Studying the Thermodynamic Phase Stability of Organic–Inorganic Hybrid Perovskites Using Machine Learning
Abstract
:1. Introduction
2. Results and Discussion
2.1. Feature Engineering
2.1.1. Feature Processing
2.1.2. Feature Correlation Analysis
2.1.3. Feature Screening
2.2. Model Prediction Results
2.3. Interpretation of Prediction Model by SHAP Method
3. Data and Methods
3.1. Data Sources
3.2. Machine Learning Algorithms and Model Evaluation
3.2.1. Gradient-Boosting Regression
3.2.2. Random Forest Regression
3.2.3. Extra Trees Regression
3.2.4. Support Vector Regression
3.2.5. Adaptive Boosting
3.2.6. Extreme Gradient Boosting (XGBoost)
3.2.7. Lightweight Gradient Lifting Algorithm (LightGBM)
3.3. Evaluation Indicators of Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ni, H.; Ye, L.; Zhuge, P.; Hu, B.; Lou, J.; Su, C.; Zhang, Z.; Xie, L.; Fu, D.; Zhang, Y. A nickel(ii)-based one-dimensional organic-inorganic halide perovskite ferroelectric with the highest Curie temperature. Chem. Sci. 2023, 14, 1781–1786. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Loh, K.P.; Leng, K. Organic-inorganic hybrid perovskites and their heterostructures. Matter 2022, 5, 4153–4169. [Google Scholar] [CrossRef]
- Wang, G.; Liao, L.; Elseman, A.M.; Yao, Y.; Lin, C.; Hu, W.; Liu, D.; Xu, C.; Zhou, G.; Li, P.; et al. An internally photoemitted hot carrier solar cell based on organic-inorganic perovskite. Nano Energy 2020, 68, 104383. [Google Scholar] [CrossRef]
- Zhang, X.; Wei, M.; Qin, W. Magneto-open-circuit voltage in organic-inorganic halide perovskite solar cells. Appl. Phys. Lett. 2019, 114, 033302. [Google Scholar] [CrossRef]
- Leijtens, T.; Eperon, G.E.; Pathak, S.; Abate, A.; Lee, M.M.; Snaith, H.J. Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat. Commun. 2013, 4, 2885. [Google Scholar] [CrossRef] [PubMed]
- Kahandal, S.S.; Tupke, R.S.; Bobade, D.S.; Kim, H.; Piao, G.; Sankapal, B.R.; Said, Z.; Pagar, B.P.; Pawar, A.C.; Kim, J.M.; et al. Perovskite Solar Cells: Fundamental Aspects, Stability Challenges, and Future Prospects. Prog. Solid State Chem. 2024, 74, 100463. [Google Scholar] [CrossRef]
- Li, X.; Tang, J.; Zhang, P.; Li, S. Strategies for achieving high efficiency and stability in carbon-based all-inorganic perovskite solar cells. Cell Rep. Phys. Sci. 2024, 5, 101842. [Google Scholar] [CrossRef]
- Zhang, D.; Zheng, L.L.; Ma, Y.Z.; Wang, S.F.; Bian, Z.Q.; Huang, C.H.; Gong, Q.H.; Xiao, L.X. Factors influencing the stability of perovskite solar cells. Acta Phys. Sin. 2015, 64, 038803. [Google Scholar] [CrossRef]
- Cakir, H.Y.; Yalcinkaya, Y.; Demir, M.M. Ligand engineering for improving the stability and optical properties of CsPbI3 perovskite nanocrystals. Opt. Mater. 2024, 152, 115420. [Google Scholar] [CrossRef]
- Dutta, A.; Pradhan, N. Phase-stable red-emitting CsPbI3 nanocrystals: Successes and challenges. ACS Energy Lett. 2019, 4, 709–719. [Google Scholar] [CrossRef]
- Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef]
- Bartel, C.J.; Sutton, C.; Goldsmith, B.R.; Ouyang, R.; Musgrave, C.B.; Ghiringhelli, L.M.; Scheffler, M. New tolerance factor to predict the stability of perovskite oxides and halides. Sci. Adv. 2019, 5, eaav0639. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Jacobs, R.; Morgan, D. Predicting the thermodynamic stability of perovskite oxides using machine learning models. Comput. Mater. Sci. 2018, 150, 454–463. [Google Scholar] [CrossRef]
- Tao, Q.; Xu, P.; Li, M.; Lu, W. Machine learning for perovskite materials design and discovery. NPJ Comput. Mater. 2021, 7, 23. [Google Scholar] [CrossRef]
- Sun, Q.; Yin, W. Thermodynamic stability trend of cubic perovskites. J. Am. Chem. Soc. 2017, 139, 14905–14908. [Google Scholar] [CrossRef]
