In Situ Preparation of Chlorine-Regenerable Antimicrobial Polymer Molecular Sieve Membranes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Polymeric N-halamine Membranes
2.2. Antimicrobial Activity of Polymeric N-halamine Membranes
3. Experimental Section
3.1. Materials
3.2. Characterization
3.3. Preparation of PS Membrane
3.4. Fabrication of Polymeric N-halamine Precursor (PS-DMH)
3.5. Chlorination and Analytical Titration
3.6. Antimicrobial Activity of PS-DMH-Cl
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peng, B.; Zhang, X.; Aarts, D.G.A.L.; Dullens, R.P.A. Superparamagnetic nickel colloidal nanocrystal clusters with antibacterial activity and bacteria binding ability. Nat. Nanotechnol. 2018, 13, 478–482. [Google Scholar] [CrossRef]
- Shen, X.; Cao, M.; Xing, X.; Ouyang, J.; Na, N. Advances of fluorescent DNA nanostructures in biomedical applications. Innov. Mater. 2024, 2, 100064. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, Y.; Liao, Q.; Qian, Y.; Zhu, L.; Yu, D.G.; Xu, Y.; Lu, X.; Kim, I.; Song, W. Silver oxide decorated urchin-like microporous organic polymer composites as versatile antibacterial organic coating materials. J. Mater. Chem. B 2024, 12, 2054–2069. [Google Scholar] [CrossRef] [PubMed]
- Salonen, H.; Salthammer, T.; Morawska, L. Human exposure to air contaminants in sports environments. Indoor Air 2020, 30, 1109–1129. [Google Scholar] [CrossRef]
- Mohammed, M.O.A. Surface microbial contamination and air quality before and after regular cleaning procedures. Atmosphere 2023, 14, 352. [Google Scholar] [CrossRef]
- Wang, F.; Ren, F.; Ma, D.; Mu, P.; Wei, H.; Xiao, C.; Zhu, Z.; Sun, H.; Liang, W.; Chen, J.; et al. Particle and nanofiber shaped conjugated microporous polymers bearing hydantoin-substitution with high antibacterial activity for water cleanness. J. Mater. Chem. A 2018, 6, 266–274. [Google Scholar] [CrossRef]
- Jie, Z.; Yan, X.; Zhao, L.; Worley, S.D.; Liang, J. Eco-friendly synthesis of regenerable antimicrobial polymeric resin with N-halamine and quaternary ammonium salt groups. Rsc Adv. 2014, 4, 6048–6054. [Google Scholar] [CrossRef]
- Khoerunnisa, F.; Nurhayati, M.; Dara, F.; Rizki, R.; Nasir, M.; Aziz, H.A.; Hendrawan, H.; Poh, N.E.; Kaewsaneha, C.; Opaprakasit, P. Physicochemical properties of TPP-crosslinked chitosan nanoparticles as potential antibacterial agents. Fiber. Polym. 2021, 22, 2954–2964. [Google Scholar] [CrossRef]
- Ahmad, H. Celluloses as support materials for antibacterial agents: A review. Cellulose 2021, 28, 2715–2761. [Google Scholar] [CrossRef]
- Aziman, N.; Abdullah, N.; Bujang, A.; Noor, M.Z.; Aziz, A.A.; Ahmad, R. Phytochemicals of ethanolic extract and essential oil of Persicaria hydropiper and their potential as antibacterial agents for food packaging polylactic acid film. J. Food Saf. 2021, 41, e12864. [Google Scholar] [CrossRef]
