The Impact of Beeswax and Glycerol Monolaurate on Camellia Oil Oleogel’s Formulation and Application in Food Products
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fatty Acid Composition of Camellia Oil
2.2. Effect of Gelling Agents on Camellia Oil Olegels
2.2.1. Formation and Color of Camellia Oleogels with Different Concentrations of Gels
2.2.2. Texture Determination of Camellia Oleogels
2.2.3. Infrared Spectroscopy of Camellia Oleogels
2.3. Properties of Biscuits Prepared Using Various Fat Types
2.3.1. Texture and Color of Biscuit Dough
2.3.2. Physical Properties of Biscuits
2.3.3. Sensory Evaluation of Biscuits
2.4. Application of the Oleogels When Preparing Sausages
2.4.1. Influence of Different Fats on the Texture of Sausages
2.4.2. Water Holding Capacity of Sausages
2.4.3. Color and pH of Sausages
2.4.4. Sensory Assessment of Sausages
3. Materials and Methods
3.1. Materials
3.2. Analysis of Fatty Acid in Camellia Oil
3.3. Camellia Oil Oleogels’ Preparation
3.3.1. Colorimetric Analysis of Camellia Oil Oleogels
3.3.2. Texture Analysis of Camellia Oleogels
3.3.3. Infrared Spectroscopy Detection of Camellia Oleogels
3.4. Application of Camellia Oleogel to Replace Biscuit Fat
3.4.1. Preparation of Biscuits
3.4.2. Texture Measurement of Dough
3.4.3. Texture Measurement of Biscuits
3.4.4. Measurement of Biscuit Expansion Ratio
3.4.5. Color Measurement of Dough and Biscuits
3.4.6. Sensory Evaluation of Biscuits
3.5. Application of Camellia Oleogel to Replace Sausages Fat
3.5.1. Preparation of Sausages
3.5.2. Texture Analysis of Sausages
3.5.3. Water Holding Capacity Determination
3.5.4. Color Measurement
3.5.5. pH Determination
3.5.6. Sensory Evaluation
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Parvin, M.; Zahra, G.; Zahra, F.; Fereidoun, A. Dietary fatty acid patterns and risk of metabolic syndrome: Tehran lipid and glucose study. Eur. J. Med. Res. 2023, 28, 358. [Google Scholar]
- Rafael, B.; Alicia, A.; León, A.E. Chia (Salvia hispanica L.) Gel Can Be Used as Egg or Oil Replacer in Cake Formulations. J. Am. Diet. Assoc. 2009, 110, 946–949. [Google Scholar]
- Rezaee, M.; Khalloufi, S.; Aider, M. Effect of electro-activated ascorbate solution on physico-chemical properties of processed meat made with xanthan-canola protein Pickering emulsion as animal fat replacer. Food Chem. Adv. 2024, 4, 100703. [Google Scholar] [CrossRef]
- Halime, P.; Mehmet, D.; Said, T.O.; Nevzat, K.; Salih, K.; Osman, S. Oleogels, a promising structured oil for decreasing saturated fatty acid concentrations: Production and food-based applications. Crit. Rev. Food Sci. Nutr. 2018, 58, 1330–1341. [Google Scholar]
- Zhaohua, H.; Baozhong, G.; Deming, G.; Guowen, Z. Oleogel-structured emulsions: A review of formation, physicochemical properties and applications. Food Chem. 2023, 404, 134553. [Google Scholar]
