Chemicals and Pharmaceutical Intermediates
Abstract
:1. Introduction
2. Results and Discussion
2.1. Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) Results
2.2. Temperature-Programmed Reduction (H2-TPR)
2.3. In Situ X-ray Diffraction
2.4. Transmission Electron Microscopy (TEM)
2.5. X-ray Photoelectron Spectroscopy (XPS)
2.6. NH3 and CO2 Temperature-Programmed Desorption (NH3-TPD and CO2-TPD)
2.7. Catalytic Test
3. Materials and Methods
3.1. Preparation of Hydrotalcite Materials
3.2. Materials Characterization
3.3. Catalytic Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tian, Z.; Xiang, X.; Xie, L.; Li, F. Liquid-Phase Hydrogenation of Cinnamaldehyde: Enhancing Selectivity of Supported Gold Catalysts by Incorporation of Cerium into the Support. Ind. Eng. Chem. Res. 2013, 52, 288–296. [Google Scholar] [CrossRef]
- Zhao, M.; Yuan, K.; Wang, Y.; Li, G.; Guo, J.; Gu, L.; Hu, W.; Zhao, H.; Tang, Z. Metal–Organic Frameworks as Selectivity Regulators for Hydrogenation Reactions. Nature 2016, 539, 76–80. [Google Scholar] [CrossRef]
- Hao, C.-H.; Guo, X.-N.; Pan, Y.-T.; Chen, S.; Jiao, Z.-F.; Yang, H.; Guo, X.-Y. Visible-Light-Driven Selective Photocatalytic Hydrogenation of Cinnamaldehyde over Au/SiC Catalysts. J. Am. Chem. Soc. 2016, 138, 9361–9364. [Google Scholar] [CrossRef] [PubMed]
- Concepción, P.; Pérez, Y.; Hernandez-Garrido, J.C.; Fajardo, M.; Calvino, J.J.; Corma, A. The Promotional Effect of Sn-Beta Zeolites on Platinum for the Selective Hydrogenation of α,β-Unsaturated Aldehydes. Phys. Chem. Chem. Phys. 2013, 15, 12048–12055. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.F.; Notheisz, F. Heterogeneous Catalysis in Organic Chemistry; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Musolino, M.G.; De Maio, P.; Donato, A.; Pietropaolo, R. Hydrogenation versus Hydrogenolysis in the Reaction of Cis-2-Butene-1, 4-Diol over Supported Platinum Catalysts: Kinetic Aspects. Appl. Catal. A Gen. 2005, 285, 50–58. [Google Scholar] [CrossRef]
- Hu, T.; Zhang, L.; Wang, Y.; Yue, Z.; Li, Y.; Ma, J.; Xiao, H.; Chen, W.; Zhao, M.; Zheng, Z. Defect Engineering in Pd/NiCo2O4−x for Selective Hydrogenation of α,β-Unsaturated Carbonyl Compounds under Ambient Conditions. ACS Sustain. Chem. Eng. 2020, 8, 7851–7859. [Google Scholar] [CrossRef]
- Hotta, K.; Kubomatsu, T. Liquid-Phase Selective Hydrogenation of an Aliphatic α,β-Unsaturated Aldehyde over Raney Cobalt Catalyst Modified with Ferrous Chloride. Bull. Chem. Soc. Jpn. 1969, 42, 1447–1449. [Google Scholar] [CrossRef]
- Pham, T.T.; Lobban, L.L.; Resasco, D.E.; Mallinson, R.G. Hydrogenation and Hydrodeoxygenation of 2-Methyl-2-Pentenal on Supported Metal Catalysts. J. Catal. 2009, 266, 9–14. [Google Scholar] [CrossRef]
- Zawadzki, B.; Ropero, A.J.F.; Abid, R.; Matus, K.; Krawczyk, M.; Patkowski, W.; Raróg–Pilecka, W.; Lisovystkiy, D.; Śrębowata, A. Mesoporous Carbon Supported Cu as the Efficient Catalyst for Flow Hydrogenation Processes toward Formation of Products with Pharmaceutical Potential. Microporous Mesoporous Mater. 2023, 362, 112803. [Google Scholar] [CrossRef]
