Hematene Nanoplatelets with Enhanced Visible Light Absorption; the Role of Aromatic Molecules
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, H.; Fan, X.; Li, Y.; Guo, H.; Jiang, W.; Liu, G. Hematite-based photoanodes for photoelectrochemical water splitting: Performance, understanding, and possibilities. J. Environ. Chem. Eng. 2023, 11, 109224. [Google Scholar] [CrossRef]
- Sivula, K.; Le Formal, F.; Gratzel, M. Solar Water Splitting: Progress Using Hematite (a-Fe2O3) Photoelectrodes. ChemSusChem 2011, 4, 432. [Google Scholar] [CrossRef] [PubMed]
- Tamirat, A.G.; Rick, J.; Dubale, A.A.; Sub, W.-N.; Hwang, B.-J. Using hematite for photoelectrochemical water splitting: A review of current progress and challenges. Nanoscale Horiz. 2016, 1, 243–267. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.T.; Zhang, J.; Nakajima, T.; He, J.; Liu, X.; Zhang, X.; Wang, L.; Wu, L. Single-atomic-site platinum steers photogenerated charge carrier lifetime of hematite nanoflakes for photoelectrochemical water splitting. Nat. Commun. 2023, 14, 2640. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Huang, P.; Hu, D.; Li, T.B.; Xu, B. Passivation of Hematite Surface States to Improve Water Splitting Performance. ChemPhotoChem 2023, 7, e202300013. [Google Scholar] [CrossRef]
- Stanescu, S.; Alun, T.; Dappe, Y.J.; Ihiawakrim, D.; Ersen, O.; Stanescu, D. Enhancement of the Solar Water Splitting Efficiency Mediated by Surface Segregation in Ti-Doped Hematite Nanorods. ACS Appl. Mater. Interfaces 2023, 15, 26593. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Que, W. Molybdenum disulfide nanomaterials: Structures, properties, synthesis and recent progress on hydrogen evolution reaction. Appl. Mater. Today 2016, 3, 23. [Google Scholar] [CrossRef]
- Xu, D.; Xu, P.; Zhu, Y.; Peng, W.; Li, Y.; Zhang, G.; Zhang, F.; Mallouk, T.E.; Fan, X. High Yield Exfoliation of WS2 Crystals into 1-2 Layer Semiconducting Nanosheets and Efficient Photocatalytic Hydrogen Evolution from WS2/CdS Nanorod Composites. ACS Appl. Mater. Interfaces 2018, 10, 2810. [Google Scholar] [CrossRef]
- Adilbekova, B.; Lin, Y.; Yengel, E.; Faber, H.; Harrison, G.; Firdaus, Y.; El-Labban, A.; Anjum, D.H.; Tung, V.; Anthopoulos, T.D. Liquid phase exfoliation of MoS 2 and WS 2 in aqueous ammonia and their application in highly efficient organic solar cells. J. Mater. Chem. C 2020, 8, 5259. [Google Scholar] [CrossRef]
- Forsberg, V.; Zhang, R.; Backstrom, J.; Dahlstrom, C.; Andres, B.; Norgren, M.; Andersson, M.; Hummelgard, M.; Olin, H. Exfoliated MoS2 in Water without Additives. PLoS ONE 2016, 11, e0154522. [Google Scholar] [CrossRef]
- Balan, A.P.; Puthirath, A.B.; Roy, S.; Costin, G.; Oliveira, E.F.; Saadi, M.A.S.R.; Sreepal, V.; Friedrich, R.; Serles, P.; Biswas, A.; et al. Non-van der Waals quasi-2D materials; recent advances in synthesis, emergent properties and applications. Mater. Today 2022, 58, 164. [Google Scholar] [CrossRef]
