Construction of Ferric-Oxide-Doped Nickel–Iron Hydroxide Electrocatalysts by Magnetic-Field-Assisted Chemical Corrosion toward Boosted Oxygen Evolution Reaction
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Methods
3.1. Materials and Reagents
3.2. Corrosion Electrode Preparation
3.3. Physical Property Characterization
3.4. Electrochemical Performance Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Niether, C.; Faure, S.; Bordet, A.; Deseure, J.; Chatenet, M.; Carrey, J.; Chaudret, B.; Rouet, A. Improved water electrolysis using magnetic heating of FeC–Ni core–shell nanoparticles. Nat. Energy 2018, 3, 476–483. [Google Scholar] [CrossRef]
- Garcés-Pineda, F.A.; Blasco-Ahicart, M.; Nieto-Castro, D.; López, N.; Galán-Mascarós, J.R. Direct magnetic enhancement of electrocatalytic water oxidation in alkaline media. Nat. Energy 2019, 4, 519–525. [Google Scholar] [CrossRef]
- Guan, D.; Wang, B.; Zhang, J.; Shi, R.; Jiao, K.; Li, L.; Wang, Y.; Xie, B.; Zhang, Q.; Yu, J.; et al. Hydrogen society: From present to future. Energy Environ. Sci. 2023, 16, 4926–4943. [Google Scholar] [CrossRef]
- Thorarinsdottir, A.E.; Veroneau, S.S.; Nocera, D.G. Self-healing oxygen evolution catalysts. Nat. Commun. 2022, 13, 1243. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xie, F.; Wang, D.; Ma, C.; Wu, M.; Gong, K. Effect of magnetic field on stress corrosion cracking induced by sulfate-reducing bacteria. Constr. Build. Mater. 2021, 303, 124521. [Google Scholar] [CrossRef]
- Yao, J.; Huang, W.; Fang, W.; Kuang, M.; Jia, N.; Ren, H.; Liu, D.; Lv, C.; Liu, C.; Xu, J. Promoting electrocatalytic hydrogen evolution reaction and oxygen evolution reaction by fields: Effects of electric field, magnetic field, strain, and light. Small Methods 2020, 4, 2000494. [Google Scholar] [CrossRef]
- Abdelghafar, F.; Xu, X.; Jiang, S.P.; Shao, Z. Perovskite for electrocatalytic oxygen evolution at elevated temperatures. ChemSusChem 2024, e202301534. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Zhu, C.; Du, D.; Lin, Y. Robust noble metal-based electrocatalysts for oxygen evolution reaction. Chem. Soc. Rev. 2019, 48, 3181–3192. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Guan, D.; Gu, Y.; Xu, H.; Wang, C.; Shao, Z.; Guo, Y. Tuning synergy between nickel and iron in ruddlesden-popper perovskites through controllable crystal dimensionalities towards enhanced oxygen-evolving activity and stability. Carbon Energy 2024, 6, e465. [Google Scholar] [CrossRef]
- Li, X.; Zhang, H.; Hu, Q.; Zhou, W.; Shao, J.; Jiang, X.; Feng, C.; Yang, H.; He, C. Amorphous NiFe oxide-based nanoreactors for efficient electrocatalytic water oxidation. Angew. Chem. Int. Ed. 2023, 62, e202300478. [Google Scholar] [CrossRef]
- Xu, H.; Xin, G.; Hu, W.; Zhang, Z.; Si, C.; Chen, J.; Lu, L.; Peng, Y.; Li, X. Single-atoms Ru/NiFe layered double hydroxide electrocatalyst: Efficient for oxidation of selective oxidation of 5-hydroxymethylfurfural and oxygen evolution reaction. Appl. Catal. B Environ. Energy 2023, 339, 123157. [Google Scholar] [CrossRef]
- Xu, X.; Pan, Y.; Ge, L.; Chen, Y.; Mao, X.; Guan, D.; Li, M.; Zhong, Y.; Hu, Z.; Peterson, V.K.; et al. High-performance perovskite composite electrocatalysts enabled by controllable interface engineering. Small 2021, 17, 2101573. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Wang, R.; Liu, X.; Yang, S.; Liu, H.; Xing, B.; Wang, K. Three-dimensional heterostructured MnNiCoP/FeOOH cross-linked nano-flake supported by Ni foam as a bifunctional electrocatalysts for overall water splitting. Appl. Surf. Sci. 2024, 656, 159711. [Google Scholar] [CrossRef]