- Maddah, H.A.; Berry, V.; Behura, S.K. Cuboctahedral stability in Titanium halide perovskites via machine learning. Comput. Mater. Sci. 2020, 173, 109415. [Google Scholar] [CrossRef]
- Jain, A.; Ong, S.P.; Hautier, G.; Chen, W.; Richards, W.D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 2013, 1, 011002. [Google Scholar] [CrossRef]
- Zhong, H.; Wu, Y.; Li, X.; Shi, T. Machine learning and DFT coupling: A powerful approach to explore organic amine catalysts for ring-opening polymerization reaction. Chem. Eng. Sci. 2024, 292, 119955. [Google Scholar] [CrossRef]
- Chen, M.; Yin, Z.; Shan, Z.; Zheng, X.; Liu, L.; Dai, Z.; Zhang, J.; Liu, S.; Xu, Z. Application of machine learning in perovskite materials and devices: A review. J. Energy Chem. 2024, 94, 254–272. [Google Scholar] [CrossRef]
- Mishra, S.; Boro, B.; Bansal, N.K.; Singh, T. Machine learning-assisted design of wide bandgap perovskite materials for high-efficiency indoor photovoltaic applications. Mater. Today Commun. 2023, 35, 106376. [Google Scholar] [CrossRef]
- Allam, O.; Cho, B.W.; Kim, K.C.; Jang, S.S. Application of DFT-based machine learning for developing molecular electrode materials in Li-ion batteries. RSC Adv. 2018, 8, 39414–39420. [Google Scholar] [CrossRef] [PubMed]
- Qin, C.; Liu, J.; Yu, Y.; Xu, Z.; Du, J.; Jiang, G.; Zhao, L. Prediction of thermodynamic stability of actinide compounds by machine learning model. Ceram. Int. 2024, 50, 1220–1230. [Google Scholar] [CrossRef]
- Chibani, S.; Coudert, F.X. Machine learning approaches for the prediction of materials properties. APL Mater. 2020, 8, 080701. [Google Scholar] [CrossRef]
- Liu, R.; Kumar, A.; Chen, Z.; Agrawal, A.; Sundararaghavan, V.; Choudhary, A. A predictive machine learning approach for microstructure optimization and materials design. Sci. Rep. 2015, 5, 11551. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Sun, P.; Jia, J.; Liu, Z.; Huo, L.; Zhao, L.; Zhao, Y.; Niu, W.; Yao, Z. Machine learning in clarifying complex relationships: Biochar preparation procedures and capacitance characteristics. Chem. Eng. J. 2024, 485, 149975. [Google Scholar] [CrossRef]
- Liu, Z.; Rolston, N.; Flick, A.C.; Colburn, T.W.; Ren, Z.; Dauskardt, R.H.; Buonassisi, T. Machine learning with knowledge constraints for process optimization of open-air perovskite solar cell manufacturing. Joule 2022, 6, 834–849. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, X.; Li, H.; Xu, X. Interpretable machine learning-assisted screening of perovskite oxides. RSC Adv. 2024, 14, 3909–3922. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Cheng, J.; Dong, H.; Feng, J.; Pang, B.; Tian, Z.; Ma, S.; Xia, F.; Zheng, C.; Dong, L. Screening stable and metastable ABO3 perovskites using machine learning and the materials project. Comput. Mater. Sci. 2020, 177, 109614. [Google Scholar] [CrossRef]
- Talapatra, A.; Uberuaga, B.P.; Stanek, C.R.; Pilania, G. A Machine Learning Approach for the Prediction of Formability and Thermodynamic Stability of Single and Double Perovskite Oxides. Chem. Mater. 2021, 33, 845–858. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, J.; Qu, Z.; Jiang, S.; Liu, Y.; Wu, Z.; Yang, F.; Hu, W.; Xu, Z.; Dai, Y. Accelerating stability of ABX3 perovskites analysis with machine learning. Ceram. Int. 2024, 50, 6250–6258. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Roy, A. Linking stability with molecular geometries of perovskites and lanthanide richness using machine learning methods. Comput. Mater. Sci. 2024, 231, 112581. [Google Scholar] [CrossRef]
- Wu, T.; Wang, J. Global discovery of stable and non-toxic hybrid organic-inorganic perovskites for photovoltaic systems by combining machine learning method with first principle calculations. Nano Energy 2019, 66, 104070. [Google Scholar] [CrossRef]
