Equilibrium Values for the Si-H Bond Length and Equilibrium Structures of Silyl Iodide and Halosilylenes
Abstract
:1. Introduction
2. Quantum Chemical Calculations
Different Types of Structures
3. Si-H Bond Length
4. (HSiH) Bond Angles
5. Structure of SiH3I
6. Structure of Halosilylenes
6.1. Structure of SiHF
6.2. Structure of SiHCl
6.3. Structure of SiHBr
6.4. Structure of SiHI
7. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boulaftali, N.; Ben Sari-Zizi, N.; Graner, G.; Demaison, J. The equilibrium structure of silyl fluoride. J. Mol. Spectrosc. 2002, 216, 284–291. [Google Scholar] [CrossRef]
- Demaison, J.; Šormova, H.; Bürger, H.; Margulès, L.; Constantin, F.L.; Ceausu-Velescu, A. Pure rotational spectrum, ab initio anharmonic force field, and equilibrium structure of silyl chloride. J. Mol. Spectrosc. 2005, 232, 323–330. [Google Scholar] [CrossRef]
- Demaison, J.; Cosléou, J.; Bürger, H.; Mkadmi, E.B. High-Resolution Infrared Spectrum of D3Si79Br in the ν1/ν4 Region: The Structure of Silyl Bromide. J. Mol. Spectrosc. 1997, 185, 384–391. [Google Scholar] [CrossRef] [PubMed]
- Priem, D.; Cosléou, J.; Demaison, J.; Merke, I.; Stahl, W.; Jerzembeck, W.; Bürger, H. Analysis of the Rotational Spectra of SiH3CN and Its Isotopomers: Experimental and Ab Initio Determinations of the dipole moment and structure. J. Mol. Spectrosc. 1998, 191, 183–198. [Google Scholar] [CrossRef] [PubMed]
- Ohno, K.; Matsuura, H.; Endo, Y.; Hirota, E. The microwave spectra of deuterated silanes, germanes, and stannanes. J. Mol. Spectrosc. 1986, 118, 1–17. [Google Scholar] [CrossRef]
- Duncan, J.L.; Harvie, J.L.; McKean, D.C.; Cradock, S. The ground state structures of disilane, methyl silane and the silyl halides, and an SiH bond length correlation with stretching frequency. J. Mol. Struct. 1986, 145, 225–242. [Google Scholar] [CrossRef]
- Kewley, R.; McKinney, P.M.; Robiette, A.G. The microwave spectra and molecular structures of the silyl halides. J. Mol. Spectrosc. 1970, 34, 390–398. [Google Scholar] [CrossRef]
- Tackett, B.S.; Clouthier, D.J. Structural and spectroscopic trends in the ground states of the monohalosilylenes: Emission spectroscopy of jet-cooled HSiI and DSiI. J. Chem. Phys. 2003, 118, 2612–2619. [Google Scholar] [CrossRef]
- Kang, L.; Gharaibeh, M.A.; Clouthier, D.J.; Novick, S.E. Fourier transform microwave spectroscopy of the reactive intermediate monoiodosilylene, HSiI and DSiI. J. Mol. Spectrosc. 2012, 271, 33–37. [Google Scholar] [CrossRef]
- Møller, C.; Plesset, M.S. Note on an approximation treatment for many-electron systems. Phys. Rev. 1934, 46, 618–622. [Google Scholar] [CrossRef]
- Becke, A.D. Density functional thermochemistry. III. The role of exact change. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Purvis III, G.D.; Bartlett, R.J. Full Coupled-Cluster Singles and Doubles Model: The Inclusion of Disconnected Triples. J. Chem. Phys. 1982, 76, 1910–1918. [Google Scholar] [CrossRef]
- Raghavachari, K.; Trucks, G.W.; Pople, J.A.; Head-Gordon, M.A. Fifth-Order Perturbation Comparison of Electron Correlation Theories. Chem. Phys. Lett. 1989, 157, 479–483. [Google Scholar] [CrossRef]