- Chen, M.; Jiang, Z.; Wang, R.; Zhu, L.; Yang, S.; Li, X.; Liu, H.; Zhu, L.; Wang, K. Polymetallic Prussian blue analogues with hierarchical structure for high efficiency oxygen evolution reactions. Int. J. Hydrogen Energy 2024, 54, 963–970. [Google Scholar] [CrossRef]
- Sun, H.; Xu, X.; Kim, H.; Shao, Z.; Jung, W. Advanced electrocatalysts with unusual active sites for electrochemical water splitting. InfoMat 2024, 6, e12494. [Google Scholar] [CrossRef]
- Chen, D.; Zhu, J.; Mu, X.; Cheng, R.; Li, W.; Liu, S.; Pu, Z.; Lin, C.; Mu, S. Nitrogen-doped carbon coupled FeNi3 intermetallic compound as advanced bifunctional electrocatalyst for OER, ORR and Zn-air batteries. Appl. Catal. B Environ. Energy 2020, 268, 118729. [Google Scholar] [CrossRef]
- Qazi, U.Y.; Yuan, C.-Z.; Ullah, N.; Jiang, Y.-F.; Imran, M.; Zeb, A.; Zhao, S.-J.; Javaid, R.; Xu, A.-W. One-step growth of iron–nickel bimetallic nanoparticles on FeNi alloy foils: Highly efficient advanced electrodes for the oxygen evolution reaction. ACS Appl. Mater. Interfaces 2017, 9, 28627–28634. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, J.; Wu, B.; Guo, X.W.; Wang, Y.J.; Chen, D.; Zhang, Y.C.; Du, K.; Oguzie, E.E.; Ma, X.L. Unmasking chloride attack on the passive film of metals. Nat. Commun. 2018, 9, 2559. [Google Scholar] [CrossRef] [PubMed]
- Ramus Moreira, A.; Panossian, Z.; Camargo, P.L.; Ferreia Moreira, M.; da Silva, I.C.; Ribeiro de Carvalho, J.E. Zn/55Al coating microstructure and corrosion mechanism. Corros. Sci. 2006, 48, 564–576. [Google Scholar] [CrossRef]
- Le Bozec, N.; Compère, C.; L’Her, M.; Laouenan, A.; Costa, D.; Marcus, P. Influence of stainless steel surface treatment on the oxygen reduction reaction in seawater. Corros. Sci. 2001, 43, 765–786. [Google Scholar] [CrossRef]
- Woodward, J.R. Radical pairs in solution. Prog. React. Kinet. Mech. 2002, 27, 165–207. [Google Scholar] [CrossRef]
- Hu, L.; Zhang, R.; Chen, Q.J.N. Synthesis and assembly of nanomaterials under magnetic fields. Nanoscale 2014, 6, 14064–14105. [Google Scholar] [CrossRef] [PubMed]
- De Rango, P.; Lees, M.; Lejay, P.; Sulpice, A.; Tournier, R.; Ingold, M.; Germi, P.; Pernet, M. Texturing of magnetic materials at high temperature by solidification in a magnetic field. Nature 1991, 349, 770–772. [Google Scholar] [CrossRef]
- Guillon, O.; Elsässer, C.; Gutfleisch, O.; Janek, J.; Korte-Kerzel, S.; Raabe, D.; Volkert, C.A. Manipulation of matter by electric and magnetic fields: Toward novel synthesis and processing routes of inorganic materials. Mater. Today 2018, 21, 527–536. [Google Scholar] [CrossRef]
- Zuo, X.; Qu, L.; Zhao, C.; An, B.; Wang, E.; Niu, R.; Xin, Y.; Lu, J.; Han, K. Nucleation and growth of γ-Fe precipitate in Cu-2% Fe alloy aged under high magnetic field. J. Alloys Compd. 2016, 662, 355–360. [Google Scholar] [CrossRef]
- Dai, P.; Yan, T.; Hu, L.; Pang, Z.; Bao, Z.; Wu, M.; Li, G.; Fang, J.; Peng, Z. Phase engineering of cobalt hydroxides using magnetic fields for enhanced supercapacitor performance. J. Mater. Chem. A 2017, 5, 19203–19209. [Google Scholar] [CrossRef]
- Chen, G.; Chen, D.; Huang, J.; Zhang, C.; Chen, W.; Li, T.; Huang, B.; Shao, T.; Li, J.; Ostrikov, K.K. Focused plasma and pure water-enabled, electrode-emerged nanointerfaced NiCo hydroxide–oxide for robust overall water splitting. ACS Appl. Mater. Interfaces 2021, 13, 45566–45577. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Zou, P.; Nairan, A.; Zhang, Y.; Liu, J.; Liu, K.; Hu, S.; Kang, F.; Fan, H.J.; Yang, C. Exceptional performance of hierarchical Ni–Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting. Energy Environ. Sci. 2020, 13, 86–95. [Google Scholar] [CrossRef]
