Measurement Uncertainty and Risk of False Compliance Assessment Applied to Carbon Isotopic Analyses in Natural Gas Exploratory Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laboratory Method (GC-IRMS)
2.2. Test Method
2.3. Mathematical Models
- ▪
- is the carbon isotopic ratio in CO2;
- ▪
- is the isotopic ratio of the Vienna Pee Dee Belemnite (VPDB) standard [36].
2.4. Uncertainty Evaluation
2.5. The Use of Measurement Uncertainty in the Assessment of False Compliance Risk
3. Experimental 3.20 × 10−6
- (i)
- Area values and experimental historical data of standard deviations (combined standard uncertainties) of isotopic ratios, and , Table 2:
- (ii)
- Study of variability in terms of intermediate precision whose data come from control charts in the period of July and August 2019. The standard deviations grouped by three different gas cylinders are shown in Table 3:
- (iii)
- Constants, Table 4:
4. Results and Discussion
4.1. Calculation of Expanded Uncertainties by LPU (Law of Propagation of Uncertainties)
4.2. Comparison with Literature Data
4.3. Risk of False Compliance Assessment Applied to C1 Carbon Isotopic Analysis in Natural Gas Exploratory Evaluation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Souza, M.A.; González, M.O.A.; Pinho, A.L.S.d. Maturity Model for Sustainability Assessment of Chemical Analyses Laboratories in Public Higher Education Institutions. Sustainability 2024, 16, 2137. [Google Scholar] [CrossRef]
- ISO/IEC 17025:2017; General Requirements for the Competence of Testing and Calibration Laboratories. International Organization for Standardization: Geneva, Switzerland, 2017.
- Assonov, S.; Fajgelj, A.; Allison, C.; Gröning, M. On the metrological traceability and hierarchy of stable isotope reference materials aimed at realisation of the VPDB scale: Revision of the VPDB δ13C scale based on multipoint scale-anchoring RMs. Rapid Commun. Mass Spectrom. 2021, 35, e9018. [Google Scholar] [CrossRef] [PubMed]
- Bulska, E.; Gorczyca, D.; Zalewska, I.; Pokrywka, A.; Kwiatkowska, D. Analytical approach for the determination of steroid profile of humans by gas chromatography isotope ratio mass spectrometry aimed at distinguishing between endogenous and exogenous steroids. J. Pharm. Biomed. 2015, 106, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Bréas, O.; Thomas, F.; Zeleny, R.; Caldrone, G.; Jamin, E.; Guillou, C. Performance evaluation of elemental analysis/isotope ratio mass spectrometry methods for the determination of the D/H ratio in tetramethylurea and other compounds-results of a laboratory inter-comparison. Rapid. Commun. Mass Spectrom. 2007, 21, 1555–1560. [Google Scholar] [CrossRef]
- Joint Committee for Guides in Metrology. Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement; International Bureau of Weights and Measures (BIPM): Sèvres, France, 2008; BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, and OIML, JCGM 100:2008, GUM 1995 with minor corrections. [Google Scholar]
- Wong, W.W.; Hachey, D.L.; Zhang, S.; Clarke, L.L. Accuracy and precision of gas chromatography/combustion isotope ratio mass spectrometry for stable carbon isotope ratio measurements. Rapid. Commun. Mass Spectrom. 1995, 9, 1007–1011. [Google Scholar] [CrossRef]
- Nørgaard, J.; Valkiers, S.; Nevel, L.V.; Vendelbo, E.; Papadakis, I.; Bréas, O.; Taylor, P. The International Measurement Evaluation Programme, IMEP-8: Carbon and oxygen isotope ratios in CO2. Anal. Bioanal. Chem. 2002, 374, 1147–1154. [Google Scholar] [CrossRef]