- Zhu, Q.; Xu, P.; Lu, T.; Ji, X.; Shao, M.; Duan, Z.; Lu, W. Discovery and verification of two-dimensional organic–inorganic hybrid perovskites via diagrammatic machine learning model. Mater. Des. 2024, 238, 112642. [Google Scholar] [CrossRef]
- Cai, X.; Zhang, Y.; Shi, Z.; Chen, Y.; Xia, Y.; Yu, A.; Xu, Y.; Xie, F.; Shao, H.; Zhu, H.; et al. Solar cells via machine learning: Ultrabroadband absorption, low radiative combination, and enhanced thermal conductiities. Adv. Sci. 2021, 9, 2103648. [Google Scholar] [CrossRef]
- Li, J.; Cheng, K.; Wang, S.; Morstatter, F.; Trevino, R.P.; Tang, J.; Liu, H. Feature selection: A data perspective. ACM Comput. Surv. 2017, 50, 1–45. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, J.; Ji, X.; Lu, W. Machine Learning-Assisted Discovery of 2D Perovskites with Tailored Bandgap for Solar Cells. Adv. Theory Simul. 2023, 6, 2200922. [Google Scholar] [CrossRef]
- Marchenko, E.I.; Fateev, S.A.; Petrov, A.A.; Korolev, V.V.; Mitrofanov, A.; Petrov, A.V.; Goodilin, E.A.; Tarasov, A.B. Database of Two-Dimensional Hybrid Perovskite Materials: OpenAccess Collection of Crystal Structures, Band Gaps, and Atomic Partial Charges Predicted by Machine Learning. Chem. Mater. 2020, 32, 7383–7388. [Google Scholar] [CrossRef]
- Teimourian, A.; Rohacs, D.; Dimililer, K.; Teimourian, H.; Yildiz, M.; Kale, U. Airfoil aerodynamic performance prediction using machine learning and surrogate modeling. Heliyon 2024, 10, e29377. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Chen, Z.; Chen, Y.; Liu, H.; Li, W.; Wang, Y.; Peng, L.; Liu, X.; Lin, J.; Chen, X.; et al. Interpretable machine learning predictions for efficient perovskite solar cell development. Sol. Energy Mater. Sol. Cells 2024, 271, 112826. [Google Scholar] [CrossRef]
- Wang, Z.; Mu, L.; Miao, H.; Shang, Y.; Yin, H.; Dong, M. An innovative application of machine learning in prediction of the syngas properties of biomass chemical looping gasification based on extra trees regression algorithm. Energy 2023, 275, 127438. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Gu, K. A support vector regression (SVR)-based method for dynamic load identification using heterogeneous responses under interval uncertainties. Appl. Soft Comput. 2021, 110, 107599. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhou, M.; Hu, F.; Wang, S.; Ma, J.; Gao, B.; Bian, K.; Lai, W. A day-ahead industrial load forecasting model using load change rate features and combining FA-ELM and the AdaBoost algorithm. Energy Rep. 2023, 9, 971–981. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.; Liu, S. Integrative approach of machine learning and symbolic regression for stability prediction of multicomponent perovskite oxides and high-throughput screening. Comput. Mater. Sci. 2024, 236, 112889. [Google Scholar] [CrossRef]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. Lightgbm: A highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 2017, 30, 3146–3154. [Google Scholar]
- Anand, D.V.; Xu, Q.; Wee, J.; Xia, K.; Sum, T.C. Topological feature engineering for machine learning based halide perovskite materials design. NPJ Comput. Mater. 2022, 8, 203. [Google Scholar] [CrossRef]
- Djeradi, S.; Dahame, T.; Fadla, M.A.; Bentria, B.; Kanoun, M.B.; Goumri-Said, S. High-Throughput Ensemble-Learning- Driven Band Gap Prediction of Double Perovskites Solar Cells Absorber. Mach. Learn. Knowl. Extr. 2024, 6, 435–447. [Google Scholar] [CrossRef]
- Ahmed, U.; Mahmood, A.; Tunio, M.A.; Hafeez, G.; Khan, A.R.; Razzaq, S. Investigating boosting techniques’ efficacy in feature selection: A comparative analysis. Energy Rep. 2024, 11, 3521–3532. [Google Scholar] [CrossRef]