- Silva, R.C.d.; Ferdaus, M.J.; Foguel, A.; da Silva, T.L.T. Oleogels as a Fat Substitute in Food: A Current Review. Gels 2023, 9, 180. [Google Scholar] [CrossRef]
- Malvano, F.; Laudisio, M.; Albanese, D.; d’Amore, M.; Marra, F. Olive Oil-Based Oleogel as Fat Replacer in a Sponge Cake: A Comparative Study and Optimization. Foods 2022, 11, 2643. [Google Scholar] [CrossRef]
- Huang, H.; Hallinan, R.; Maleky, F. Comparison of different oleogels in processed cheese products formulation. Int. J. Food Sci. Technol. 2018, 53, 2525–2534. [Google Scholar] [CrossRef]
- Baratian, G.Z.; Samira, Y.; Ali, H.M.; Ali, F.; Vasilissa, K.; Zhiming, G.; Katsuyoshi, N.; Nataliia, N. Fabrication of novel hybrid gel based on beeswax oleogel: Application in the compound chocolate formulation. Food Hydrocoll. 2023, 140, 108599. [Google Scholar]
- Jing, X.; Chen, Z.; Tang, Z.; Tao, Y.; Huang, Q.; Wu, Y.; Zhang, H.; Li, X.; Liang, J.; Liu, Z.; et al. Preparation of camellia oil oleogel and its application in an ice cream system. LWT 2022, 169, 113985. [Google Scholar] [CrossRef]
- Wang, X.; Zeng, Q.; Verardo, V.; Contreras, M.d.M. Fatty acid and sterol composition of tea seed oils: Their comparison by the “FancyTiles” approach. Food Chem. 2017, 233, 302–310. [Google Scholar] [CrossRef]
- Yang, C.; Liu, X.; Chen, Z.; Lin, Y.; Wang, S. Comparison of oil content and fatty acid profile of ten new Camellia oleifera cultivars. J. Lipids 2016, 2016, 3982486. [Google Scholar] [CrossRef]
- Hu, J.B.; Yang, G.L. Physiochemical characteristics, fatty acid profile and tocopherol composition of the oil from Camellia oleifera Abel cultivated in Henan, China. Grasasy Aceites 2018, 69, e255. [Google Scholar] [CrossRef]
- Xu, Z.; Cao, Z.; Yao, H.; Li, C.; Zhao, Y.; Yuan, D.; Yang, G. The physicochemical properties and fatty acid composition of two new woody oil resources: Camellia hainanica seed oil and Camellia sinensis seed oil. CyTA-J. Food 2021, 19, 208–211. [Google Scholar]
- Hu, L.; Li, T.; Luo, Q.; Zhang, J. Antioxidant stability of colloidal tea polyphenols in tea seed oil. J. Food Process. Preserv. 2021, 45, e15130. [Google Scholar] [CrossRef]
- Akkarach, B.; Patcharanee, P.; Kalpravidh, R.W. Camellia Oil-Enriched Diet Attenuates Oxidative Stress and Inflammatory Markers in Hypercholesterolemic Subjects. J. Med. Food 2016, 19, 895–898. [Google Scholar]
- Hongtu, Q.; Hua, Z.; Bang, E.J. Oleogel classification, physicochemical characterization methods, and typical cases of application in food: A review. Food Sci. Biotechnol. 2024, 33, 1273–1293. [Google Scholar]