- Russe, K.; Valkiers, S.; Taylor, P.D.P. Synthetic isotope mixtures for the calibration of isotope amount ratio measurements of carbon. Int. J. Mass Spectrom. 2004, 235, 255–262. [Google Scholar] [CrossRef]
- Boyd, T.J.; Osburn, C.L.; Johnson, K.J.; Birgl, K.B.; Coffin, R.B. Compound-specific isotope analysis coupled with multivariate statistics to source-apportion hydrocarbon mixtures. Environ. Sci. Technol. 2006, 40, 1916–1924. [Google Scholar] [CrossRef]
- Zobitz, J.M.; Keener, J.P.; Schnyder, H.; Bowling, D.R. Sensitivity analysis and quantification of uncertainty for isotopic mixingrelationships in carbon cycle research. Agric. For. Meteorol. 2006, 136, 56–75. [Google Scholar] [CrossRef]
- Lollar, B.S.; Hirschorn, S.K.; Chartrand, M.M.G.; Lacrampe-Couloume, G. An approach for assessing total instrumental uncertainty in compound-specific carbon isotope analysis: Implications for environmental remediation studies. Anal. Chem. 2007, 79, 3469–3475. [Google Scholar] [CrossRef]
- Santamaria-Fernandez, R.; Hearn, R.; Wolff, J.-C. Detection of counterfeit antiviral drug Heptodin™ and classification of counterfeits using isotope amount ratio measurements by multicollector inductively coupled plasma mass spectrometry (MC-ICPMS) and isotope ratio mass spectrometry (IRMS). Sci. Justice 2009, 49, 102–106. [Google Scholar] [CrossRef]
- Cawley, A.T.; Trout, G.J.; Kazlauskas, R.; Howe, C.J.; George, A.V. Carbon isotope ratio (δ13C) values of urinary steroids for doping control in sport. Steroids 2009, 74, 379–392. [Google Scholar] [CrossRef]
- Munton, E.; Murby, J.; Hibbert, D.B.; Santamaria-Fernandez, R. Systematic comparison of δ13C measurements of testosterone and derivative steroids in a freeze-dried urine candidate reference material for sports drug testing by gas chromatography/combustion/isotope ratio mass spectrometry and uncertainty evaluation using four different metrological approaches. Rapid. Commun. Mass Spectrom. 2011, 25, 1641–1651. [Google Scholar] [PubMed]
- Jones, K.; Benson, S.; Roux, C. The forensic analysis of office paper using carbon isotope ratio mass spectrometry—Part 2: Method development, validation and sample handling. Forensic Sci. Int. 2013, 231, 364–374. [Google Scholar] [CrossRef]
- Kornilova, A.; Moukhtar, S.; Saccon, M.; Huang, L.; Zhang, W.; Rudolph, J. A method for stable carbon isotope ratio and concentration measurements of ambient aromatic hydrocarbons. Atmos. Meas. Tech. 2015, 8, 2301–2313. [Google Scholar] [CrossRef]
- Dunn, P.J.H.; Carter, J.F. (Eds.) Good Practice Guide for Isotope Ratio Mass Spectrometry, 2nd ed.; FIRMS Network: Miami, FL, USA, 2018. [Google Scholar]
- Srivastava, A.; Verkouteren, R. Metrology for stable isotope reference materials: 13C/12C and 18O/16O isotope ratio value assignment of pure carbon dioxide gas samples on the Vienna PeeDee Belemnite-CO2 scale using dual-inlet mass spectrometry. Anal. Bioanal. Chem. 2018, 410, 4153–4163. [Google Scholar] [CrossRef]
- Felix, J.D.; Thomas, R.; Casas, M.; Shimizu, M.S.; Avery, G.B.; Kieber, R.B.; Mead, R.N.; Lane, C.S.; Willey, J.D.; Guy, A.; et al. Compound-Specific Carbon Isotopic Composition of Ethanol in Brazil and US Vehicle Emissions and Wet Deposition. Environ. Sci. Technol. 2019, 53, 1698–1705. [Google Scholar] [CrossRef] [PubMed]
- Strąpoć, D.; Jacquet, B.; Torres, O.; Khan, S.; Villegas, E.I.; Albrecht, H.; Okoh, B.; McKinney, D. Deep biogenic methane and drilling-associated gas artifacts: Influence on gas-based characterization of petroleum fluids. AAPG Bull. 2020, 104, 887–912. [Google Scholar] [CrossRef]