- Dunning, T.H., Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. [Google Scholar] [CrossRef]
- Dunning, T.H., Jr.; Peterson, K.A.; Wilson, A.K. Gaussian basis sets for use in correlated molecular calculations. X. The atoms aluminum through argon revisited. J. Chem. Phys. 2001, 114, 9244–9253. [Google Scholar] [CrossRef]
- Peterson, K.A.; Shepler, B.C.; Figgen, D.; Stoll, H. On the spectroscopic and thermochemical properties of ClO, BrO, IO, and their anions. J. Phys. Chem. A 2006, 110, 13877–13883. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split-valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Glukhovtsev, M.N.; Pross, A.; McGrath, M.P.; Radom, L. Extension of Gaussian-2 (G2) theory to bromine- and iodine-containing molecules: Use of effective core potentials. J. Chem. Phys. 1995, 103, 1878–1885. [Google Scholar] [CrossRef]
- Frisch, M.J.; Pople, J.A.; Binkley, J.S. Self-consistent molecular orbital methods. 25. Supplementary functions for Gaussian basis sets. J. Chem. Phys. 1984, 80, 3265–3269. [Google Scholar] [CrossRef]
- Peterson, K.A.; Dunning, T.H., Jr. Accurate Correlation Consistent Basis Sets for Molecular Core–Valence Correlation Effects: The Second Row Atoms Al–Ar, and the First Row Atoms B–Ne Revisited. J. Chem. Phys. 2002, 117, 10548–10560. [Google Scholar] [CrossRef]
- Peterson, K.A.; Yousaf, K.E. Molecular core-valence correlation effects involving the post-d elements Ga-Rn: Benchmarks and new pseudopotential-based correlation consistent basis sets. J. Chem. Phys. 2010, 133, 174116. [Google Scholar] [CrossRef]
- Werner, H.-J.; Knowles, P.J.; Knizia, G.; Manby, V.; Schütz, M.; Celani, P.; Györffy, W.; Kats, D.; Korona, T.; Lindh, R.; et al. MOLPRO, version 2022.1; A Package of Ab Initio Programs. Available online: https://www.molpro.net (accessed on 1 January 2022).
- Werner, H.-J.; Knowles, P.J.; Manby, F.R.; Black, J.A.; Doll, K.; Heßelmann, A.; Kats, D.; Köhn, A.; Korona, T.; Kreplin, D.A.; et al. The Molpro quantum chemistry package. J. Chem. Phys. 2020, 152, 144107. [Google Scholar] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Demaison, J.; Craig, N.C. Semiexperimental equilibrium structure for cis, trans-1,4- difluorobutadiene by the mixed estimation method. J. Phys. Chem. A 2011, 115, 8049–8054. [Google Scholar] [CrossRef] [PubMed]
- Davis, R.W.; Robiette, A.G.; Gerry, M.C.L. The harmonic force fields of methylene chloride and dichlorosilane from combined microwave and infrared data. J. Mol. Spectrosc. 1981, 85, 399–415. [Google Scholar] [CrossRef]
- Kokkin, D.L.; Ma, T.; Steimle, T.; Sears, T.J. Detection and characterization of singly deuterated silylene, SiHD, via optical spectroscopy. J. Chem. Phys. 2016, 144, 244304/1–244304/13. [Google Scholar] [CrossRef]
- Vázquez, R.; Stanton, J.F. Theoretical Investigation of the Structure and Vibrational Spectrum of the Electronic Ground State (1A′) of HSiCl. J. Phys. Chem. A 2002, 106, 4429–4434. [Google Scholar] [CrossRef]
- Hostutler, D.A.; Clouthier, D.J.; Judge, R.H. Single vibronic level emission spectroscopy of jet-cooled HSiF and DSiF. J. Chem. Phys. 2001, 114, 10728–10732. [Google Scholar] [CrossRef]