- Doan, C.D.; To, C.M.; Vrieze, M.D.; Lynen, F.; Danthine, S.; Brown, A.; Dewettinck, K.; Patel, A.R. Chemical profiling of the major components in natural waxes to elucidate their role in liquid oil structuring. Food Chem. 2017, 214, 717–725. [Google Scholar] [CrossRef]
- Monto, A.R.; Yuan, L.; Xiong, Z.; Shi, T.; Li, M.; Wang, X.; Jin, W.; Li, J.; Gao, R. α-tocopherol stabilization by soybean oil and glyceryl monostearate made oleogel: Dynamic changes and characterization for food application. LWT 2023, 187, 115325. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, J.; Tang, C.; Li, Y. Crystallization Behavior and Physical Properties of Monoglycerides-Based Oleogels as Function of Oleogelator Concentration. Foods 2023, 12, 345. [Google Scholar] [CrossRef]
- Cao, Y.; Xie, Y.; Ren, H. Fatty acid composition and tocopherol, sitosterol, squalene components of Camellia reticulata oil. J. Consum. Prot. Food Saf. 2018, 13, 403–406. [Google Scholar] [CrossRef]
- Zhang, Z.; Tong, Z.; Shao, Y.; Su, G.; Li, K.; Li, C. Comparing and Evaluating the Oil Composition of Olive Oil of 85 Olive Varieties in the Liangshan Region, China. Agronomy 2024, 14, 304. [Google Scholar] [CrossRef]
- Moghtadaei, M.; Soltanizadeh, N.; Goli, H.A.S. Production of sesame oil oleogels based on beeswax and application as partial substitutes of animal fat in beef burger. Food Res. Int. 2018, 108, 368–377. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Hu, L.; Xiao, Y.; Liu, Y.; Li, S.; Zheng, M.; Yu, Z.; Liu, K.; Zhou, Y. Gel Properties and Formation Mechanism of Camellia Oil Body-Based Oleogel Improved by Camellia Saponin. Gels 2022, 8, 499. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Hwang, H.S.; Jeong, S.; Lee, S. Utilization of oleogels with binary oleogelator blends for filling creams low in saturated fat. LWT 2022, 155, 112972. [Google Scholar] [CrossRef]
- Qu, K.; Ma, J.; Zhang, H.; Li, X. Characterization of construction and physical properties of composite oleogel based on single low molecular weight wax and polymer ethyl cellulose. LWT 2024, 192, 115722. [Google Scholar] [CrossRef]
- Sun, P.; Xia, B.; Ni, Z.J.; Wang, Y.; Elam, E.; Thakur, K.; Ma, Y.L.; Wei, Z.J. Characterization of functional chocolate formulated using oleogels derived from β-sitosterol with γ-oryzanol/lecithin/stearic acid. Food Chem. 2021, 360, 130017. [Google Scholar] [CrossRef]
- Pérez-Martínez, J.D.; Sánchez-Becerril, M.; Marangoni, A.G.; Toro-Vazquez, J.F.; Ornelas-Paz, J.J.; Ibarra-Junquera, V. Structuration, elastic properties scaling, and mechanical reversibility of candelilla wax oleogels with and without emulsifiers. Food Res. Int. 2019, 122, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.S.; Kim, S.; Evans, K.O.; Koga, C.; Lee, Y. Morphology and networks of sunflower wax crystals in soybean oil organogel. Food Struct. 2015, 5, 10–20. [Google Scholar] [CrossRef]
