Detecting mir-155-3p through a Molecular Beacon Bead-Based Assay
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Oligonucleotides and Ligands
3.2. Bead Conjugation with MB
3.3. Cell Culture and Total RNA Extraction
3.4. Peripheral Blood Mononuclear Cells (PBMCs)
3.5. Microfluidics Experiments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Toumazis, I.; Bastani, M.; Han, S.S.; Plevritis, S.K. Risk-Based Lung Cancer Screening: A Systematic Review. Lung Cancer 2020, 147, 154–186. [Google Scholar] [CrossRef] [PubMed]
- Khadela, A.; Postwala, H.; Rana, D.; Dave, H.; Ranch, K.; Boddu, S.H.S. A Review of Recent Advances in the Novel Therapeutic Targets and Immunotherapy for Lung Cancer. Med. Oncol. 2023, 40, 152. [Google Scholar] [CrossRef] [PubMed]
- Garinet, S.; Wang, P.; Mansuet-Lupo, A.; Fournel, L.; Wislez, M.; Blons, H. Updated Prognostic Factors in Localized NSCLC. Cancers 2022, 14, 1400. [Google Scholar] [CrossRef] [PubMed]
- Jachowski, A.; Marcinkowski, M.; Szydłowski, J.; Grabarczyk, O.; Nogaj, Z.; Marcin, Ł.; Pławski, A.; Jagodziński, P.P.; Słowikowski, B.K. Modern Therapies of Nonsmall Cell Lung Cancer. J. Appl. Genet. 2023, 64, 695–711. [Google Scholar] [CrossRef] [PubMed]
- Zarinshenas, R.; Amini, A.; Mambetsariev, I.; Abuali, T.; Fricke, J.; Ladbury, C.; Salgia, R. Assessment of Barriers and Challenges to Screening, Diagnosis, and Biomarker Testing in Early-Stage Lung Cancer. Cancers 2023, 15, 1595. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, M.S.; Lotfi, M.; Soltani, N.; Farmani, E.; Fernandez, J.H.O.; Akhlaghitehrani, S.; Mohammed, S.H.; Yasamineh, S.; Kalajahi, H.G.; Gholizadeh, O. Recent Advances on High-Efficiency of MicroRNAs in Different Types of Lung Cancer: A Comprehensive Review. Cancer Cell Int. 2023, 23, 284. [Google Scholar] [CrossRef] [PubMed]
- Geng, X.; Ma, J.; Dhilipkannah, P.; Jiang, F. MicroRNA Profiling of Red Blood Cells for Lung Cancer Diagnosis. Cancers 2023, 15, 5312. [Google Scholar] [CrossRef]
- de Sousa, M.C.; Gjorgjieva, M.; Dolicka, D.; Sobolewski, C.; Foti, M. Deciphering MiRNAs’ Action through MiRNA Editing. Int. J. Mol. Sci. 2019, 20, 6249. [Google Scholar] [CrossRef]
- Wu, K.L.; Tsai, Y.M.; Lien, C.T.; Kuo, P.L.; Hung, J.Y. The Roles of MicroRNA in Lung Cancer. Int. J. Mol. Sci. 2019, 20, 1611. [Google Scholar] [CrossRef] [PubMed]
- Saliminejad, K.; Khorram Khorshid, H.R.; Soleymani Fard, S.; Ghaffari, S.H. An Overview of MicroRNAs: Biology, Functions, Therapeutics, and Analysis Methods. J. Cell. Physiol. 2019, 234, 5451–5465. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Guan, Z.; Cuk, K.; Brenner, H.; Zhang, Y. Circulating MicroRNA Biomarkers for Lung Cancer Detection in Western Populations. Cancer Med. 2018, 7, 4849–4862. [Google Scholar] [CrossRef] [PubMed]
- Alexandre, D.; Teixeira, B.; Rico, A.; Valente, S.; Craveiro, A.; Baptista, P.V.; Cruz, C. Molecular Beacon for Detection MiRNA-21 as a Biomarker of Lung Cancer. Int. J. Mol. Sci. 2022, 23, 3330. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Lin, Y.; Zhan, M.; Mann, D.L.; Stass, S.A.; Jiang, F. Differential MiRNA Expressions in Peripheral Blood Mononuclear Cells for Diagnosis of Lung Cancer. Lab. Investig. 2015, 95, 1197–1206. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; He, J.; Zhang, F.; Wu, Y.; Zhu, X.; He, X.; Zhao, Y.; Zhao, Y. Prognostic Role of MicroRNA-155 in Various Carcinomas: Results from a Meta-Analysis. Dis. Markers 2013, 34, 379–386. [Google Scholar] [CrossRef]
