Study on Oleum cinnamomi Inhibiting Cutibacterium acnes and Its Covalent Inhibition Mechanism
Abstract
:1. Introduction
2. Results
2.1. Chemical Compositions of the OCM
2.2. Antibacterial Activity of OCM against C. acnes
2.3. Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM)
2.4. Metabonomics
2.4.1. Effect of OCM on Metabolic Profiles of C. acnes
2.4.2. Differential Metabolites Analysis
2.4.3. Enrichment of Metabolic Pathway
2.5. Identification of Modified Proteins
2.6. Changes in Amino Acids Content over Time
2.7. Target Verification: The NADH/NAD+ Ratio and Malate Dehydrogenase
3. Materials and Methods
3.1. Materials
3.2. Preparation of OCM from Cinnamomi ramulus
3.3. GC–MS Detection of OCM
3.4. The Antibacterial Activity of OCM against C. acnes
3.5. Growth Assay
3.6. Determination of DNA and RNA in the Supernatant
3.7. Morphological Analysis
3.8. Metabonomics Studies
3.8.1. Preparation and GC–MS Analysis of Metabolites
3.8.2. Analysis of Metabolomics Data
3.9. Modified Proteomics
3.9.1. Proteins Extraction and Digestion
3.9.2. Protein Identification and Data Analysis
3.10. The Assay of NADH, NAD+, ATP Content, NADH Dehydrogenase and Malate Dehydrogenase Activity
3.11. Changes in Amino Acid and Its Analog Content over Time
3.12. Statistical Analysis
4. Conclusions and Prospect
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Zhang, C.L.; Fan, L.H.; Fan, S.M.; Wang, J.Q.; Luo, T.; Tang, Y.; Chen, Z.M.; Yu, L.Y. Cinnamomum cassia Presl: A Review of Its Traditional Uses, Phytochemistry, Pharmacology and Toxicology. Molecules 2019, 24, 3473. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, Q.; Li, R.L.; Wei, S.J.; Huang, C.Y.; Gao, Y.X.; Pu, X.F. The traditional uses, phytochemistry, pharmacology and toxicology of Cinnamomi ramulus: A review. J. Pharm. Pharmacol. 2020, 72, 319–342. [Google Scholar] [CrossRef]
- Giordani, R.; Regli, P.; Kaloustian, J.; Portugal, H. Potentiation of antifungal activity of amphotericin B by essential oil from Cinnamomum cassia. Phytother. Res. 2006, 20, 58–61. [Google Scholar] [CrossRef] [PubMed]
- Paiano, R.B.; de Sousa, R.L.M.; Bonilla, J.; Moreno, L.Z.; de Souza, E.D.F.; Baruselli, P.S.; Moreno, A.M. In vitro effects of cinnamon, oregano, and thyme essential oils against Escherichia coli and Trueperella pyogenes isolated from dairy cows with clinical endometritis. Theriogenology 2023, 196, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Abudurexiti, A.; Zhang, R.; Zhong, Y.W.; Tan, H.W.; Yan, J.L.; Bake, S.; Ma, X.L. Identification of α-glucosidase inhibitors from Mulberry using UF-UPLC-QTOF-MS/MS and molecular docking. J. Funct. Foods 2023, 101, 105362. [Google Scholar] [CrossRef]
- Song, M.; Seo, S.H.; Ko, H.C.; Oh, C.K.; Kwon, K.S.; Chang, C.L.; Kim, M.B. Antibiotic susceptibility of Propionibacterium acnes isolated from acne vulgaris in Korea. J. Dermatol. 2011, 38, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Liao, D.X.; Zhang, J.; Liu, R.L.; Chen, K.; Liu, Y.Y.; Shao, Y.M.; Shi, X.; Zhang, Y.M.; Yang, Z.C. Whole-genome sequencing, annotation, and biological characterization of a novel Siphoviridae phage against multi-drug resistant Propionibacterium acne. Front. Microbiol. 2023, 13, 1390825. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.X.; Lu, Z.; Ma, Y. Draft genome sequences of three multidrug-resistant Cutibacterium (formerly Propionibacterium) acnes strains isolated from acne patients, China. J. Glob. Antimicrob. Resist. 2017, 11, 114–115. [Google Scholar] [CrossRef]
- Wan, C.P.; Li, P.; Chen, C.Y.; Peng, X.; Li, M.X.; Chen, M.; Wang, J.S.; Chen, J.Y. Antifungal Activity of Ramulus cinnamomi Explored by 1H-NMR Based Metabolomics Approach. Molecules 2017, 22, 2237. [Google Scholar] [CrossRef]