- Hostutler, D.A.; Ndiege, N.; Clouthier, D.J.; Pauls, S.W. Emission spectroscopy, harmonic vibrational frequencies, and improved ground state structures of jet-cooled monochloro- and monobromosilylene (HSiCl and HSiBr). J. Chem. Phys. 2001, 115, 5485–5491. [Google Scholar]
- Clouthier, D.J.; Harper, W.W.; Klusek, C.M.; Smith, T.C. The electronic spectrum of monoiodosilylene (HSiI) revisited. J. Chem. Phys. 1998, 109, 7827–7834. [Google Scholar] [CrossRef]
- D’Eu, J.-F.; Demaison, J.; Buerger, H. Millimeter-wave and high-resolution FTIR spectroscopy of SiH2F2: The ground and v4 = 1 states. J. Mol. Spectrosc. 2003, 218, 12–21. [Google Scholar]
- Demaison, J.; Margules, L.; Breidung, J.; Thiel, W.; Bürger, H. Ab initio anharmonic force field, spectroscopic parameters and equilibrium structure of trifluorosilane. Mol. Phys. 1999, 97, 1053–1067. [Google Scholar] [CrossRef]
- Puzzarini, C.; Taylor, P.R. An ab initio study of the structure, torsional potential energy function, and electric properties of disilane, ethane, and their deuterated isotopomers. J. Chem. Phys. 2005, 122, 054315. [Google Scholar] [CrossRef] [PubMed]
- Bailleux, S.; Bogey, M.; Demaison, J.; Bürger, H.; Senzlober, M.; Breidung, J.; Thiel, W.; Fajgar, R.; Pola, J. The equilibrium structure of silene H2C=SiH2 from millimeter wave spectra and from ab initio calculations. J. Chem. Phys. 1997, 106, 10016–10026. [Google Scholar] [CrossRef]
- Shimanouchi, T. Tables of Molecular Vibrational Frequencies Consolidated Volume I; National Bureau of Standards: Gaithersburg, MD, USA, 1972; pp. 1–160. [Google Scholar]
- McKean, D.C. On the assignment of SiH and SiD stretching frequencies: A reanalysis of the ν7 bands of Si2H6 and Si2D6 and a harmonic local mode force field for disilane. Spectrochim. Acta A 1992, 48, 1335–1345. [Google Scholar]
- Bunnell, J.; Ford, T.A. Intramolecular coupling of vibrational modes and the assignments of the partially deuterated dihalogenomethanes, -silanes, and -germanes. J. Mol. Spectrosc. 1983, 100, 215–233. [Google Scholar]
- Fredin, L.; Hauge, R.H.; Kafafi, Z.H.; Margrave, J.L. Matrix isolation studies of the reactions of silicon atoms with molecular hydrogen. The infrared spectrum of silylene. J. Chem. Phys. 1985, 82, 3542–3545. [Google Scholar] [CrossRef]
- Suzuki, T.; Hakuta, K.; Saito, S.; Hirota, E. Doppler limited dye laser excitation spectroscopy of the Ã1A″(000)–1A′(000) band of HSiF. J. Chem. Phys. 1985, 82, 3580–3583. [Google Scholar] [CrossRef]
- Harjanto, H.; Harper, W.W.; Clouthier, D.J. Resolution of anomalies in the geometry and vibrational frequencies of monobromosilylene (SiHBr) by pulsed discharge jet spectroscopy. J. Chem. Phys. 1996, 105, 10189–10200. [Google Scholar] [CrossRef]
- Bernstein, H.J. The average XH stretching frequency as a measure of XH bond properties. Spectrochim. Acta 1962, 18, 161–170. [Google Scholar] [CrossRef]
- McKean, D.C. Individual CH bond strengths in simple organic compounds: Effects of conformation and substitution. Chem. Soc. Rev. 1978, 7, 399–422. [Google Scholar] [CrossRef]