- Bai, Y.; Luo, L.; Song, W.; Man, S.; Zhang, H.; Li, C.M. Nitrogen-vacancy-rich VN clusters embedded in carbon matrix for high-performance zinc ion batteries. Adv. Sci. 2024, 11, 2308668. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Wang, J.; Yang, K.; Zhou, C.; Xu, Y.; Song, J.; Gu, Y.; Chen, Z.; Wang, M.; Shoen, C.; et al. A polymeric approach toward resistance-resistant antimicrobial agent with dual-selective mechanisms of action. Sci. Adv. 2021, 7, eabc9917. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, M.; De, S. Antibacterial polymeric membranes: A short review. Environ. Sci. Water Res. 2018, 4, 1078–1104. [Google Scholar] [CrossRef]
- Makvandi, P.; Wang, C.; Zare, E.N.; Borzacchiello, A.; Niu, L.; Tay, F.R. Metal-based nanomaterials in biomedical applications: Antimicrobial activity and cytotoxicity aspects. Adv. Funct. Mater. 2020, 30, 1910021. [Google Scholar] [CrossRef]
- Dadari, S.; Rahimi, M.; Zinadini, S. Novel antibacterial and antifouling PES nanofiltration membrane incorporated with green synthesized nickel-bentonite nanoparticles for heavy metal ions removal. Chem. Eng. J. 2022, 431, 134116. [Google Scholar] [CrossRef]
- Liu, C.; Guo, Y.; Wei, X.; Wang, C.; Qu, M.; Schubert, D.W.; Zhang, C. An outstanding antichlorine and antibacterial membrane with quaternary ammonium salts of alkenes via in situ polymerization for textile wastewater treatment. Chem. Eng. J. 2020, 384, 123306. [Google Scholar] [CrossRef]
- Zhong, X.; Li, R.; Wang, Z.; Wang, W.; Yu, D. Titanium dioxide/quaternary phosphonium salts/polyacrylonitrile composite nanofibrous membranes with high antibacterial properties and ultraviolet resistance efficiency. J. Mater. Sci. 2019, 54, 13322–13333. [Google Scholar] [CrossRef]
- Peng, H.; Zhang, W.; Hung, W.; Wang, N.; Sun, J.; Lee, K.R.; An, Q.; Liu, C.M.; Zhao, Q. Phosphonium modification leads to ultrapermeable antibacterial polyamide composite membranes with unreduced thickness. Adv. Mater. 2020, 32, 2001383. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Zhang, Y.; Zheng, K.; Wang, Q.; Hu, J. Durable and biocompatible antibacterial N-halamine membranes based on cellulose carbamate. Ind. Crop. Prod. 2022, 187, 115518. [Google Scholar] [CrossRef]
- Ng, I.; Ooi, C.; Liu, B.; Peng, C.; Chiu, C.; Chang, Y. Antibacterial efficacy of chitosan-and poly (hexamethylene biguanide)-immobilized nanofiber membrane. Int. J. Biol. Micromol. 2020, 154, 844–854. [Google Scholar] [CrossRef]
- Song, W.; Tang, Y.; Qian, C.; Kim, B.J.; Liao, Y.; Yu, D.-G. Electrospinning spinneret: A bridge between the visible world and the invisible nanostructures. Innovation 2023, 4, 100381. [Google Scholar] [CrossRef] [PubMed]
- Dong, A.; Wang, Y.; Gao, Y.; Gao, T.; Gao, G. Chemical insights into antibacterial N-halamines. Chem. Rev. 2017, 117, 4806–4862. [Google Scholar] [CrossRef] [PubMed]
- Ping, L.; Alideertu, D.; Zijia, S.; Ge, G. Synthesis and applications of antibacterial N-halamine polymers and nanomaterials. Prog. Chem. 2017, 29, 318. [Google Scholar]
- Bai, R.; Kang, J.; Simalou, O.; Liu, W.; Ren, H.; Gao, T.; Gao, Y.; Chen, W.; Dong, A.; Jia, R. Novel N–Br bond-containing N-halamine nanofibers with antibacterial activities. ACS Biomater. Sci. Eng. 2018, 4, 2193–2202. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Wisuthiphaet, N.; Bolt, H.; Nitin, N.; Zhao, Q.; Wang, D.; Pourdeyhimi, B.; Grondin, P.; Sun, G. N-halamine polypropylene nonwoven fabrics with rechargeable antibacterial and antiviral functions for medical applications. ACS Biomater. Sci. Eng. 2021, 7, 2329–2336. [Google Scholar] [CrossRef] [PubMed]