- Bai, X.; Lei, G.L.; Li, M.F.; Wang, F. Improvement of analytical method and the influence factors of oxygen isotopic composition of organic matter by HT-IRMS. Quat. Sci. 2021, 41, 146–152. [Google Scholar]
- Thomazo, C.; Sansjofre, P.; Musset, O.; Cocquerez, T.; Lalonde, S. In situ carbon and oxygen isotopes measurements in carbonates by fiber coupled laser diode-induced calcination: A step towards field isotopic characterization. Chem. Geol. 2021, 578, 120323. [Google Scholar] [CrossRef]
- Rampazzo, F.; Formalewicz, M.M.; Traldi, U.; Noventa, S.; Gion, C.; De Castro, M.; Brodie, C.; Tiozzo, F.; Calace, N.; Berto, D. New method for simultaneous determination of dissolved organic carbon and its stable carbon isotope ratio in liquid samples: Environmental applications. Isotopes Environ. Health Stud. 2022, 58, 141–158. [Google Scholar] [CrossRef]
- Vernooij, R.; Dusek, U.; Popa, M.E.; Yao, P.; Shaikat, A.; Qiu, C.; Winiger, P.; van der Veen, C.; Eames, T.C.; Ribeiro, N.; et al. Stable carbon isotopic composition of biomass burning emissions—Implications for estimating the contribution of C-3 and C-4 plants. Atmos. Chem. Phys. 2022, 22, 2871–2890. [Google Scholar] [CrossRef]
- Srivastava, A. Physical model for multi-point normalization of dual-inlet isotope ratio mass spectrometry data. Anal. Bioanal. Chem. 2022, 414, 5773–5779. [Google Scholar] [CrossRef] [PubMed]
- Day, J.K.; Knott, N.A.; Swadling, D.; Ayre, D.; Huggett, M.; Gaston, T. Non-lethal sampling does not misrepresent trophic level or dietary sources for Sagmariasus verreauxi (eastern rock lobster). Rapid Commun. Mass Spectrom. 2023, 37, e9435. [Google Scholar] [CrossRef] [PubMed]
- Leitner, S.; Sobanski, F.; Soja, G.; Keiblinger, K.; Stumpp, C.; Watzinger, A. Carbon isotope effects in the sorption of chlorinated ethenes on biochar and activated carbon. Heliyon 2023, 9, e20823. [Google Scholar]
- Dunn, P.J.H.; Hai, L.; Malinovsky, D.; Goenaga-Infante, H. Simple spreadsheet templates for the determination of the measurement uncertainty of stable isotope ratio delta values. Rapid Commun. Mass Spectrom. 2015, 29, 2184–2186. [Google Scholar] [CrossRef]
- Dunn, P.J.H.; Malinovsky, D.; Goenaga-Infante, H. Calibration strategies for the determination of stable carbon absolute isotope ratios in a glycine candidate reference material by elemental analyser-isotope ratio mass spectrometry. Anal. Bioanal. Chem. 2015, 407, 3169–3180. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.R.; Cai, Y.L.; Zhang, C.C.; Zhang, X.; Peng, P.A. Variations of natural gas carbon isotope-type curves and their interpretation—A case study. Org. Geochem. 2007, 38, 1398–1415. [Google Scholar] [CrossRef]
- da Silva, R.B.; Williams, A. Eurachem/CITAC Guide: Setting and Using Target Uncertainty in Chemical Measurement; Eurachem/CITAC 1–30; Eurachem: Zug, Switzerland, 2015. [Google Scholar]
- Williams, A.; Magnusson, B. Eurachem/CITAC Guide: Use of Uncertainty Information in Compliance Assessment, 2nd ed.; Eurachem: Zug, Switzerland, 2021. [Google Scholar]
- Brand, W.; Assonov, S.; Coplen, T. Correction for the 17O interference in δ(13C) measurements when analyzing CO2 with stable isotope mass spectrometry (IUPAC Technical Report). Pure Appl. Chem. 2010, 82, 1719–1733. [Google Scholar] [CrossRef]
- Santrock, J.; Studley, S.A.; Hayes, J.M. Isotopic analyses based on the mass spectra of carbon dioxide. Anal. Chem. 1985, 57, 1444–1448. [Google Scholar] [CrossRef]