- Xu, J.; Wang, R.; Jiang, H.; Liu, X.; An, L.; Jin, S.; Deng, B.; Wu, W.; Cheng, G.J. Magnetically aligned ultrafine cobalt embedded 3D porous carbon metamaterial by one-step ultrafast laser direct writing. Adv. Sci. 2021, 8, 2102477. [Google Scholar] [CrossRef]
- Qiu, N.; Yan, J.; Zuo, X. A novel strategy for hierarchical structure in multicomponent nano-precipitated steels by high magnetic field aging. Scr. Mater. 2021, 191, 137–142. [Google Scholar] [CrossRef]
- Peugeot, A.; Creissen, C.E.; Schreiber, M.W.; Fontecave, M. From nickel foam to highly active NiFe-based oxygen evolution catalysts. ChemElectroChem 2022, 9, e202200148. [Google Scholar] [CrossRef]
- Mahmood, A.; Yu, Q.; Luo, Y.; Zhang, Z.; Zhang, C.; Qiu, L.; Liu, B. Controllable structure reconstruction of nickel–iron compounds toward highly efficient oxygen evolution. Nanoscale 2020, 12, 10751–10759. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Li, Y.; Kim, D.; Liu, M.; Lee, L.Y.S.; Wong, K.Y. Surface modulated Fe doping of β-Ni(OH)2 nanosheets for highly promoted oxygen evolution electrocatalysis. EcoMat 2022, 4, e12256. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, Y.; Wu, Y.; Liu, J.; Zhang, J.; Huang, H.; Zheng, X.; Shen, J.; Zhao, R.; Zhou, W.; et al. Greatly enhanced methanol oxidation reaction of CoPt truncated octahedral nanoparticles by external magnetic fields. Energy Environ. Mater. 2023, 6, e12403. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Hou, B.H.; Liu, C.H.; Ji, X.T.; Huang, Y.H.; Sui, J.C.; Liu, D.; Wang, N.; Hao, H.X. Mechanistic study on the effect of magnetic field on the crystallization of organic small molecules. Ind. Eng. Chem. Res. 2021, 60, 15741–15751. [Google Scholar] [CrossRef]
- Ding, W.; Hu, L.; Dai, J.; Tang, X.; Wei, R.; Sheng, Z.; Liang, C.; Shao, D.; Song, W.; Liu, Q.; et al. Highly ambient-stable 1T-MoS2 and 1T-WS2 by hydrothermal synthesis under high magnetic fields. ACS Nano 2019, 13, 1694–1702. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Chen, Y.; Zhang, X.; You, F.; Yao, J.; Yang, H.; Xia, B.Y. Magnetic field-assisted construction and enhancement of electrocatalysts. ChemSusChem 2022, 15, e202201551. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.-W.; Shi, Z.-X.; Li, C.-F.; Gu, L.-F.; Li, G.-R. Boosting the electrocatalytic performance of NiFe layered double hydroxides for the oxygen evolution reaction by exposing the highly active edge plane (012). Chem. Sci. 2021, 12, 650–659. [Google Scholar] [CrossRef] [PubMed]
- Biesinger, M.C.; Payne, B.P.; Grosvenor, A.P.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730. [Google Scholar] [CrossRef]
- Jiang, W.J.; Niu, S.; Tang, T.; Zhang, Q.H.; Liu, X.Z.; Zhang, Y.; Chen, Y.Y.; Li, J.H.; Gu, L.; Wan, L.J. Crystallinity-modulated electrocatalytic activity of a nickel(II) borate thin layer on Ni3B for efficient water oxidation. Angew. Chem. Int. Ed. 2017, 56, 6572–6577. [Google Scholar] [CrossRef]
- Wang, T.; Nam, G.; Jin, Y.; Wang, X.; Ren, P.; Kim, M.G.; Liang, J.; Wen, X.; Jang, H.; Han, J. NiFe (oxy) hydroxides derived from NiFe disulfides as an efficient oxygen evolution catalyst for rechargeable Zn–air batteries: The effect of surface S residues. Adv. Mater. 2018, 30, 1800757. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Dong, C.L.; Wang, H.M.; Qi, R.J.; Gong, L.Q.; Lu, Y.R.; He, C.H.; Chen, S.H.; You, B.; Liu, H.F.; et al. Constructing nickel–iron oxyhydroxides integrated with iron oxides by microorganism corrosion for oxygen evolution. Proc. Natl. Acad. Sci. USA 2022, 119, e2202812119. [Google Scholar] [CrossRef] [PubMed]