- Kong, Q.; Li, Z.; Ding, F.; Ren, X. Hydrophobic N-halamine based POSS block copolymer porous films with antibacterial and resistance of bacterial adsorption performances. Chem. Eng. J. 2021, 410, 128407. [Google Scholar] [CrossRef]
- Wang, F.; Huang, L.; Zhang, P.; Si, Y.; Yu, J.; Ding, B. Antibacterial N-halamine fibrous materials. Compos. Commun. 2020, 22, 100487. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, S.; Su, Y.; Zhang, J.; Song, H.; Wang, Y.; Chen, S. Rapid and persistent bactericidal cotton fabrics finished facilely with reactive N-halamine. Int. J. Biol. Macromol. 2023, 240, 124495. [Google Scholar] [CrossRef] [PubMed]
- Bai, R.; Zhang, Q.; Li, L.; Li, P.; Wang, Y.; Simalou, O.; Zhang, Y.; Gao, G.; Dong, A. Nhalamine-containing electrospun fibers kill bacteria via a contact/release codetermined antibacterial pathway. ACS Appl. Mater. Interfaces 2016, 8, 31530–31540. [Google Scholar] [CrossRef]
- Liu, C.; Shan, H.; Chen, X.; Si, Y.; Yin, X.; Yu, J.; Ding, B. Novel inorganic-based N-halamine nanofibrous membranes as highly effective antibacterial agent for water disinfection. ACS Appl. Mater. Interfaces 2018, 10, 44209–44215. [Google Scholar] [CrossRef]
- Chylińska, M.; Kaczmarek, H.; Burkowska-But, A. Preparation and characteristics of antibacterial chitosan films modified with N-halamine for biomedical application. Colloids Surf. B 2019, 176, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Cerkez, I.; Kocer, H.B.; Worley, S.D.; Broughton, R.M.; Huang, T. Epoxide tethering of polymeric N-halamine moieties. Cellulose 2012, 19, 959–966. [Google Scholar] [CrossRef]
- Zhang, S.; Demir, B.; Ren, X.; Worley, S.D.; Broughton, R.M.; Huang, T.S. Synthesis of antibacterial N-halamine acryl acid copolymers and their application onto cotton. J. Appl. Polym. Sci. 2019, 136, 47426. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Q.; Qu, X.; Zhang, Q.; Zhang, X. A metalloporphyrin and hydantoin functionalized nanozyme with synergistically enhanced bacterial inhibition. Biomater. Sci. 2023, 11, 1785–1796. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Z.; Chai, S.; Nelson, K.; Bi, Z.; Chen, J.; Mahurin, S.M.; Zhu, X.; Dai, S. Polymeric molecular sieve membranes via in situ cross-linking of non-porous polymer membrane templates. Nat. Commun. 2014, 5, 3705. [Google Scholar] [CrossRef]
- Brown, P.S.; Bhushan, B. Mechanically durable liquid-impregnated honeycomb surfaces. Sci. Rep. 2017, 7, 6083. [Google Scholar] [CrossRef] [PubMed]
- Tian, C.; Wu, F.; Jiao, W.; Liu, X.; Yin, X.; Si, Y.; Yu, J.; Ding, B. Antibacterial and antiviral N-halamine nanofibrous membranes with nanonet structure for bioprotective applications. Compos. Commun. 2021, 24, 100668. [Google Scholar] [CrossRef]
- Li, R.; Hu, P.; Ren, X.; Worley, S.D.; Huang, T. Antimicrobial N-halamine modified chitosan films. Carbohyd. polym. 2013, 92, 534–539. [Google Scholar] [CrossRef]