- Jeong, S.; Oh, I. Characterization of mixed-component oleogels: Beeswax and glycerol monostearate interactions towards Tenebrio Molitor larvae oil. Curr. Res. Food Sci. 2024, 8, 100689. [Google Scholar] [CrossRef]
- Ma, Y.; Ye, F.; Chen, J.; Ming, J.; Zhou, C.; Zhao, G.; Lei, L. The microstructure and gel properties of linseed oil and soy protein isolate based-oleogel constructed with highland barley β-glucan and its application in luncheon meat. Food Hydrocoll. 2023, 140, 108666. [Google Scholar] [CrossRef]
- Meng, Z.; Guo, Y.; Wang, Y.; Liu, Y. Organogels based on the polyglyceryl fatty acid ester and sunflower oil: Macroscopic property, microstructure, interaction force, and application. LWT 2019, 116, 108590. [Google Scholar] [CrossRef]
- Emin, Y.; Mustafa, Ö. The texture, sensory properties and stability of cookies prepared with wax oleogels. Food Funct. 2015, 6, 1194–1204. [Google Scholar]
- Zhang, Y.; Deng, L.; Zhong, H.; Pan, J.; Li, Y.; Zhang, H. Superior water stability and antimicrobial activity of electrospun gluten nanofibrous films incorporated with glycerol monolaurate. Food Hydrocoll. 2020, 109, 106116. [Google Scholar] [CrossRef]
- Xie, X.; Yuan, Z.; Fu, K.; An, J.; Deng, L. Effect of Partial Substitution of Flour with Mealworm (Tenebrio molitor L.) Powder on Dough and Biscuit Properties. Foods 2022, 11, 2156. [Google Scholar] [CrossRef]
- Li, S.; Zhu, L.; Li, X.; Wu, G.; Liu, T.; Qi, X.; Jin, Q.; Wang, X.; Zhang, H. Determination of characteristic evaluation indexes for novel cookies prepared with wax oleogels. J. Sci. Food Agric. 2022, 102, 5544–5553. [Google Scholar] [CrossRef]
- Li, S.; Wu, G.; Li, X.; Jin, Q.; Wang, X.; Zhang, H. Roles of gelator type and gelation technology on texture and sensory properties of cookies prepared with oleogels. Food Chem. 2021, 356, 129667. [Google Scholar] [CrossRef]
- Bai, C.; Zhu, J.; Xiong, G.; Wang, W.; Wang, J.; Qiu, L.; Zhang, Q.; Liao, T. Fortification of puffed biscuits with chitin and crayfish shell: Effect on physicochemical property and starch digestion. Front. Nutr. 2023, 10, 1107488. [Google Scholar] [CrossRef]
- Shao, L.; Bi, J.; Li, X.; Dai, R. Effects of vegetable oil and ethylcellulose on the oleogel properties and its application in Harbin red sausage. Int. J. Biol. Macromol. 2023, 239, 124299. [Google Scholar] [CrossRef]
- Emin, Y.; Keskin, U.E.; Buse, T. Structure, Rheological and Sensory Properties of Some Animal Wax Based Oleogels. J. Oleo Sci. 2020, 69, 1317–1329. [Google Scholar]
- Su, L.X.; Chen, J.; Liu, J.; Shao, Y.H.; Tu, Z.C. l-lysine modified whey protein isolate: Mechanism on the improvement of the gel properties and its application as model fish sausage. Food Hydrocoll. 2023, 145, 109114. [Google Scholar] [CrossRef]