- Liu, C.S.; Cham, T.M.; Yang, C.H.; Chang, H.W.; Chen, C.H.; Chuang, L.Y. Antibacterial properties of Chinese herbal medicines against nosocomial antibiotic resistant strains of Pseudomonas aeruginosa in Taiwan. Am. J. Chin. Med. 2007, 35, 1047–1060. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, M.Q.; Niu, R.X.; Gu, X.; Hao, E.W.; Hou, X.T.; Deng, J.G.; Bai, G. The combination of cinnamaldehyde and kaempferol ameliorates glucose and lipid metabolism disorders by enhancing lipid metabolism via AMPK activation. J. Funct. Foods 2021, 83, 104556. [Google Scholar] [CrossRef]
- Gill, A.O.; Holley, R.A. Disruption of Escherichia coli, Listeria monocytogenes and Lactobacillus sakei cellular membranes by plant oil aromatics. Int. J. Food Microbiol. 2006, 108, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Qian, C.G.; Jin, L.; Zhu, L.P.; Zhou, Y.; Chen, J.; Yang, D.P.; Xu, X.J.; Ding, P.; Li, R.N.; Zhao, Z.M. Metabolomics-Driven Exploration of the Antibacterial Activity and Mechanism of 2-Methoxycinnamaldehyde. Front. Microbiol. 2022, 13, 864246. [Google Scholar] [CrossRef] [PubMed]
- Domadia, P.; Swarup, S.; Bhunia, A.; Sivaraman, J.; Dasgupta, D. Inhibition of bacterial cell division protein FtsZ by cinnamaldehyde. Biochem. Pharmacol. 2007, 74, 831–840. [Google Scholar] [CrossRef] [PubMed]
- Pang, D.R.; Huang, Z.X.; Li, Q.; Wang, E.; Liao, S.; Li, E.; Zou, Y.X.; Wang, W.F. Antibacterial Mechanism of Cinnamaldehyde: Modulation of Biosynthesis of Phosphatidylethanolamine and Phosphatidylglycerol in Staphylococcus aureus and Escherichia coli. J. Agric. Food Chem. 2021, 69, 13628–13636. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Su, R.Y.; Song, L.Y.; Bai, X.Y.; Yang, H.; Li, Z.; Li, Z.Y.; Zhan, X.J.; Xia, X.D.; Lü, X.; et al. Citral and trans-cinnamaldehyde, two plant-derived antimicrobial agents can induce Staphylococcus aureus into VBNC state with different characteristics. Food Microbiol. 2023, 112, 104241. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, J.N.; Zhu, L.P.; Qian, C.G.; Tian, H.R.; Zhao, Z.M.; Jin, L.; Yang, D.P. Antibacterial Activity of the Essential Oil from Litsea cubeba Against Cutibacterium acnes and the Investigations of Its Potential Mechanism by Gas Chromatography-Mass Spectrometry Metabolomics. Front. Microbiol. 2022, 13, 823845. [Google Scholar] [CrossRef] [PubMed]
- Kerk, S.K.; Lai, H.Y.; Sze, S.K.; Ng, K.W.; Schmidtchen, A.; Adav, S.S. Bacteria Display Differential Growth and Adhesion Characteristics on Human Hair Shafts. Front. Microbiol. 2018, 9, 2145. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, N.G.; Croda, J.; Simionatto, S. Antibacterial mechanisms of cinnamon and its constituents: A review. Microb. Pathog. 2018, 120, 198–203. [Google Scholar] [CrossRef]
- He, Z.Y.; Huang, Z.W.; Jiang, W.; Zhou, W. Antimicrobial Activity of Cinnamaldehyde on Streptococcus mutans Biofilms. Front. Microbiol. 2019, 10, 2241. [Google Scholar] [CrossRef]
- Doyle, A.A.; Stephens, J.C. A review of cinnamaldehyde and its derivatives as antibacterial agents. Fitoterapia 2019, 139, 104405. [Google Scholar]
- Dinkova-Kostova, A.T.; Massiah, M.A.; Bozak, R.E.; Hicks, R.J.; Talalay, P. Potency of Michael reaction accepters as inducers of enzymes that protect against carcinogenesis depends on their reactivity with sulfhydryl groups. Proc. Natl. Acad. Sci. USA 2001, 98, 3404–3409. [Google Scholar] [CrossRef]
- Guo, Y.C.; Cai, S.H.; Gu, G.F.; Guo, Z.W.; Long, Z.Z. Recent progress in the development of sortase A inhibitors as novel anti-bacterial virulence agents. RSC Adv. 2015, 5, 49880–49889. [Google Scholar] [CrossRef]
- Hosie, A.H.F.; Poole, P.S. Bacterial ABC transporters of amino acids. Res. Microbiol. 2001, 152, 259–270. [Google Scholar] [CrossRef]
- Ying, W.H. NAD+ and NADH in cellular functions and cell death. Front. Biosci. Landmark 2006, 11, 3129–3148. [Google Scholar] [CrossRef]
- Fernández-Rodríguez, D.; Cho, J.E.; Parvizi, N.; Khan, A.Z.; Parvizi, J.; Namdari, S. Next-generation Sequencing Results Require Higher Inoculum for Cutibacterium acnes Detection Than Conventional Anaerobic Culture. Clin. Orthop. Relat. Res. 2023, 481, 2484–2491. [Google Scholar] [CrossRef]