- Chen, W.; Zhu, Y.; Zhang, Z.; Gao, Y.; Liu, W.; Borjihan, Q.; Qu, H.; Zhang, Y.; Zhang, Y.; Wang, Y.-J.; et al. Engineering a multifunctional N-halamine-based antibacterial hydrogel using a super-convenient strategy for infected skin defect therapy. Chem. Eng. J. 2020, 379, 122238. [Google Scholar] [CrossRef]
- Zhao, J.; Jiang, H.; Huang, Q.; Xu, J.; Duan, M.; Yu, S.; Zhi, Z.; Pang, J.; Wu, C. Carboxymethyl chitosan incorporated with gliadin/phlorotannin nanoparticles enables the formation of new active packaging films. Inter. J. Biol. Macromol. 2022, 203, 40–48. [Google Scholar] [CrossRef]
- Song, W.; Tang, Y.; Moon, B.R.; Liao, Q.; Xu, H.; Hou, Q.; Zhang, H.; Yu, D.G.; Liao, Y.; Kim, I. Green synthesis of hypercrosslinked polymers for CO2 capture and conversion: Recent advances, opportunities, and challenges. Green Chem. 2024, 26, 2476–2504. [Google Scholar] [CrossRef]
- Liao, Q.; Kim, E.J.; Tang, Y.; Xu, H.; Yu, D.-G.; Song, W.; Kim, B.J. Rational design of hyper-crosslinked polymers for biomedical applications. J. Polym. Sci. 2024, 62, 1517–1535. [Google Scholar] [CrossRef]
- Liu, S.; Sun, G. Radical graft functional modification of cellulose with allyl monomers: Chemistry and structure characteerization. Carbohyd. Polym. 2008, 71, 614–625. [Google Scholar] [CrossRef]
- Liu, S.; Sun, G. Functional modification of poly(ethylene terephthalate) with an allyl monomer: Chemical and structure characterization. Polymer 2008, 49, 5225–5232. [Google Scholar] [CrossRef]
- Voo, Z.; Khan, M.; Narayanan, K.; Seah, D.; Hedrick, J.L.; Yang, Y. Antimicrobial/antifouling polycarbonate coatings: Role of block copolymer architecture. Macromolecules 2015, 48, 1055–1064. [Google Scholar] [CrossRef]
- Jiang, X.; Zeng, Y.E.; Li, C.; Wang, K.; Yu, D.G. Enhancing diabetic wound healing: Advances in electrospun scaffolds from pathogenesis to therapeutic applications. Front. Bioeng. Biotechnol. 2024, 12, 1354286. [Google Scholar] [CrossRef]
PS | PS-Br | PS-DMH | PS-DMH-Cl | |
---|---|---|---|---|
Thickness (μm) | 822 ± 5.0 | 827 ± 0.8 | 835 ± 1.2 | 836 ± 6.3 |
WCA (°) | 91.1 ± 0.3 | 93.7 ± 0.6 | 91.3 ± 0.7 | 94.3 ± 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Qian, Y.; Wen, Y.; Gui, Q.; Xu, Y.; Lu, X.; Zhang, L.; Song, W. In Situ Preparation of Chlorine-Regenerable Antimicrobial Polymer Molecular Sieve Membranes. Molecules 2024, 29, 2980. https://doi.org/10.3390/molecules29132980
Zhang Y, Qian Y, Wen Y, Gui Q, Xu Y, Lu X, Zhang L, Song W. In Situ Preparation of Chlorine-Regenerable Antimicrobial Polymer Molecular Sieve Membranes. Molecules. 2024; 29(13):2980. https://doi.org/10.3390/molecules29132980
Chicago/Turabian StyleZhang, Yu, Yiduo Qian, Yuheng Wen, Qiudi Gui, Yixin Xu, Xiuhong Lu, Li Zhang, and Wenliang Song. 2024. "In Situ Preparation of Chlorine-Regenerable Antimicrobial Polymer Molecular Sieve Membranes" Molecules 29, no. 13: 2980. https://doi.org/10.3390/molecules29132980
APA StyleZhang, Y., Qian, Y., Wen, Y., Gui, Q., Xu, Y., Lu, X., Zhang, L., & Song, W. (2024). In Situ Preparation of Chlorine-Regenerable Antimicrobial Polymer Molecular Sieve Membranes. Molecules, 29(13), 2980. https://doi.org/10.3390/molecules29132980