- Demaison, J.; Rudolph, H.D. Ab initio anharmonic force field and equilibrium structure of propene. J. Mol. Spectrosc. 2008, 248, 66–76. [Google Scholar] [CrossRef]
- McKean, D.C. New light on the stretching vibrations, lengths and strengths of CH, SiH and GeH bonds. J. Mol. Struct. 1981, 113, 251–266. [Google Scholar] [CrossRef]
- McKean, D.C.; Torto, I.; Boggs, J.E.; Fan, K. Infrared and ab initio studies of molecules containing SiH bonds. J. Mol. Struct. (Theochem.) 1992, 260, 27–46. [Google Scholar] [CrossRef]
- Margulès, L.; Demaison, J.; Boggs, J.E. Ab initio and equilibrium bond angles. Structures of HNO and H2O2. J. Mol. Struct. (Theochem.) 2000, 500, 245–258. [Google Scholar] [CrossRef]
- Vogt, N.; Demaison, J.; Vogt, J.; Rudolph, H.D. Why it is sometimes difficult to determine the accurate position of a hydrogen atom by the semiexperimental method: Structure of molecules containing the OH or the CH3 group. J. Comput. Chem. 2014, 35, 2333–2342. [Google Scholar] [CrossRef]
- Belsley, D.A. Conditioning Diagnostics. Collinearity and Weak Data in Regression; Wiley: New York, NY, USA, 1991. [Google Scholar]
- Demaison, J.; Nemes, L.L. A correlation between the vibrational correction and the effective moment of inertia. J. Mol. Struct. 1979, 55, 295–299. [Google Scholar] [CrossRef]
- Harper, W.W.; Hostutler, D.A.; Clouthier, D.J. Pulsed discharge jet spectroscopy of DSiF and the equilibrium molecular structure of monofluorosilylene. J. Chem. Phys. 1997, 106, 4367–4375. [Google Scholar] [CrossRef]
- Tanaka, T.; Tamura, M.; Tanaka, K. Infrared diode laser spectroscopy of the SiF radical. Analysis of hot bands up to ν = 9–8. J. Mol. Struct. 1997, 413–414, 153–166. [Google Scholar] [CrossRef]
- Harper, W.W.; Clouthier, D.J. Reinvestigation of the HSiCl electronic spectrum: Experimental reevaluation of the geometry, rotational constants, and vibrational frequencies. J. Chem. Phys. 1997, 106, 9461–9473. [Google Scholar] [CrossRef]
- Coriani, S.; Marchesan, D.; Gauss, J.; Hättig, C.; Helgaker, T.; Jørgensen, P. The accuracy of ab initio molecular geometries for systems containing second-row atoms. J. Chem. Phys. 2005, 123, 184107. [Google Scholar] [CrossRef]
- Herzberg, G.; Verma, R.D. Spectra and structures of the free SiHCl and SiHBr radicals Can. J. Phys. 1964, 42, 395–432. [Google Scholar]
- Tackett, B.S.; Clouthier, D.J.; Landry, J.N.; Jaeger, W. Fourier transform microwave spectroscopy of SiHBr: Exploring the Si-Br bond through quadrupole hyperfine coupling. J. Chem. Phys. 2005, 122, 214314. [Google Scholar] [CrossRef]
- Vogt, N.; Vogt, J.; Demaison, J. Accuracy of the rotational constants. J. Mol. Struct. 2011, 988, 119–127. [Google Scholar] [CrossRef]
- Demaison, J.; Vogt, N. Accurate Structure Determination of Free Molecules; Springer: Cham, Switzerland, 2020; pp. 205–232. [Google Scholar]
re | MP2 a | re—MP2 | νis b | Calc c | re—calc | Refs. d | |
---|---|---|---|---|---|---|---|
SiHD3 | 1.4742 | 1.4746 | −0.0004 | 2182 | 1.4740 | 0.0002 | [5], [37] |
SiH3F | 1.4695 | 1.4703 | −0.0008 | 2207.4 | 1.4692 | 0.0003 | [1], [6] |
SiH3Cl | 1.4688 | 1.4698 | −0.0010 | 2206.7 | 1.4693 | −0.0006 | [2], [6] |
SiH3Br | 1.4696 | 1.4699 | −0.0003 | 2205.61 | 1.4695 | 0.0001 | [3], [6] |