- Spadari, C.D.; Vila, T.; Rozental, S.; Ishida, K. Miltefosine Has a Postantifungal Effect and Induces Apoptosis in Cryptococcus Yeasts. Antimicrob. Agents Chemother. 2018, 62, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Palka, L.; Mazurek-Popczyk, J.; Arkusz, K.; Baldy-Chudzik, K. Susceptibility to biofilm formation on 3D-printed titanium fixation plates used in the mandible: A preliminary study. J. Oral Microbiol. 2020, 12, 1838164. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.L.; Chen, J.L.; Zhou, Y.; Ding, P.; He, G.Z.; Zhang, L.X.; Zhao, Z.M.; Yang, D.P. Exploring antimicrobial mechanism of essential oil of Amomum villosum Lour through metabolomics based on gas chromatography-mass spectrometry in methicillin-resistant Staphylococcus aureus. Microbiol. Res. 2021, 242, 126608. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.L.; Tang, C.L.; Zhang, R.F.; Ye, S.X.; Zhao, Z.M.; Huang, Y.Q.; Xu, X.J.; Lan, W.J.; Yang, D.P. Metabolomics analysis to evaluate the antibacterial activity of the essential oil from the leaves of Cinnamomum camphora (Linn.) Presl. J. Ethnopharmacol. 2020, 253, 112652. [Google Scholar] [CrossRef]
- Chahbi, A.; Nassik, S.; El Amri, H.; Douaik, A.; El Maadoudi, E.; Boukharta, M.; El Hadrami, E. Chemical Composition and Antimicrobial Activity of the Essential Oils of Two Aromatic Plants Cultivated in Morocco (Cinnamomum cassia and Origanum compactum). J. Chem. 2020, 2020, 1628710. [Google Scholar] [CrossRef]
Peak | RT (min) | Structural Formula | Name | Percentage (%) | Classification |
---|---|---|---|---|---|
1 | 10.414 | Benzaldehyde | 1.276 | Aromatic aldehyde | |
2 | 14.143 | Benzenepropanal | 2.122 | Phenylpropanoids | |
3 | 14.397 | Bornanol | 0.312 | Monoterpenoids | |
4 | 14.789 | α-Terpineol | 0.112 | Monoterpenoids | |
5 | 15.259 | (Z)-Cinnamaldehyde | 0.871 | Phenylpropanoids | |
6 | 15.456 | 3-Phenylpropanol | 0.318 | Phenylpropanoids | |
7 | 16.64 | Trans-Cinnamaldehyde | 85.308 | Phenylpropanoids | |
8 | 17.039 | Cinnamyl alcohol | 0.795 | Phenylpropanoids | |
9 | 18.317 | 4-Butylbenzyl alcohol | 0.213 | Aromatic alcohol | |
10 | 18.628 | α-Copaene | 0.250 | Monoterpenoids | |
11 | 19.633 | β-Caryophyllene | 0.200 | Bicyclic sesquiterpanes | |
12 | 19.97 | Cinnamyl acetate | 0.571 | Phenylpropanoids | |
13 | 21.424 | β-Bisabolene | 0.267 | Sesquiterpenoids | |
14 | 21.702 | β-Cadinene | 0.217 | Sesquiterpenoids | |
15 | 21.858 | 2-Methoxycinnamaldehyde | 2.145 | Phenylpropanoids | |
16 | 22.121 | α-Bisabolene | 0.191 | Sesquiterpenoids | |
17 | 23.062 | Spathulenol | 0.347 | Sesquiterpenoids | |
18 | 23.66 | Tetradecanal | 0.302 | Aliphatic compound | |
19 | 25.352 | a-Bisabolol | 0.396 | Sesquiterpenoids | |
Total | identified | 96.213 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, H.; Chu, C.; Jin, L.; Zhang, J.; Yang, Z.; Zhu, L.; Yang, D.; Zhao, Z. Study on Oleum cinnamomi Inhibiting Cutibacterium acnes and Its Covalent Inhibition Mechanism. Molecules 2024, 29, 3165. https://doi.org/10.3390/molecules29133165
Peng H, Chu C, Jin L, Zhang J, Yang Z, Zhu L, Yang D, Zhao Z. Study on Oleum cinnamomi Inhibiting Cutibacterium acnes and Its Covalent Inhibition Mechanism. Molecules. 2024; 29(13):3165. https://doi.org/10.3390/molecules29133165
Chicago/Turabian StylePeng, Huayong, Chenliang Chu, Lu Jin, Jianing Zhang, Zilei Yang, Longping Zhu, Depo Yang, and Zhimin Zhao. 2024. "Study on Oleum cinnamomi Inhibiting Cutibacterium acnes and Its Covalent Inhibition Mechanism" Molecules 29, no. 13: 3165. https://doi.org/10.3390/molecules29133165
APA StylePeng, H., Chu, C., Jin, L., Zhang, J., Yang, Z., Zhu, L., Yang, D., & Zhao, Z. (2024). Study on Oleum cinnamomi Inhibiting Cutibacterium acnes and Its Covalent Inhibition Mechanism. Molecules, 29(13), 3165. https://doi.org/10.3390/molecules29133165