- Akbari, A.; Bahmani, K.; Kafkas, N.E.; Bilgin, O.F.; Hamijo, T.; Darbandi, A.I.; Farhadpour, M. Evaluation of seed yield, essential oil compositions, and fatty acid profiles in advanced fennel (Foeniculum vulgare Mill) breeding populations. Biocatal. Agric. Biotechnol. 2024, 57, 103118. [Google Scholar] [CrossRef]
- Long, L.; Gao, C.; Qiu, J.; Yang, L.; Wei, H.; Zhou, Y. Fatty acids and nutritional components of the seed oil from Wangmo red ball Camellia oleifera grown in the low-heat valley of Guizhou, China. Sci. Rep. 2022, 12, 16554. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Yao, X.; Ren, H.; Wang, K. Determination of fatty acid composition and metallic element content of four Camellia species used for edible oil extraction in China. J. Consum. Prot. Food Saf. 2017, 12, 165–169. [Google Scholar] [CrossRef]
- Barragán-Martínez, L.P.; Alvarez-Poblano, L.; Vernon-Carter, E.J.; Alvarez-Ramirez, J. Effects of β-carotene on the color, textural, rheological and structural properties of canola oil/beeswax oleogel. J. Food Meas. Charact. 2022, 16, 3946–3956. [Google Scholar] [CrossRef]
- Pradhan, A.; Anis, A.; Alam, M.A.; Zahrani, S.M.A.; Jarzebski, M.; Pal, K. Effect of Soy Wax/Rice Bran Oil Oleogel Replacement on the Properties of Whole Wheat Cookie Dough and Cookies. Foods 2023, 12, 3650. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Zhong, J.; Liu, X.; Wang, Q.; Qin, X. Physicochemical properties and intermolecular interactions of a novel diacylglycerol oil oleogel made with ethyl cellulose as affected by γ-oryzanol. Food Hydrocoll. 2023, 138, 138484. [Google Scholar] [CrossRef]
- Lazou, A.E. Properties, Structure, and Acceptability of Innovative Legume-Based Biscuits with Alternative Sweeteners. Int. J. Food Sci. 2024, 2024, 8216796. [Google Scholar] [CrossRef]
- Sobolev, R.; Frolova, Y.; Sarkisyan, V.; Kochetkova, A. Waxy Oleogels for Partial Substitution of Solid Fat in Margarines. Gels 2023, 9, 683. [Google Scholar] [CrossRef]
- Maman, R.; Yu, J. Chemical Composition and Particle Size of Grape Seed Flour and Their Effects on the Characteristics of Cookies. J. Food Res. 2019, 8, 111–121. [Google Scholar] [CrossRef]
- Tanong, A.; Palanivel, G.; Hataikan, T. Whey Protein-Tannic Acid Conjugate Stabilized Emulsion-Type Pork Sausages: A Focus on Lipid Oxidation and Physicochemical Features. Foods 2023, 12, 2766. [Google Scholar] [CrossRef]
Fatty Acid | Retention Time | Peak Area | %wt/ Fatty Acid Content | |
---|---|---|---|---|
tridecanoic acid | C13:0 | 13.7335 | 7.15 | 0.1395 |
palmitic acid | C16:0 | 16.7260 | 398.55 | 7.7405 |
palmitoleic acid | C16:1 | 17.0710 | 4.40 | 0.0855 |
stearic acid | C18:0 | 19.7475 | 87.95 | 1.7090 |
oleic acid | C18:1n9c | 20.3250 | 4189.85 | 81.3710 |
linolelaidic acid | C18:2n6t | 20.9235 | 7.30 | 0.1420 |