- Fernández-Ropero, A.J.; Zawadzki, B.; Matus, K.; Patkowski, W.; Krawczyk, M.; Lisovytskiy, D.; Raróg-Pilecka, W.; Śrębowata, A. Co Loading Adjustment for the Effective Obtention of a Sedative Drug Precursor through Efficient Continuous-Flow Chemoselective Hydrogenation of 2-Methyl-2-Pentenal. Catalysts 2022, 12, 19. [Google Scholar] [CrossRef]
- Mao, F.; Hao, P.; Zhu, Y.; Kong, X.; Duan, X. Layered Double Hydroxides: Scale Production and Application in Soil Remediation as Super-Stable Mineralizer. Chin. J. Chem. Eng. 2022, 41, 42–48. [Google Scholar] [CrossRef]
- Kong, X.; Ge, R.; Liu, T.; Xu, S.; Hao, P.; Zhao, X.; Li, Z.; Lei, X.; Duan, H. Super-Stable Mineralization of Cadmium by Calcium-Aluminum Layered Double Hydroxide and Its Large-Scale Application in Agriculture Soil Remediation. Chem. Eng. J. 2021, 407, 127178. [Google Scholar] [CrossRef]
- Nishimura, S.; Takagaki, A.; Ebitani, K. Characterization, Synthesis and Catalysis of Hydrotalcite-Related Materials for Highly Efficient Materials Transformations. Green Chem. 2013, 15, 2026–2042. [Google Scholar] [CrossRef]
- Motak, M.; Grzybek, T.; Galvez, M.E.; Da Costa, P. A Short Review on the Catalytic Activity of Hydrotalcite-Derived Materials for Dry Reforming of Methane. Catalysts 2017, 7, 2073–4344. [Google Scholar]
- Hutson, N.D.; Speakman, S.A.; Payzant, E.A. Structural Effects on the High Temperature Adsorption of CO2 on a Synthetic Hydrotalcite. Chem. Mater. 2004, 16, 4135–4143. [Google Scholar] [CrossRef]
- Dębek, R.; Motak, M.; Galvez, M.E.; Grzybek, T.; Da Costa, P. Influence of Ce/Zr Molar Ratio on Catalytic Performance of Hydrotalcite-Derived Catalysts at Low Temperature CO2 Methane Reforming. Int. J. Hydrogen Energy 2017, 42, 23556–23567. [Google Scholar] [CrossRef]
- Cerdá-Moreno, C.; Da Costa-Serra, J.F.; Chica, A. Co and La Supported on Zn-Hydrotalcite-Derived Material as Efficient Catalyst for Ethanol Steam Reforming. Int. J. Hydrogen Energy 2019, 44, 12685–12692. [Google Scholar] [CrossRef]
- Marchi, A.J.; Gordo, D.A.; Trasarti, A.F.; Apesteguía, C.R. Liquid Phase Hydrogenation of Cinnamaldehyde on Cu-Based Catalysts. Appl. Catal. A Gen. 2003, 249, 53–67. [Google Scholar] [CrossRef]
- Dragoi, B.; Ungureanu, A.; Chirieac, A.; Hulea, V.; Dumitriu, E. Hydrogenation of Unsaturated Carbonyl Compounds on Non-Calcined LDHs. I. Synthesis and Characterization of ZnNiCuAl Hydrotalcite-like Materials. Acta Chim. Slov. 2010, 57, 677–685. [Google Scholar]
- Rudolf, C.; Dragoi, B.; Ungureanu, A.; Chirieac, A.; Royer, S.; Nastro, A.; Dumitriu, E. NiAl and CoAl Materials Derived from Takovite-like LDHs and Related Structures as Efficient Chemoselective Hydrogenation Catalysts. Catal. Sci. Technol. 2014, 4, 179–189. [Google Scholar] [CrossRef]
- Gao, P.; Li, F.; Zhao, N.; Xiao, F.; Wei, W.; Zhong, L.; Sun, Y. Influence of Modifier (Mn, La, Ce, Zr and Y) on the Performance of Cu/Zn/Al Catalysts via Hydrotalcite-like Precursors for CO2 Hydrogenation to Methanol. Appl. Catal. A Gen. 2013, 468, 442–452. [Google Scholar] [CrossRef]