- Wheeler, D.A.; Wang, G.; Ling, Y.; Li, Y.; Zhang, J.Z. Nanostructured hematite: Synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties. Energy Environ. Sci. 2012, 5, 6682. [Google Scholar] [CrossRef]
- Coleman, J.N.; Lotya, M.; O’Neill, A.; Bergin, S.D.; King, P.J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R.J. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568. [Google Scholar] [CrossRef]
- Kaur, H.; Coleman, J.N. Liquid-Phase Exfoliation of Nonlayered Non-Van-Der-Waals Crystals into Nanoplatelets. Adv. Mater. 2022, 34, 2202164. [Google Scholar] [CrossRef]
- Puthirath Balan, A.; Radhakrishnan, S.; Woellner, C.F.; Sinha, S.K.; Deng, L.; Reyes, C.D.L.; Rao, B.M.; Paulose, M.; Neupane, R.; Apte, A.; et al. Exfoliation of a non-van der Waals material from iron ore hematite. Nat. Nanotech. 2018, 13, 602. [Google Scholar] [CrossRef] [PubMed]
- Paolucci, V.; D’Olimpio, G.; Lozzi, L.; Mio, A.M.; Ottaviano, L.; Nardone, M.; Nicotra, G.; Le-Cornec, P.; Cantalini, C.; Politano, A. Sustainable Liquid-Phase Exfoliation of Layered Materials with Nontoxic Polarclean Solvent. ACS Sustain. Chem. Eng. 2020, 8, 18830–18840. [Google Scholar] [CrossRef] [PubMed]
- Koutsioukis, A.; Florakis, G.; Samartzis, N.; Yannopoulos, S.N.; Stavrou, M.; Theodoropoulou, D.; Chazapis, N.; Couris, S.; Kolokithas-Ntoukas, A.; Asimakopoulos, G.; et al. Green synthesis of ultrathin 2D nanoplatelets, hematene and magnetene, from mineral ores in water, with strong optical limiting performance. J. Mater. Chem. C 2023, 11, 3244–3251. [Google Scholar] [CrossRef]
- Stavrou, M.; Chazapis, N.; Arapakis, V.; Georgakilas, V.; Couris, S. Strong Ultrafast Saturable Absorption and Nonlinear Refraction of Some Non-van der Waals 2D Hematene and Magnetene Nanoplatelets for Ultrafast Photonic Applications. ACS Appl. Mater. Interfaces 2023, 26, 35391. [Google Scholar] [CrossRef]
- Stavrou, M.; Chazapis, N.; Georgakilas, V.; Couris, S. 2D Non-van der Waals Nanoplatelets of Hematene and Magnetene: Nonlinear Optical Response and Optical Limiting Performance from UV to NIR. Chem. Eur. J. 2023, 29, e202301959. [Google Scholar] [CrossRef]
- Dzibelova, J.; Hejazi, S.M.H.; Sedajova, V.; Panacek, D.; Jakubec, P.; Badura, Z.; Malina, O.; Kaslik, J.; Filip, J.; Kment, M.; et al. Hematene: A sustainable 2D conductive platform for visible-light-driven photocatalytic ammonia decomposition. Appl. Mater. Today 2023, 34, 101881. [Google Scholar] [CrossRef]
- Agarwal, P.; Bora, D.K. Fast sonochemical exfoliation of Hematene type sheets and fakes from hematite nanoarchitectures shows enhanced photocurrent density. J. Mater. Res. 2022, 37, 3428. [Google Scholar] [CrossRef]
- Koutsioukis, A.; Florakis, G.; Sakellis, E.; Georgakilas, V. Stable Dispersion of Graphene in Water, Promoted by High-Yield, Scalable Exfoliation of Graphite in Natural Aqueous Extracts: The Role of Hydrophobic Organic Molecules. ACS Sustain. Chem. Eng. 2022, 10, 12552. [Google Scholar] [CrossRef]