linoleic acid | C18:2n6c | 21.1115 | 403.90 | 7.8435 |
linolenic acid | C18:3n3 | 22.2030 | 11.65 | 0.2265 |
arachidic acid | C20:0 | 23.3990 | 18.20 | 0.3540 |
eicosenic cis acid | C20:1 | 23.7840 | 20.00 | 0.3885 |
Sample | L* | a* | b* |
---|---|---|---|
3% (B3) | 30.00 ± 0.91 e | −0.49 ± 0.05 a | −0.82 ± 0.20 a |
4% (B4) | 31.60 ± 0.75 e | −0.72 ± 0.21 a | −2.00 ± 0.39 b |
5% (B5) | 34.05 ± 1.14 d | −1.41 ± 0.35 b | −3.97 ± 0.56 bc |
6% (B6) | 36.97 ± 0.80 c | −1.71 ± 0.08 b | −4.24 ± 0.37 cd |
7% (B7) | 39.02 ± 0.31 c | −1.60 ± 0.10 bc | −3.55 ± 0.42 cd |
8% (B8) | 41.99 ± 0.64 b | −1.84 ± 0.07 bc | −3.87 ± 0.41 cd |
9% (B8) | 44.11 ± 0.70 b | −1.83 ± 0.01 bc | −2.98 ± 0.52 cd |
10% (B10) | 46.54 ± 0.96 a | −2.06 ± 0.02 c | −3.30 ± 0.37 d |
Sample | L* | a* | b* |
---|---|---|---|
3% (G3) | 23.31 ± 0.64 f | −0.16 ± 0.04 a | 1.70 ± 0.06 a |
4% (G4) | 25.15 ± 0.58 ef | −0.18 ± 0.03 a | 1.64 ± 0.06 a |
5% (G5) | 26.43 ± 1.26 e | −0.24 ± 0.02 a | 1.32 ± 0.07 b |
6% (G6) | 29.57 ± 1.21 d | −0.48 ± 0.05 b | 1.13 ± 0.06 c |
7% (G7) | 31.91 ± 0.74 c | −0.84 ± 0.13 c | 0.94 ± 0.07 d |
8% (G8) | 33.09 ± 0.42 c | −1.06 ± 0.03 d | 0.82 ± 0.04 de |
9% (G8) | 35.63 ± 0.45 b | −1.28 ± 0.09 e | 0.78 ± 0.05 e |
10% (G10) | 37.98 ± 1.48 a | −1.84 ± 0.14 f | 0.72 ± 0.08 e |
Sample | Hardness/N | Springiness |
---|---|---|
3% (B3) | 0.4573 ± 0.0274 d | 0.4025 ± 0.0134 a |
4% (B4) | 1.2343 ± 0.0978 d | 0.7935 ± 0.0177 a |
5% (B5) | 2.1713 ± 0.0839 d | 1.1595 ± 0.0530 ab |
6% (B6) | 3.9406 ± 0.1054 c | 1.7150 ± 0.2022 bc |
7% (B7) | 5.5390 ± 0.1464 bc | 2.4410 ± 0.1739 cd |
8% (B8) | 6.9213 ± 0.6605 b | 2.859 ± 0.0212 de |
9% (B9) | 9.7293 ± 1.2359 a | 3.6165 ± 0.1746 e |
10% (B10) | 10.5710 ± 1.0116 a | 4.9595 ± 0.4957 f |
Sample | Hardness/N | Springiness |
---|---|---|
3% (G3) | 0.0703 ± 0.0089 c | 0.0902 ± 0.0015 ab |
4% (G4) | 0.1015 ± 0.0052 c | 0.1203 ± 0.0120 ab |
5% (G5) | 0.1814 ± 0.0087 bc | 0.2124 ± 0.0085 bc |
6% (G6) | 0.1505 ± 0.0450 bc | 0.1912 ± 0.0620 bc |
7% (G7) | 0.3027 ± 0.0380 ab | 0.3135 ± 0.0180 cd |
8% (G8) | 0.4114 ± 0.0790 a | 0.3621 ± 0.0341 d |
9% (G9) | 0.4058 ± 0.0150 a | 0.3703 ± 0.0311 d |
10% (G10) | 0.4521 ± 0.0121 a | 0.4023 ± 0.0482 d |
Dough | Hardness | Springiness | Resilience | Stickiness | L* | a* | b* |
---|---|---|---|---|---|---|---|
Butter | 21.99 ± 1.05 b | 0.67 ± 0.07 a | 0.10 ± 0.01 b | 11.10 ± 1.24 a | 76.61 ± 1.22 b | 0.34 ± 0.21 a | 19.55 ± 1.42 a |
6.7% GML | 11.10 ± 0.55 e | 0.73 ± 0.14 a | 0.09 ± 0.01 b | 6.18 ± 0.78 b | 77.61 ± 0.49 b | −0.55 ± 0.11 b | 17.10 ± 1.03 ab |
10% GML | 13.79 ± 0.80 d | 0.69 ± 0.01 a | 0.47 ± 0.026 a | 6.49 ± 0.09 b | 80.82 ± 0.97 a | −0.41 ± 0.26 b | 17.31 ± 1.71 ab |
6.7% BW | 25.24 ± 0.38 a | 0.61 ± 0.03 a | 0.45 ± 0.04 a | 11.44 ± 0.92 a | 74.24 ± 1.13 c | −0.48 ± 0.27 b | 15.46 ± 1.39 ab |