- Ren, X.Y.; Han, Y.D.; Lin, Q. Long Non-Coding RNA MIR155HG Knockdown Suppresses Cell Proliferation, Migration and Invasion in NSCLC by Up-regulating TP53INP1 Directly Targeted by MiR-155-3p and MiR-155-5p. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 4822–4835. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Hu, X.; Sun, S.; Zhu, L.; Wang, N.; Zhang, J.; Huang, G.; Wang, Y.; Huang, X.; Wang, L.; et al. Hairpin Allosteric Molecular Beacons-Based Cascaded Amplification for Effective Detection of Lung Cancer-Associated MicroRNA. Talanta 2022, 244, 123412. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Tang, Z.; Yang, C.J.; Kim, Y.; Fang, X.; Li, W.; Wu, Y.; Medley, C.D.; Cao, Z.; Li, J.; et al. Molecular Engineering of DNA: Molecular Beacons. Angew. Chem. Int. Ed. 2009, 48, 856–870. [Google Scholar] [CrossRef]
- Tan, W.; Wang, K.; Drake, T.J. Molecular Beacons. Curr. Opin. Chem. Biol. 2004, 8, 547–553. [Google Scholar] [CrossRef]
- Gruber, A.R.; Lorenz, R.; Bernhart, S.H.; Neuböck, R.; Hofacker, I.L. The Vienna RNA Websuite. Nucleic Acids Res. 2008, 36, W70–W74. [Google Scholar] [CrossRef] [PubMed]
- Alexandre, D.; Fernandes, A.R.; Baptista, P.V.; Cruz, C. Evaluation of MiR-155 Silencing Using a Molecular Beacon in Human Lung Adenocarcinoma Cell Line. Talanta 2024, 274, 126052. [Google Scholar] [CrossRef] [PubMed]
- Hui, X.; Yang, C.; Li, D.; He, X.; Huang, H.; Zhou, H.; Chen, M.; Lee, C.; Mu, X. Infrared Plasmonic Biosensor with Tetrahedral DNA Nanostructure as Carriers for Label-Free and Ultrasensitive Detection of MiR-155. Adv. Sci. 2021, 8, 2100583. [Google Scholar] [CrossRef] [PubMed]
- Amin Sadrabadi, E.; Benvidi, A.; Shiralizadeh Dezfuli, A.; Asgharnejad, L.; Daneshpour, M.; Azimzadeh, M.; Khashayar, P. Sensitive Nanobiosensor for MiR-155 Detection Using a Novel Nanocomposite of Carbon Nanofiber, Metal-Organic Framework, and Two Quantum Dots. Microchem. J. 2023, 193, 109008. [Google Scholar] [CrossRef]
- Esmaeili-bandboni, A.; Amini, S.M.; Faridi-Majidi, R.; Bagheri, J.; Mohammadnejad, J.; Sadroddiny, E. Cross-Linking Gold Nanoparticles Aggregation Method Based on Localised Surface Plasmon Resonance for Quantitative Detection of MiR-155. IET Nanobiotechnology 2018, 12, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Pinto, I.F.; Caneira, C.R.F.; Soares, R.R.G.; Madaboosi, N.; Aires-Barros, M.R.; Conde, J.P.; Azevedo, A.M.; Chu, V. The Application of Microbeads to Microfluidic Systems for Enhanced Detection and Purification of Biomolecules. Methods 2017, 116, 112–124. [Google Scholar] [CrossRef]
- Shang, J.; Yu, S.; Li, R.; He, Y.; Wang, Y.; Wang, F. Bioorthogonal Disassembly of Hierarchical DNAzyme Nanogel for High-Performance Intracellular MicroRNA Imaging. Nano Lett. 2023, 23, 1386–1394. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Liu, C.; Miao, W.; Wang, X.; Guo, G. Ultrasensitive Detection of MiRNA Based on Efficient Immobilization of Probe and Electrochemiluminescent Quenching of Ru(Bpy)32+ by Methylene Blue. Anal. Chim. Acta 2020, 1093, 52–60. [Google Scholar] [CrossRef]
- Forte, G.; Ventimiglia, G.; Pesaturo, M.; Petralia, S. A Highly Sensitive PNA-Microarray System for MiRNA122 Recognition. Biotechnol. J. 2022, 17, 2100587. [Google Scholar] [CrossRef]