- Valkiers, S.; Varlam, M.; Ruße, K.; Berglund, M.; Taylor, P.; Wang, J.; Milton, M.J.T.; De Bièvre, P. Preparation of Synthetic Isotope Mixtures for the calibration of carbon and oxygen isotope ratio measurements (in carbon dioxide) to the SI. Int. J. Mass Spectrom. 2007, 264, 10–21. [Google Scholar] [CrossRef]
- Akram, S.; ul Ann, Q. Newton Raphson Method. Int. J. Sci. Eng. Res. 2015, 6, 1748–1752. [Google Scholar]
- Pennecchi, F.R.; Kuselman, I.; da Silva, R.J.N.B.; Hibbert, D.B. Risk of a false decision on conformity of an environmental compartment due to measurement uncertainty of concentrations of two or more pollutants. Chemosphere 2018, 202, 165–176. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, E.C.; Lourenço, F.R. Risk of false conformity assessment applied to automotive fuel analysis: A multiparameter approach. Chemosphere 2021, 263, 128265. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, E.C.; Lourenço, F.R. Data reconciliation applied to the conformity assessment of fuel products. Fuel 2021, 300, 120936. [Google Scholar] [CrossRef]
- De Matos, A.H.; De Oliveira, E.C. Risk assessment and optimisation of sulfur in marketing fuels. Fuel 2022, 313, 122705. [Google Scholar] [CrossRef]
- Reis Medeiros, K.A.; da Costa, L.G.; Bifano Manea, G.K.; de Moraes Maciel, R.; Caliman, E.; da Silva, M.T.; de Sena, R.C.; de Oliveira, E.C. Determination of Total Sulfur Content in Fuels: A Comprehensive and Metrological Review Focusing on Compliance Assessment. In Critical Reviews in Analytical Chemistry; Taylor & Francis: Oxford, UK, 2023; pp. 1–11. [Google Scholar] [CrossRef]
- Kuselman, I.; Pennecchi, F.; Bettencourt da Silva, R.J.N.; Brynn Hibbert, D. Conformity assessment of multicomponent materials or objects: Risk of false decisions due to measurement uncertainty—A case study of denatured alcohols. Talanta 2017, 164, 189–195. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, E.C. Use of Measurement Uncertainty in Compliance Assessment with Regulatory Limits. Braz. J. Anal. Chem. 2020, 7, 1–2. [Google Scholar] [CrossRef]
- Separovic, L.; Simabukuro, R.S.; Couto, A.R.; Bertanha, M.L.G.; Dias, F.R.S.; Sano, A.Y.; Caffaro, A.M.; Lourenço, F.R. Measurement Uncertainty and Conformity Assessment Applied to Drug and Medicine Analyses—A Review. Crit. Rev. Anal. Chem. 2023, 53, 123–138. [Google Scholar] [CrossRef]
- Simabukuro, R.; Jeong, N.A.; Lourenço, F.R. Application of Measurement Uncertainty on Conformity Assessment in Pharmaceutical Drug Products. J. AOAC Int. 2021, 104, 585–591. [Google Scholar] [CrossRef]
- Orsay, L.G.; Medeiros, K.A.R.; Oliveira, E.C. Use of uncertainty information in conformity assessment in the pharmaceutical industry. Curr. Pharm. Anal. 2023, 19, 673–676. [Google Scholar] [CrossRef]
- Dias, F.R.S.; Lourenço, F.R. Measurement uncertainty evaluation and risk of false conformity assessment for microbial enumeration tests. J. Microbiol. Methods 2021, 189, 106312. [Google Scholar] [CrossRef] [PubMed]
- Carvalheira, L.; Lopes, J.M.; de Aguiar, P.F.; Oliveira, E.C. Compliance assessment when radioactive discharges are close to exemption levels in nuclear medicine facilities. Radiat. Phys. Chem. 2023, 203, 110636. [Google Scholar] [CrossRef]
- Pereira, W.D.P.; Carvalheira, L.; Lopes, J.M.; Aguiar, P.F.; Moreira, R.M.; Oliveira, E.C. Data reconciliation connected to guard bands to set specification limits related to risk assessment for radiopharmaceutical activity. Heliyon 2023, 9, e22992. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, E.C. Critical metrological evaluation of fuels analyses by measurement uncertainty. Metrol. Meas. Syst. 2011, 18, 235–248. [Google Scholar] [CrossRef]