SiH3CN | 1.468 | 1.4671 | 0.0009 | 2217.4 | 1.4673 | 0.0007 | [4], [38] |
SiH2F2 | 1.4615 | 1.4625 | −0.0010 | 2248 | 1.4616 | −0.0001 | [33], [39] |
SiHF3 | 1.4487 | 1.4503 | −0.0016 | 2316.9 | 1.4487 | 0.0000 | [34] |
SiH2 | 1.513 | 1.5115 | 0.0015 | 1973.3 | 1.5130 | 0.0000 | [28], [40] |
SiHCl | 1.5140 | 1.5137 | 0.0003 | 1968.7 | 1.5139 | 0.0001 | [29], [28] |
SiH3SiH3 | 1.4769 | 1.4779 | −0.0010 | 2162.6 | 1.4776 | −0.0007 | [35], [6] |
CH2=SiH2 | 1.4671 | 1.4685 | −0.0014 | [36] | |||
Mediane | −0.0008 | 0.0000 | |||||
Mean | −0.0004 | 0.0000 | |||||
MAD | 0.0005 | 0.0002 | |||||
s(MAD) | 0.0008 | 0.0003 | |||||
Predictions e | |||||||
SiH2Cl2 | 1.4671 | 1.4643 | 0.0028 | 2231.1 | 1.4648 | 0.0023 | [27], [27] |
CH3SiH3 | 1.4780 | 2166.6 | 1.4768 | -, [6] | |||
SiHF | 1.529 | 1.5230 | 0.006 | 1930 | 1.5211 | 0.008 | [30], [41] |
SiHBr | 1.503 | 1.5126 | −0.010 | 1976 | 1.5125 | −0.009 | [31], [42] |
SiHI | 1.5151 | 1.5114 | 0.0037 | 1983 | 1.5112 | 0.0039 | [32], [8] |
SiH3I | 1.4704 | 2201.1 | 1.4704 | -, [6] |
Experimental | MP2/cc-pV(T+d)Z a | |||||
---|---|---|---|---|---|---|
Molecule | HSiH | HSiX | Ref. | HSiH | HSiX | Exp–Calc |
SiH3F | 110.63 | 108.28 | [1] | 110.44 | 108.48 | −0.20 |
SiH3Cl | 110.47 | 108.46 | [2] | 110.39 | 108.53 | −0.07 |
SiH3Br | 110.54 | 108.38 | [3] | 110.43 | 108.50 | −0.12 |
SiH2F2 | 114.39 | 108.61 | [33] | 114.07 | 108.60 | 0.01 |
SiH2Cl2 | 112.45 | 108.67 | [27] | 112.52 | 108.56 | 0.11 |
SiHF3 | 110.69 | [34] | 110.49 | 0.19 | ||
SiH2 | 92.04 | [28] | 92.17 | 92.17 | −0.13 | |
SiH3CN | 111.43 | 107.43 | [4] | 111.23 | 107.65 | −0.22 |
SiH3SiH3 | 115.22 | 110.23 | [35] | 108.70 | 110.24 | −0.01 |
SiHCl | 94.66 | [29] | 95.23 | −0.57 | ||
CH2=SiH2 | 115.22 | 122.39 | [36] | 114.51 | 122.75 | −0.36 |
Mediane | −0.12 | |||||
Mean | −0.12 | |||||
MAD | 0.11 | |||||
s(MAD) | 0.17 | |||||
Predictions | ||||||
CH3SiH3 | 110.563 | 108.357 | [6] | 110.56 | 108.36 | −2.21 |
SiHF | 92.8 | [30] | 96.90 | −4.10 | ||
SiHBr | 96.9 | [31] | 94.70 | 2.20 | ||
SiHI | 92.5 | [8] | 93.77 | −1.27 | ||
SiH3I | 110.42 | 108.51 |
Method | r(Si-H) | r(Si-I) | ∠(HSiI) | Ref. |
---|---|---|---|---|
r0 | 1.487(8) | 2.437(3) | 108.4 | [7] |
r0 | 1.474(1) | 2.4384(6) | 108.16(17) | [6] |
MP2 a | 1.4704 | 2.4352 | 108.507 | This work |
re | 1.471 b | 2.4327(12) | 108.51 b | This work |
re c | 1.4700(7) | 2.4325(2) | 108.49(8) | This work |
Method | r(Si-H) | r(Si-F) | ∠(HSiF) | Refs. |
---|---|---|---|---|
a | 1.528(5) | 1.603(3) | 96.9(5) | [52] |
re a | 1.529(6) | 1.603(1) | 96.9(3) | [30] |
MP2/6-311+G(3df,2pd) | 1.5201 | 1.6250 | 96.59 | This work |
MP2/cc-pVTZ b | 1.5230 | 1.6132 | 96.90 | This work |
1.5227(8) | 1.6028(2) | 96.75(8) | This work |
Method | r(Si-H) | r(Si-Cl) | ∠(HSiCl) | Refs. |
---|---|---|---|---|
CCSD(T)_ae/cc-pwCVQZ | 1.5138 | 2.0697 | 95.302 | [29] |
CCSD(T)_ae/cc-pCVQZ | 1.51469 | 2.07122 | 95.303 | [55] |
CCSD(T)_ae/cc-pwCVQZ | 1.5138 | 2.0697 | 95.31 | This work |
a | 1.525(5) | 2.067(3) | 96.9(5) | [54] |
b | 1.5146 | 2.0697 | 94.78 | [29] |
c | 1.5140 | 2.0724 | 94.66 | [29] |
Predicates d | 1.5147(20) | 2.0712(50) | 95.303(500) | This work |