- Ding, X.; Yan, Y.; Li, S.; Zhang, Y.; Cheng, W.; Cheng, Q.; Ding, S. Surface Plasmon Resonance Biosensor for Highly Sensitive Detection of MicroRNA Based on DNA Super-Sandwich Assemblies and Streptavidin Signal Amplification. Anal. Chim. Acta 2015, 874, 59–65. [Google Scholar] [CrossRef]
- Napoletano, S.; Battista, E.; Martone, N.; Netti, P.A.; Causa, F. Direct, Precise, Enzyme-Free Detection of MiR-103–3p in Real Samples by Microgels with Highly Specific Molecular Beacons. Talanta 2023, 259, 124468. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Losada, P.; Freisa, M.; Poujouly, C.; Gamby, J. An Integrated Multiple Electrochemical MiRNA Sensing System Embedded into a Microfluidic Chip. Biosensors 2022, 12, 145. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Xu, R.; Chen, Y.; Wang, X.; Na, X.; Zhang, Y.; Chen, X.; Cai, L.; Song, J.; Yang, C. Highly Multiplexed, Efficient, and Automated Single-Cell MicroRNA Sequencing with Digital Microfluidics. Small Methods 2024, 8, 2301250. [Google Scholar] [CrossRef]
- Miranda, A.; Santos, T.; Carvalho, J.; Alexandre, D.; Jardim, A.; Caneira, C.R.F.; Vaz, V.; Pereira, B.; Godinho, R.; Brito, D.; et al. Aptamer-Based Approaches to Detect Nucleolin in Prostate Cancer. Talanta 2021, 226, 122037. [Google Scholar] [CrossRef] [PubMed]
Detection System | LOD | Linear Range | Target | REF |
---|---|---|---|---|
Fluorescent MB | 0.7 pM | 5 pM to 40 nM | miRNA-21 | [18] |
DNAzyme Nanogel | 2 pM | 2 pM to 500 pM | miRNA-21 | [27] |
Electrochemiluminescent MB | 10 fM | 10 fM to 10 nM | let-7d | [28] |
Colorimetric gold nanoparticles | 10 nM | 10 nM to 100 µM | miRNA-155 | [25] |
PNA microarray | 43 pM | 0.1 nM to 10 nM | miRNA-122 | [29] |
SPR sensor based on DNA super-sandwich | 9 pM | 10 pM to 1 µM | miRNA-21 | [30] |
Microfluidic molecular beacon bead-based assay | 42 nM | 0.05 μM to 0.50 μM | miR-155-3p | Current study |
Sample | miR-155-3p Added (μM) | % miR-155-3p |
---|---|---|
RNA from A549 cells | 0.2 | 100.42 |
0.5 | 108.16 | |
PMBCs from healthy controls | 0.2 | 31.14 |
0.5 | 21.39 | |
PMBCs from NSCLC patients | 0.2 | 100.42 |
0.5 | 195.22 |
Name | Sequence (5′ → 3′) |
---|---|
MB | Biotin-TEG-6-FAMdT-CCGCGCTGTTAATGCTAATATGTAGGAGGCGCGG-TAMRA |
mir-155-3p | CUCCUACAUAUUAGCAUUAACA |
mir-155-5p | UUAAUGCUAAUCGUGAUAGGGGUU |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreira, D.; Alexandre, D.; Miranda, A.; Lourenço, P.; Baptista, P.V.; Tomaz, C.; Lu, Y.; Cruz, C. Detecting mir-155-3p through a Molecular Beacon Bead-Based Assay. Molecules 2024, 29, 3182. https://doi.org/10.3390/molecules29133182
Moreira D, Alexandre D, Miranda A, Lourenço P, Baptista PV, Tomaz C, Lu Y, Cruz C. Detecting mir-155-3p through a Molecular Beacon Bead-Based Assay. Molecules. 2024; 29(13):3182. https://doi.org/10.3390/molecules29133182
Chicago/Turabian StyleMoreira, David, Daniela Alexandre, André Miranda, Pedro Lourenço, Pedro V. Baptista, Cândida Tomaz, Yi Lu, and Carla Cruz. 2024. "Detecting mir-155-3p through a Molecular Beacon Bead-Based Assay" Molecules 29, no. 13: 3182. https://doi.org/10.3390/molecules29133182
APA StyleMoreira, D., Alexandre, D., Miranda, A., Lourenço, P., Baptista, P. V., Tomaz, C., Lu, Y., & Cruz, C. (2024). Detecting mir-155-3p through a Molecular Beacon Bead-Based Assay. Molecules, 29(13), 3182. https://doi.org/10.3390/molecules29133182