10% BW | 18.36 ± 0.43 c | 0.58 ± 0.01 a | 0.42 ± 0.03 a | 7.80 ± 0.82 b | 76.22 ± 0.89 b | −0.29 ± 0.38 b | 17.19 ± 0.53 b |
Biscuit | Hardness | Resilience | Expansion Ratio | L* | a* | b* |
---|---|---|---|---|---|---|
Butter | 21.03 ± 1.24 c | 0.37 ± 0.06 a | 206.69 ± 9.72 bc | 75.55 ± 0.46 a | 2.54 ± 0.94 c | 25.57 ± 1.14 d |
6.7% GML | 13.87 ± 0.38 d | 0.53 ± 0.16 ab | 326.77 ± 9.345 a | 76.42 ± 0.22 a | 0.78 ± 0.12 c | 22.82 ± 1.38 c |
10% GML | 14.32 ± 1.02 d | 0.40 ± 0.034 a | 338.37 ± 16.69 a | 70.89 ± 0.624 b | 8.68 ± 1.53 b | 33.14 ± 1.32 b |
6.7% BW | 24.54 ± 1.85 b | 0.30 ± 0.084 b | 215.94 ± 6.5 b | 60.76 ± 1.178 c | 14.00± 1.60 a | 35.65 ± 1.55 a |
10% BW | 30.58 ± 3.17 a | 0.25 ± 0.068 b | 192.80 ± 3.76 c | 72.00 ± 0.207 b | 9.68 ± 0.92 b | 35.44 ± 0.97 ab |
Fat Component | Hardness/N | Chewiness | Resilience | Springiness | Cohesiveness |
---|---|---|---|---|---|
Control (Lard) | 11.92 ± 0.20 a | 6.55 ± 0.12 a | 0.34 ± 0.02 a | 0.78 ± 0.02 a | 0.71 ± 0.01 a |
Butter:Lard (1:1) | 11.25 ± 0.13 b | 5.67 ± 0.21 b | 0.33 ± 0.01 ab | 0.73 ± 0.02 a | 0.69 ± 0.01 a |
10% BW:Lard (1:1) | 10.23 ± 0.24 c | 5.74 ± 0.44 b | 0.33 ± 0.01 ab | 0.80 ± 0.05 a | 0.70 ± 0.01 a |
10% GML:Lard (1:1) | 6.70 ± 0.31 e | 3.20 ± 0.36 d | 0.31 ± 0.01 b | 0.72 ± 0.05 a | 0.66 ± 0.02 b |
Samples | L* | a* | b* | pH |
---|---|---|---|---|
Lard | 65.59 ± 1.49 a | −1.26 ± 0.31 a | 13.57 ± 0.65 a | 5.70 ± 0.11 a |
Butter | 62.67 ± 1.49 a | −0.74 ± 0.26 a | 14.68 ± 1.91 a | 5.63 ± 0.05 a |
BW | 62.91 ± 1.97 a | −1.01 ± 0.09 a | 15.10 ± 2.61 a | 5.66 ± 0.08 a |
GML | 65.74 ± 1.40 a | −0.73 ± 0.53 a | 13.41 ± 2.62 a | 5.64 ± 0.02 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, X.; Xia, R.; Wei, C.; Shang, L.; An, J.; Deng, L. The Impact of Beeswax and Glycerol Monolaurate on Camellia Oil Oleogel’s Formulation and Application in Food Products. Molecules 2024, 29, 3192. https://doi.org/10.3390/molecules29133192
Wei X, Xia R, Wei C, Shang L, An J, Deng L. The Impact of Beeswax and Glycerol Monolaurate on Camellia Oil Oleogel’s Formulation and Application in Food Products. Molecules. 2024; 29(13):3192. https://doi.org/10.3390/molecules29133192
Chicago/Turabian StyleWei, Xingchen, Ronghui Xia, Chenxi Wei, Longchen Shang, Jianhui An, and Lingli Deng. 2024. "The Impact of Beeswax and Glycerol Monolaurate on Camellia Oil Oleogel’s Formulation and Application in Food Products" Molecules 29, no. 13: 3192. https://doi.org/10.3390/molecules29133192
APA StyleWei, X., Xia, R., Wei, C., Shang, L., An, J., & Deng, L. (2024). The Impact of Beeswax and Glycerol Monolaurate on Camellia Oil Oleogel’s Formulation and Application in Food Products. Molecules, 29(13), 3192. https://doi.org/10.3390/molecules29133192