- Guan, J.L.; Li, C.F.; Zhao, J.W.; Yang, Y.Z.; Zhou, W.; Wang, Y.; Li, G.R. FeOOH-enhanced bifunctionality in Ni3N nanotube arrays for water splitting. Appl. Catal. B Environ. Energy 2020, 269, 118600. [Google Scholar] [CrossRef]
- Jiang, M.; Gao, S.; Shi, W.; Guo, Z.; Wu, X.; Wang, Y.; You, J.; Zeng, J.; Zeng, H.; Hou, X.; et al. Magnetic-field-dominated spin-driven lattice deformation of 2D FeO/Cu2O composites for CO2 photocatalytic C–C coupling. Chem Catal. 2023, 3, 100808. [Google Scholar] [CrossRef]
- Fu, Q.; Han, J.; Wang, X.; Xu, P.; Yao, T.; Zhong, J.; Zhong, W.; Liu, S.; Gao, T.; Zhang, Z.; et al. 2D transition metal dichalcogenides: Design, modulation, and challenges in electrocatalysis. Adv. Mater. 2021, 33, 1907818. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Wang, Y.; Liu, D.; Zou, Y.; Wang, S. Water-plasma-enabled exfoliation of ultrathin layered double hydroxide nanosheets with multivacancies for water oxidation. Adv. Mater. 2017, 29, 1701546. [Google Scholar] [CrossRef] [PubMed]
- Burke, M.S.; Kast, M.G.; Trotochaud, L.; Smith, A.M.; Boettcher, S.W. Cobalt–iron (oxy) hydroxide oxygen evolution electrocatalysts: The role of structure and composition on activity, stability, and mechanism. J. Am. Chem. Soc. 2015, 137, 3638–3648. [Google Scholar] [CrossRef] [PubMed]
- Gong, L.; Koh, J.; Yeo, B.S. Mechanistic study of the synergy between iron and transition metals for the catalysis of the oxygen evolution reaction. ChemSusChem 2018, 11, 3790–3795. [Google Scholar] [CrossRef] [PubMed]
- Burke, M.S.; Enman, L.J.; Batchellor, A.S.; Zou, S.; Boettcher, S.W. Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy) hydroxides: Activity trends and design principles. Chem. Mater. 2015, 27, 7549–7558. [Google Scholar] [CrossRef]
- Xie, X.; Du, L.; Yan, L.; Park, S.; Qiu, Y.; Sokolowski, J.; Wang, W.; Shao, Y. Oxygen evolution reaction in alkaline environment: Material challenges and solutions. Adv. Funct. Mater. 2022, 32, 2110036. [Google Scholar] [CrossRef]
- Shuai, M.; Klittnick, A.; Shen, Y.; Smith, G.P.; Tuchband, M.R.; Zhu, C.; Petschek, R.G.; Mertelj, A.; Lisjak, D.; Čopič, M.; et al. Spontaneous liquid crystal and ferromagnetic ordering of colloidal magnetic nanoplates. Nat. Commun. 2016, 7, 10394. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, K.; Zuo, Y.; Wei, M.; Pei, P.; Zhang, P.; Chen, Z.; Shang, N. Magnetoelectric Coupling for metal–air batteries. Adv. Funct. Mater. 2023, 33, 2210127. [Google Scholar] [CrossRef]
- He, Z.; Liu, X.; Zhang, M.; Guo, L.; Ajmal, M.; Pan, L.; Shi, C.; Zhang, X.; Huang, Z.-F.; Zou, J.-J. Coupling ferromagnetic ordering electron transfer channels and surface reconstructed active species for spintronic electrocatalysis of water oxidation. J. Energy Chem. 2023, 85, 570–580. [Google Scholar] [CrossRef]
- Liao, H.; Luo, T.; Tan, P.; Chen, K.; Lu, L.; Liu, Y.; Liu, M.; Pan, J. Unveiling role of sulfate ion in nickel-iron (oxy)hydroxide with enhanced oxygen-evolving performance. Adv. Funct. Mater. 2021, 31, 2102772. [Google Scholar] [CrossRef]