- Cheng, S.-Y.; Kou, J.-W.; Gao, Z.-H.; Huang, W. Preparation of Complexant-Modified Cu/ZnO/Al2O3 Catalysts via Hydrotalcite-like Precursors and Its Highly Efficient Application in Direct Synthesis of Isobutanol and Ethanol from Syngas. Appl. Catal. A Gen. 2018, 556, 113–120. [Google Scholar] [CrossRef]
- Guo, X.; Mao, D.; Lu, G.; Wang, S.; Wu, G. Glycine–Nitrate Combustion Synthesis of CuO–ZnO–ZrO2 Catalysts for Methanol Synthesis from CO2 Hydrogenation. J. Catal. 2010, 271, 178–185. [Google Scholar] [CrossRef]
- Kühl, S.; Tarasov, A.; Zander, S.; Kasatkin, I.; Behrens, M. Cu-Based Catalyst Resulting from a Cu, Zn, Al Hydrotalcite-Like Compound: A Microstructural, Thermoanalytical, and In Situ XAS Study. Chem. Eur. J. 2014, 20, 3782–3792. [Google Scholar] [CrossRef] [PubMed]
- Smirnov, I.; Kaszkur, Z.; Hoell, A. Development of Nanoparticle Bulk Morphology Analysis: A Multidomain XRD Approach. Nanoscale 2023, 15, 8633–8642. [Google Scholar] [CrossRef] [PubMed]
- Kowalewski, E.; Krawczyk, M.; Słowik, G.; Kocik, J.; Pieta, I.S.; Chernyayeva, O.; Lisovytskiy, D.; Matus, K.; Śrębowata, A. Continuous-Flow Hydrogenation of Nitrocyclohexane toward Value-Added Products with CuZnAl Hydrotalcite Derived Materials. Appl. Catal. A Gen. 2021, 618, 118134. [Google Scholar] [CrossRef]
- Li, W.; Fan, G.; Yang, L.; Li, F. Surface Lewis Acid-Promoted Copper-Based Nanocatalysts for Highly Efficient and Chemoselective Hydrogenation of Citral to Unsaturated Allylic Alcohols. Catal. Sci. Technol. 2016, 6, 2337–2348. [Google Scholar] [CrossRef]
- Wang, M.; Jiang, L.; Kim, E.J.; Hahn, S.H. Electronic Structure and Optical Properties of Zn (OH)2: LDA+ U Calculations and Intense Yellow Luminescence. RSC Adv. 2015, 5, 87496–87503. [Google Scholar] [CrossRef]
- Brzezińska, M.; Keller, N.; Ruppert, A.M. Self-Tuned Properties of CuZnO Catalysts for Hydroxymethylfurfural Hydrodeoxygenation towards Dimethylfuran Production. Catal. Sci. Technol. 2020, 10, 658–670. [Google Scholar] [CrossRef]
- Hajduk, Š.; Dasireddy, V.D.B.C.; Likozar, B.; Dražić, G.; Orel, Z.C. COx-Free Hydrogen Production via Decomposition of Ammonia over Cu–Zn-Based Heterogeneous Catalysts and Their Activity/Stability. Appl. Catal. B Environ. 2017, 211, 57–67. [Google Scholar] [CrossRef]
- Dandekar, A.; Baker, R.T.K.; Vannice, M.A. Carbon-Supported Copper Catalysts: II. Crotonaldehyde Hydrogenation. J. Catal. 1999, 184, 421–439. [Google Scholar] [CrossRef]
- Pino, N.; Hincapié, G.; López, D. Hydrodeoxygenation of Furfuryl Alcohol over Cu/MgAl and Cu/ZnAl Catalysts Derived from Hydrotalcite-like Precursors. Ing. Investig. 2017, 37, 34–42. [Google Scholar] [CrossRef]
- Lan, X.; Wang, T. Highly Selective Catalysts for the Hydrogenation of Unsaturated Aldehydes: A Review. ACS Catal. 2020, 10, 2764–2790. [Google Scholar] [CrossRef]
- Gao, Z.; Liu, Y.; Li, L.; Li, S.; Huang, W. CuZnAl Catalysts Prepared by Precipitation-Hydrothermal Method for Higher Alcohols Synthesis from Syngas. Energy Sources Part A Recover. Util. Environ. Eff. 2017, 39, 1625–1631. [Google Scholar] [CrossRef]