e | 1.5145(7) | 2.0719(2) | 95.22(11) | This work |
Method | r(Si-H) | r(Si-Br) | ∠(HSiBr) | Ref. |
---|---|---|---|---|
r0 | 1.518(1) | 2.237(1) | 93.4(3) | [42] |
a | 1.503(9) | 2.235(1) | 92.8(4) | [31] |
MP2/6-311+G(3df,2pd) | 1.5111 | 2.2439 | 94.55 | This work |
MP2/cc-pVTZ b | 1.5126 | 2.2333 | 94.70 | This work |
MP2/def2-TZVP | 1.5134 | 2.2390 | 94.64 | This work |
1.5125(20) | 2.2321(4) | 94.70(40) | This work |
r(Si-H) | r(Si-I) | ∠(HSiI) | Refs. | |
---|---|---|---|---|
r0 | 1.534(1) | 2.463(1) | 92.4(1) | [8] |
a | 1.5151(2) | 2.4610(1) | 92.5(1) | [8] |
r0 | 1.5405(16) | 2.46143(9) | 92.68(6) | [9] |
MP2/6-311G** | 1.5084 | 2.4967 | 93.70 | This work |
MP2/cc-pVTZ b | 1.5114 | 2.4567 | 93.77 | This work |
B3LYP/def2-TZVP | 1.5230 | 2.4906 | 93.41 | This work |
MP2/def2-TZVP | 1.5128 | 2.4495 | 93.90 | This work |
Predicates | 1.5112(40) c | 2.455(5) | 93.8(5) d | This work |
e | 1.5138(8) | 2.45746(6) | 93.26(5) | This work |
f | 1.5128(11) | 2.45684(8) | 93.254(7) | This work |
g | 1.5125(7) | 2.45760(5) | 93.185(4) | This work |
Molecule | Parameter | CCSD(T) a | re b | re—CCSD(T) | Ref. c |
---|---|---|---|---|---|
HSiF | r(Si-H) | 1.5235 | 1.5227 | 0.0008 | This work |
r(Si-F) | 1.6020 | 1.6028 | −0.0008 | ||
∠(HSiF) | 96.96 | 96.75 | 0.21 | ||
HSiCl | r(Si-H) | 1.5138 | 1.5145 | −0.0007 | This work |
r(Si-Cl) | 2.0697 | 2.0719 | −0.0022 | ||
∠(HSiCl) | 95.31 | 95.22 | 0.09 | ||
HSiBr | r(Si-H) | 1.5127 | 1.5125 | 0.0002 | This work |
r(Si-Br) | 2.2323 | 2.2321 | 0.0002 | ||
∠(HSiBr) | 94.66 | 94.70 | −0.04 | ||
HSiI | r(Si-H) | 1.5117 | 1.5128 | −0.0011 | This work |
r(Si-I) | 2.4547 | 2.4568 | −0.0021 | ||
∠(HSiI) | 93.65 | 93.25 | 0.40 | ||
SiH3F | r(Si-H) | 1.4694 | 1.4695 | −0.0001 | [1] |
r(Si-F) | 1.5903 | 1.5915 | −0.0012 | ||
∠(HSiF) | 108.41 | 108.28 | 0.13 | ||
SiH3Cl | r(Si-H) | 1.4686 | 1.4688 | −0.0002 | [2] |
r(Si-Cl) | 2.0469 | 2.0458 | 0.0011 | ||
∠(HSiCl) | 108.52 | 108.46 | 0.06 | ||
SiH3Br | r(Si-H) | 1.4687 | 1.4696 | −0.0009 | [3] |
r(Si-Br) | 2.2080 | 2.207 | 0.001 | ||
∠(HSiBr) | 108.43 | 108.38 | 0.05 | ||
SiH3I | r(Si-H) | 1.4693 | 1.4700 | −0.0007 | This work |
r(Si-I) | 2.4312 | 2.4325 | −0.0013 | ||
∠(HSiI) | 108.46 | 108.49 | −0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demaison, J.; Liévin, J. Equilibrium Values for the Si-H Bond Length and Equilibrium Structures of Silyl Iodide and Halosilylenes. Molecules 2024, 29, 3101. https://doi.org/10.3390/molecules29133101
Demaison J, Liévin J. Equilibrium Values for the Si-H Bond Length and Equilibrium Structures of Silyl Iodide and Halosilylenes. Molecules. 2024; 29(13):3101. https://doi.org/10.3390/molecules29133101
Chicago/Turabian StyleDemaison, Jean, and Jacques Liévin. 2024. "Equilibrium Values for the Si-H Bond Length and Equilibrium Structures of Silyl Iodide and Halosilylenes" Molecules 29, no. 13: 3101. https://doi.org/10.3390/molecules29133101
APA StyleDemaison, J., & Liévin, J. (2024). Equilibrium Values for the Si-H Bond Length and Equilibrium Structures of Silyl Iodide and Halosilylenes. Molecules, 29(13), 3101. https://doi.org/10.3390/molecules29133101