Algorithm | Evaluating Indicator | ||
---|---|---|---|
MAE | MSE | R2 | |
RFR | 0.1884 | 0.0662 | 0.942552 |
SVR | 0.1713 | 0.0614 | 0.946759 |
XGBoost | 0.1839 | 0.0689 | 0.940207 |
LightGBM | 0.1664 | 0.0531 | 0.953914 |
HOIP Order Number | Ehull (eV/Oatom) | ML_Ehull (eV/Oatom) | Prediction Error |
---|---|---|---|
1 | 3.087 | 3.070 | 0.016 |
2 | 5.6831 | 5.309 | 0.373 |
3 | 4.3624 | 4.366 | −0.003 |
4 | 4.6596 | 5.407 | −0.747 |
5 | 3.6561 | 3.704 | −0.048 |
6 | 5.039 | 5.743 | −0.704 |
7 | 3.5853 | 3.764 | −0.179 |
8 | 5.8538 | 5.801 | 0.051 |
9 | 3.196 | 3.727 | −0.531 |
10 | 4.0485 | 3.933 | 0.115 |
11 | 2.9874 | 3.007 | −0.020 |
12 | 5.8294 | 5.823 | 0.006 |
13 | 4.622 | 4.419 | 0.202 |
14 | 3.5053 | 3.530 | −0.025 |
15 | 4.9335 | 4.754 | 0.179 |
16 | 2.6572 | 2.531 | 0.125 |
17 | 5.1533 | 4.809 | 0.344 |
18 | 2.7138 | 2.542 | 0.171 |
19 | 2.9218 | 3.237 | −0.315 |
20 | 1.9719 | 2.0300 | −0.058 |
Feature | Unit | Description |
---|---|---|
A site | None | Chemical formula for the ion at A site |
B site | None | Chemical formula for ions at B site |
X site | None | Chemical formula for ions at X site |
rb | Å | Radius of the ion at B site |
ra | Å | Radius of the ion at A site |
tf | None | Tolerance factor |
lv | Å | Crystal length |
XB_s | Å | Proportion of B and X atoms standard deviation |
XB_pm | None | Average percentage of adjacent X and B atoms |
X_atoms_H_neighbor_percent_stdev | None | Percentage standard deviation of adjacent atoms in X position |
X_atoms_volumes_stdev | None | Standard deviation of volume for X atom |
X_atoms_H_neighbor_percent_mean | Å | Average percentage of adjacent X atom |
X_atoms_any_organic_neighbor_percent_stdev | None | Percentage standard deviation of X and A positions |
X_atoms_any_organic_neighbor_percent_mean | Å | Average percentage of atoms in X position adjacent to any atom in A position |
A_dp | C/m2 | Dipolarizability |
B_atom_X_neighbor_percent | Å | Percentage of atoms at B position to X position |
C_bp | °C | Boiling point at X position |
wc | Å | Atomic weight at X position |
Ec | eV | Electron affinity of ions at X position |
A_em | Å | Lattice constant of ions at A position |
B_atom_surface_area | Å3 | Surface area of atom at B position |
B_atom_volume | Å3 | Volume of atom at B position |
B_atom_globularity | ° | Sphericity of the B atom |
X_atoms_volumes_mean | Å | Mean volume of the atom at X position |
X_atoms_volumes_stdev | Å3 | Standard deviation of the volume for atom at X position |
of | None | Octahedral factors |
rx | Å | Radius of atom at X position |
tau | None | New tolerance factor |
B_ti | eV | Third ionization energy of B element |
B_lc | nm | Lattice constant of B element |
B_ep | None | Crystal structure at B element |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Wang, X.; Feng, S.; Miao, Z. Studying the Thermodynamic Phase Stability of Organic–Inorganic Hybrid Perovskites Using Machine Learning. Molecules 2024, 29, 2974. https://doi.org/10.3390/molecules29132974
Wang J, Wang X, Feng S, Miao Z. Studying the Thermodynamic Phase Stability of Organic–Inorganic Hybrid Perovskites Using Machine Learning. Molecules. 2024; 29(13):2974. https://doi.org/10.3390/molecules29132974
Chicago/Turabian StyleWang, Juan, Xinzhong Wang, Shun Feng, and Zongcheng Miao. 2024. "Studying the Thermodynamic Phase Stability of Organic–Inorganic Hybrid Perovskites Using Machine Learning" Molecules 29, no. 13: 2974. https://doi.org/10.3390/molecules29132974
APA StyleWang, J., Wang, X., Feng, S., & Miao, Z. (2024). Studying the Thermodynamic Phase Stability of Organic–Inorganic Hybrid Perovskites Using Machine Learning. Molecules, 29(13), 2974. https://doi.org/10.3390/molecules29132974