- Milkov, A.V.; Etiope, G. Revised genetic diagrams for natural gases based on a global dataset of >20,000 samples. Org. Geochem. 2018, 125, 109–120. [Google Scholar] [CrossRef]
- Kaiser, J. Reformulated 17O correction of mass spectrometric stable isotope measurements in carbon dioxide and a critical appraisal of historic ‘absolute’ carbon and oxygen isotope ratios. Geochim. Cosmochim. Acta 2008, 72, 1312–1334. [Google Scholar] [CrossRef]
- Assonov, S.S.; Brenninkmeijer, C.A. On the 17O correction for CO2 mass spectrometric isotopic analysis. Rapid Commun. Mass Spectrom. 2003, 17, 1007–1016. [Google Scholar] [CrossRef]
- Craig, H. Isotopic standards for carbon and oxygen and correction factors for mass spectrometric analysis of carbon dioxide. Geochim. Cosmochim. Acta 1957, 12, 133–149. [Google Scholar] [CrossRef]
- Merritt, D.A.; Brand, W.A.; Hayes, J.M. Isotope-ratio-monitoring gas chromatography-mass spectrometry: Methods for isotopic calibration. Org. Geochem. 1994, 21, 573–583. [Google Scholar] [CrossRef]
- Ricci, M.P.; Merritt, D.A.; Freeman, K.H.; Hayes, J.M. Acquisition and processing of data for isotope-ratio-monitoring mass spectrometry. Org. Geochem. 1994, 21, 561–571. [Google Scholar] [CrossRef]
- Etiope, G.; Sherwood Lollar, B. Abiotic methane on earth. Rev. Geophys. 2013, 51, 276–299. [Google Scholar] [CrossRef]
- Cao, C.; Zhang, M.; Li, L.; Wang, Y.; Li, Z.; Du, L.; Holland, G.; Zhou, Z. Tracing the sources and evolution processes of shale gas by coupling stable (C, H) and noble gas isotopic compositions: Cases from Weiyuan and Changning in Sichuan Basin, China. J. Nat. Gas Sci. Eng. 2020, 78, 103304. [Google Scholar] [CrossRef]
- Dutta, S.; Ghosh, S.; Varma, A.K. Methanogenesis in the Eocene Tharad lignite deposits of Sanchor Sub-Basin, Gujarat, India: Insights from gas molecular ratio and stable carbon isotopic compositions. J. Nat. Gas Sci. Eng. 2021, 91, 103970. [Google Scholar] [CrossRef]
- Herrera-Herrera, A.V.; Jambrina-Enríquez, M. Special Issue “Applications of Stable Isotope Analysis”. Molecules 2022, 27, 7293. [Google Scholar] [CrossRef] [PubMed]
Reference | Uncertainty Type | Analytical Technique | Calculation Method | Matrix | Uncertainty (‰) |
---|---|---|---|---|---|
Wong et al., 1995 [7] | Standard deviation | GC-IRMS | Not mentioned | Fatty acids | 0.07–0.58 |
Nørgaard et al., 2002 [8] | Expanded (k = 2) | GC-IRMS | Not mentioned | CO2 | 0.48 |
Russe et al., 2004 [9] | Expanded complete (k = 2) | GC-IRMS | Several corrections | Standards | 0.08–0.25 |
Boyd et al., 2006 [10] | Standard deviation | GC-IRMS | Not mentioned | C10–C17 | 0.10–0.14 |
Zobitz et al., 2006 [11] | Standard deviation | GC-IRMS | Not mentioned | Air | 0.01–0.15 |
Lollar et al., 2007 [12] | Expanded analytical (k = 2) | FC-IRMS * | Not mentioned | Natural gas | 0.4–0.5 |
Santamaria-Fernandez et al., 2008 [13] | Expanded complete (k = 2) | MC-ICPMS ** and IRMS | SSH | Drug | 1.6 |
Cawley et al., 2009 [14] | Expanded analytical (k = 2) | GC-IRMS | Not mentioned | Steroids | 0.5 |
Munton et al., 2011 [15] | Expanded complete (k = 2) | GC-IRMS | Own 17O correction | Steroids | 0.21–1.4 |
Jones et al., 2013 [16] | Standard deviation | GC-IRMS | Without corrections | Sugars | 0.01–0.57 |
Kornilova et al., 2015 [17] | Standard deviation | GC-IRMS | Several corrections | Volatile organic compounds | 0.5 |
Bulska et al., 2015 [4] | Expanded analytical (k = 2) | GC-IRMS | Not mentioned | Steroids | 0.13–0.99 |