- Namduri, H.; Nasrazadan, S. Quantitative analysis of iron oxides using Fourier transform infrared spectrophotometry. Corros. Sci. 2008, 50, 2493. [Google Scholar] [CrossRef]
- Fondell, M.; Jacobsson, T.J.; Boman, M.; Edvinsson, T. Optical quantum confinement in low dimensional hematite. J. Mater. Chem. A 2013, 2, 3352–3363. [Google Scholar] [CrossRef]
- Li, B.; Sun, Q.; Fan, H.; Cheng, M.; Shan, A.; Cui, Y.; Wang, R. Morphology-Controlled Synthesis of Hematite Nanocrystals and Their Optical, Magnetic and Electrochemical Performance. Nanomaterials 2018, 8, 41. [Google Scholar] [CrossRef] [PubMed]
- Dzade, N.Y.; Roldan, A.; de Leeuw, N.H. A Density Functional Theory Study of the Adsorption of Benzene on Hematite (α-Fe2O3) Surfaces. Minerals 2014, 4, 89. [Google Scholar] [CrossRef]
- Zhu, D.; Herbert, B.E.; Schlautman, M.A.; Carraway, E.R.; Hur, J. Cation-π Bonding: A New Perspective on the Sorption of Polycyclic Aromatic Hydrocarbons to Mineral Surfaces. J. Environ. Qual. 2004, 33, 1324. [Google Scholar] [CrossRef]
Hydrodynamic Diameter (nm) | PDI | Zeta Potential (mV) | |
---|---|---|---|
Hmel | 310.9 ± 25.9 | 0.42 ± 0.07 | −15.9 |
Hcaf | 362.7 ± 5.9 | 0.41 ± 0.03 | −19.1 |
HDHBA | 272.9 ± 4.3 | 0.47 ± 0.01 | −20.5 |
HTere | 294.3 ± 3.6 | 0.42 ± 0.03 | −15.7 |
Hcoum | 258.1 ± 8.9 | 0.37 ± 0.04 | −20.1 |
Hrhod | 566.8 ± 15.2 | 0.65 ± 0.05 | −14.9 |
Hphen | 227.8 ± 2.0 | 0.32 ± 0.01 | −21.2 |
Hquerc | 297.4 ± 2.9 | 0.41 ± 0.06 | −18.9 |
Hpyran | 254.6 ± 12.3 | 0.44 ± 0.04 | −19.3 |
Samples | Absorbance λmax | ε390 L cm−1 g−1 | Bandgap eV | α (550 nm) cm−1 | RSD % |
---|---|---|---|---|---|
Hmel | 0.20 (393) | 2.2 | 1.97 | 33,935 | 6.1 |
Hcaf | 0.21 (393) | 2.3 | 1.98 | 27,998 | 6.7 |
Hrhod | 0.23 (395) | 2.5 | 1.94 | 20,305 | 5.6 |
HDHBA | 0.28 (387) | 3.1 | 1.98 | 30,907 | 0.8 |
Hcoum | 0.39 (389) | 4.3 | 1.98 | 49,661 | 6.3 |
HTere | 0.52 (390) | 5.8 | 2.0 | 56,998 | 1.1 |
Hphen | 0.58 (387) | 6.4 | 2.0 | 67,638 | 2.6 |
Hquerc | 0.64 (387) | 7.1 | 2.0 | 53,069 | 12.8 |
Hpyran | 0.67 (386) | 7.4 | 2.01 | 55,285 | 6.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alpochoritis, G.; Kolokithas Ntoukas, A.; Georgakilas, V.I. Hematene Nanoplatelets with Enhanced Visible Light Absorption; the Role of Aromatic Molecules. Molecules 2024, 29, 3115. https://doi.org/10.3390/molecules29133115
Alpochoritis G, Kolokithas Ntoukas A, Georgakilas VI. Hematene Nanoplatelets with Enhanced Visible Light Absorption; the Role of Aromatic Molecules. Molecules. 2024; 29(13):3115. https://doi.org/10.3390/molecules29133115
Chicago/Turabian StyleAlpochoritis, Georgios, Argiris Kolokithas Ntoukas, and Vasilios I. Georgakilas. 2024. "Hematene Nanoplatelets with Enhanced Visible Light Absorption; the Role of Aromatic Molecules" Molecules 29, no. 13: 3115. https://doi.org/10.3390/molecules29133115
APA StyleAlpochoritis, G., Kolokithas Ntoukas, A., & Georgakilas, V. I. (2024). Hematene Nanoplatelets with Enhanced Visible Light Absorption; the Role of Aromatic Molecules. Molecules, 29(13), 3115. https://doi.org/10.3390/molecules29133115