- Pei, Y.; Guo, P.; Qiao, M.; Li, H.; Wei, S.; He, H.; Fan, K. The Modification Effect of Fe on Amorphous CoB Alloy Catalyst for Chemoselective Hydrogenation of Crotonaldehyde. J. Catal. 2007, 248, 303–310. [Google Scholar] [CrossRef]
- Ide, M.S.; Hao, B.; Neurock, M.; Davis, R.J. Mechanistic Insights on the Hydrogenation of α,β-Unsaturated Ketones and Aldehydes to Unsaturated Alcohols over Metal Catalysts. ACS Catal. 2012, 2, 671–683. [Google Scholar] [CrossRef]
- Vogt, E.T.C.; Fu, D.; Weckhuysen, B.M. Carbon Deposit Analysis in Catalyst Deactivation, Regeneration, and Rejuvenation. Angew. Chem. Int. Ed. 2023, 62, e202300319. [Google Scholar] [CrossRef]
- Zhou, S.; Kang, L.; Xu, Z.; Zhu, M. Catalytic Performance and Deactivation of Ni/MCM-41 Catalyst in the Hydrogenation of Pure Acetylene to Ethylene. RSC Adv. 2020, 10, 1937–1945. [Google Scholar] [CrossRef] [PubMed]
- Zieliński, M.; Kaszkur, Z.; Juszczyk, W.; Sobczak, J. In Situ Diffraction Monitoring of Nanocrystals Structure Evolving during Catalytic Reaction at Their Surface. Sci. Rep. 2023, 13, 1469. [Google Scholar] [CrossRef]
- Beamson, G. High Resolution XPS of Organic Polymers. Anal. Chim. Acta 1993, 276, 469–470. [Google Scholar]
- Chastain, J.; King Jr, R.C. Handbook of X-Ray Photoelectron Spectroscopy. Perkin-Elmer Corp. 1992, 40, 221. [Google Scholar]
- NIST X-ray Photoelectron Spectroscopy Database (SRD 20); Version 5.0; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2023. Available online: http://srdata.nist.gov/xps/ (accessed on 14 July 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abid, R.; Zawadzki, B.; Kocik, J.; Słowik, G.; Ryczkowski, J.; Krawczyk, M.; Kaszkur, Z.; Pieta, I.S.; Śrębowata, A. Catalytic Performance of CuZnAl Hydrotalcite-Derived Materials in the Continuous-Flow Chemoselective Hydrogenation of 2-Methyl-2-pentanal toward Fine Chemicals and Pharmaceutical Intermediates. Molecules 2024, 29, 3345. https://doi.org/10.3390/molecules29143345
Abid R, Zawadzki B, Kocik J, Słowik G, Ryczkowski J, Krawczyk M, Kaszkur Z, Pieta IS, Śrębowata A. Catalytic Performance of CuZnAl Hydrotalcite-Derived Materials in the Continuous-Flow Chemoselective Hydrogenation of 2-Methyl-2-pentanal toward Fine Chemicals and Pharmaceutical Intermediates. Molecules. 2024; 29(14):3345. https://doi.org/10.3390/molecules29143345
Chicago/Turabian StyleAbid, Rahma, Bartosz Zawadzki, Jaroslav Kocik, Grzegorz Słowik, Janusz Ryczkowski, Mirosław Krawczyk, Zbigniew Kaszkur, Izabela S. Pieta, and Anna Śrębowata. 2024. "Catalytic Performance of CuZnAl Hydrotalcite-Derived Materials in the Continuous-Flow Chemoselective Hydrogenation of 2-Methyl-2-pentanal toward Fine Chemicals and Pharmaceutical Intermediates" Molecules 29, no. 14: 3345. https://doi.org/10.3390/molecules29143345
APA StyleAbid, R., Zawadzki, B., Kocik, J., Słowik, G., Ryczkowski, J., Krawczyk, M., Kaszkur, Z., Pieta, I. S., & Śrębowata, A. (2024). Catalytic Performance of CuZnAl Hydrotalcite-Derived Materials in the Continuous-Flow Chemoselective Hydrogenation of 2-Methyl-2-pentanal toward Fine Chemicals and Pharmaceutical Intermediates. Molecules, 29(14), 3345. https://doi.org/10.3390/molecules29143345