- Zhai, P.; Xia, M.; Wu, Y.; Zhang, G.; Gao, J.; Zhang, B.; Cao, S.; Zhang, Y.; Li, Z.; Fan, Z. Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting. Nat. Commun. 2021, 12, 4587. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Li, Y.; Zhang, Y.; Rao, G.; Wu, C.; Hu, Y.; Wang, X.; Lu, R.; Li, Y.; Xiong, J. Identification of key reversible intermediates in self-reconstructed nickel-based hybrid electrocatalysts for oxygen evolution. Angew. Chem. Int. Ed. 2019, 131, 17619–17625. [Google Scholar] [CrossRef]
- Jiang, S.; Chen, F.; Zhu, L.; Yang, Z.; Lin, Y.; Xu, Q.; Wang, Y. Insight into the catalytic activity of amorphous multimetallic catalysts under a magnetic field toward the oxygen evolution reaction. ACS Appl. Mater. Interfaces 2022, 14, 10227–10236. [Google Scholar] [CrossRef] [PubMed]
- Kodaimati, M.S.; Gao, R.; Root, S.E.; Whitesides, G.M. Magnetic fields enhance mass transport during electrocatalytic reduction of CO2. Chem Catal. 2022, 2, 797–815. [Google Scholar] [CrossRef]
- Sun, Z.; Lin, L.; He, J.; Ding, D.; Wang, T.; Li, J.; Li, M.; Liu, Y.; Li, Y.; Yuan, M.; et al. Regulating the spin state of FeIII enhances the magnetic effect of the molecular catalysis mechanism. J. Am. Chem. Soc. 2022, 144, 8204–8213. [Google Scholar] [CrossRef]
- Ren, X.; Wu, T.; Sun, Y.; Li, Y.; Xian, G.; Liu, X.; Shen, C.; Gracia, J.; Gao, H.-J.; Yang, H. Spin-polarized oxygen evolution reaction under magnetic field. Nat. Commun. 2021, 12, 2608. [Google Scholar] [CrossRef]
- Yan, J.; Wang, Y.; Zhang, Y.; Xia, S.; Yu, J.; Ding, B. Direct magnetic reinforcement of electrocatalytic ORR/OER with electromagnetic induction of magnetic catalysts. Adv. Mater. 2021, 33, 2007525. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Qi, J.; Zhang, Y.; Liu, H.; Hu, L.; Feng, M.; Lü, W. Magnetic field-enhanced oxygen evolution reaction via the tuneability of spin polarization in a half-metal catalyst. ACS Appl. Mater. Interfaces 2023, 15, 32320–32328. [Google Scholar] [CrossRef] [PubMed]
- Saini, K.; Nair, A.N.; Yadav, A.; Enriquez, L.G.; Pollock, C.J.; House, S.D.; Yang, S.; Guo, X.; Sreenivasan, S.T. Nickel-based single-molecule catalysts with synergistic geometric transition and magnetic field-assisted spin selection outperform RuO2 for oxygen evolution. Adv. Energy Mater. 2023, 13, 2302170. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, M.; Lei, L.; Hu, H.; Chen, Y.; Yang, X.; Yu, K.; Cao, B.; Zhang, X.; Jiang, X.; Yao, C.; et al. Construction of Ferric-Oxide-Doped Nickel–Iron Hydroxide Electrocatalysts by Magnetic-Field-Assisted Chemical Corrosion toward Boosted Oxygen Evolution Reaction. Molecules 2024, 29, 3127. https://doi.org/10.3390/molecules29133127
Xu M, Lei L, Hu H, Chen Y, Yang X, Yu K, Cao B, Zhang X, Jiang X, Yao C, et al. Construction of Ferric-Oxide-Doped Nickel–Iron Hydroxide Electrocatalysts by Magnetic-Field-Assisted Chemical Corrosion toward Boosted Oxygen Evolution Reaction. Molecules. 2024; 29(13):3127. https://doi.org/10.3390/molecules29133127
Chicago/Turabian StyleXu, Mengdie, Ling Lei, Huilin Hu, Yana Chen, Xuchao Yang, Kaige Yu, Bingying Cao, Xianzheng Zhang, Xueliang Jiang, Chu Yao, and et al. 2024. "Construction of Ferric-Oxide-Doped Nickel–Iron Hydroxide Electrocatalysts by Magnetic-Field-Assisted Chemical Corrosion toward Boosted Oxygen Evolution Reaction" Molecules 29, no. 13: 3127. https://doi.org/10.3390/molecules29133127
APA StyleXu, M., Lei, L., Hu, H., Chen, Y., Yang, X., Yu, K., Cao, B., Zhang, X., Jiang, X., Yao, C., & Yang, H. (2024). Construction of Ferric-Oxide-Doped Nickel–Iron Hydroxide Electrocatalysts by Magnetic-Field-Assisted Chemical Corrosion toward Boosted Oxygen Evolution Reaction. Molecules, 29(13), 3127. https://doi.org/10.3390/molecules29133127