Dunn and Carter, 2018 [18] | Expanded complete (k = 2) | GC-IRMS | Several corrections | Honey | 0.084–0.90 |
Srivastava et al., 2018 [19] | Complete (k = 1) | GC-IRMS | Several corrections | Standards | 0.22–0.36 |
Felix et al., 2019 [20] | 95% confidence level | HS-SPME-GC-C-IRMS *** | Two-point correction | Ethanol fuel | 2.4–2.5 |
Strąpoć et al., 2020 [21] | Standard deviation | GC-IRMS | Not mentioned | Natural gas | 0.1–5.8 |
Xue et al., 2021 [22] | Standard deviation | EA-IRMS † | Not mentioned | Organic matter | 0.25–0.35 |
Thomazo et al., 2021 [23] | Standard deviation | GC-IRMS | Without corrections | Carbonates | 0.07–1.33 |
Rampazzo et al., 2022 [24] | Standard deviation | EA-IRMS | Not mentioned | Aqueous samples | 0.3–2 |
Vernooij et al., 2022 [25] | Standard deviation | CF-IRMS | Several corrections | Plants | 0.2 |
Srivastava, 2022 [26] | Standard deviation | DI-IRMS ‡ | Cross-contamination correction | Isotopic reference materials | 0.011–0.021 |
Day et al., 2022 [27] | Standard error of the mean | IRMS | Multiple point corrections | Eastern rock lobster | 0.2 |
Leitner et al., 2023 [28] | 95% confidence level | GC-IRMS | Not mentioned | Chlorinated ethenes | 0.2–0.6 |
Dunn et al., 2015 [29] | Expanded uncertainty (k = 2) | EA-IRMS | Several corrections | Glycine candidate reference material | 0.25 |
Dunn et al., 2015 [30] | Standard uncertainty (k = 2) | EA-IRMS | Several corrections | Primary reference material | 27 × 10−6 |
() | () | |||
---|---|---|---|---|
Reference | 0.011486 | 0.004152 | ||
Methane | 0.011413 | 0.003954 | ||
Ethane | 0.011524 | 0.003954 | ||
Propane | 0.011550 | 0.003980 | ||
CO2 | 0.011810 | 0.003980 |
Methane | Ethane | Propane | CO2 |
---|---|---|---|
(‰) | |||
0.312 | 0.358 | 0.346 | 0.417 |
Methane | Ethane | Propane | CO2 |
---|---|---|---|
0.844 | 0.792 | 0.794 | 0.810 |
Methane | Ethane | Propane | CO2 |
---|---|---|---|
0.900 | 0.870 | 0.866 | 0.911 |
Methane | Ethane | Propane | CO2 |
---|---|---|---|
δ13C (‰) | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leal, F.G.; de Andrade Ferreira, A.; Silva, G.M.; Freire, T.A.; Costa, M.R.; de Morais, E.T.; Guzzo, J.V.P.; de Oliveira, E.C. Measurement Uncertainty and Risk of False Compliance Assessment Applied to Carbon Isotopic Analyses in Natural Gas Exploratory Evaluation. Molecules 2024, 29, 3065. https://doi.org/10.3390/molecules29133065
Leal FG, de Andrade Ferreira A, Silva GM, Freire TA, Costa MR, de Morais ET, Guzzo JVP, de Oliveira EC. Measurement Uncertainty and Risk of False Compliance Assessment Applied to Carbon Isotopic Analyses in Natural Gas Exploratory Evaluation. Molecules. 2024; 29(13):3065. https://doi.org/10.3390/molecules29133065
Chicago/Turabian StyleLeal, Fabiano Galdino, Alexandre de Andrade Ferreira, Gabriel Moraes Silva, Tulio Alves Freire, Marcelo Ribeiro Costa, Erica Tavares de Morais, Jarbas Vicente Poley Guzzo, and Elcio Cruz de Oliveira. 2024. "Measurement Uncertainty and Risk of False Compliance Assessment Applied to Carbon Isotopic Analyses in Natural Gas Exploratory Evaluation" Molecules 29, no. 13: 3065. https://doi.org/10.3390/molecules29133065
APA StyleLeal, F. G., de Andrade Ferreira, A., Silva, G. M., Freire, T. A., Costa, M. R., de Morais, E. T., Guzzo, J. V. P., & de Oliveira, E. C. (2024). Measurement Uncertainty and Risk of False Compliance Assessment Applied to Carbon Isotopic Analyses in Natural Gas Exploratory Evaluation. Molecules, 29(13), 3065. https://doi.org/10.3390/molecules29133065