Supercritical Water: A Simulation Study to Unravel the Heterogeneity of Its Molecular Structures
Abstract
1. Introduction
2. Results
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Conference on Climate Change and the Role of Nuclear Power; International Atomic Energy Agency (IAEA): Vienna, Austria, 7–11 October 2019; Available online: https://www.iaea.org/atoms4climate (accessed on 1 February 2024).
- Gen IV International Forum, 2024. Supercritical-Water-Cooled Reactor (SCWR). Available online: https://www.gen-4.org/gif/jcms/c_9360/scwr (accessed on 1 February 2024).
- Oka, Y.; Koshizuka, S. Conceptual design study of advanced power reactors. Prog. Nucl. Energy 1998, 32, 163–177. [Google Scholar] [CrossRef]
- A Technology Roadmap for Generation IV Nuclear Energy Systems; Report GIF-002-00; U.S. DOE Nuclear Energy Research Advisory Committee (NERAC) and the Generation IV International Forum (GIF): Washington, DC, USA, 2002.
- Schulenberg, T.; Leung, L.K.H.; Brady, D.; Oka, Y.; Yamada, K.; Bae, Y.; Willermoz, G. Supercritical Water-Cooled Reactor (SCWR) Development through GIF Collaboration; IAEA Publication IAEA-CN-164-5S06; International Atomic Energy Agency: Vienna, Austria, 2009. [Google Scholar]
- Duffey, R. The development and future of the supercritical water reactor. CNL Nucl. Rev. 2016, 5, 181–188. [Google Scholar] [CrossRef]
- Leung, L.K.H.; Huang, Y.-P.; Dostal, V.; Yamaji, A.; Sedov, A. An update on the development status of the supercritical water-cooled reactors. In Proceedings of the Fourth Generation IV International Forum (GIF) Symposium, Paris, France, 16–17 October 2018; pp. 43–50. [Google Scholar]
- Guzonas, D.; Novotny, R.; Penttilä, S.; Toivonen, A.; Zheng, W. Materials and Water Chemistry for Supercritical Water-Cooled Reactors; Woodhead Publishing: Duxford, UK, 2018. [Google Scholar]
- Pioro, I. (Ed.) Handbook of Generation IV Nuclear Reactors, 2nd ed.; Woodhead Publishing Series in Energy: Duxford, UK, 2022. [Google Scholar]
- Wu, P.; Ren, Y.; Feng, M.; Shan, J.; Huang, Y.; Yang, W. A review of existing supercritical water reactor concepts, safety analysis codes and safety characteristics. Prog. Nucl. Energy 2022, 153, 104409. [Google Scholar] [CrossRef]
- Levelt Sengers, J.M.H.; Straub, J.; Watanabe, K.; Hill, P.G. Assessment of critical parameter values for H2O and D2O. J. Phys. Chem. Ref. Data 1985, 14, 193–207. [Google Scholar] [CrossRef]
- Advances in Small Modular Reactor Technology Developments; International Atomic Energy Agency (IAEA), Nuclear Power Technology Development Section, Division of Nuclear Power, Department of Nuclear Energy: Vienna, Austria, 2020; Available online: http://aris.iaea.org/Publications/SMR_Book_2020.pdf (accessed on 1 February 2024).
- Murakami, T.; Anbumozhi, V.V. (Eds.) Small Modular Reactor (SMR) Deployment: Advantages and Opportunities for ASEAN; Research Project Report FY2022 No. 10; Economic Research Institute for ASEAN and East Asia: Jakarka, Indonesia, 2022; Available online: https://www.eria.org/research/small-modular-reactor-smr-deployment-advantages-and-opportunities-for-asean/ (accessed on 1 February 2024).
- Joint European Canadian Chinese Development of Small Modular Reactor Technology (ECC-SMART). A Transcontinental Project to Bring the Potential of Supercritical Water SMRs a Step Closer to Reality, 2020. Available online: https://ecc-smart.eu/ (accessed on 1 February 2024).
- Guzonas, D.; Stuart, C.R.; Jay-Gerin, J.-P.; Meesungnoen, J. Testing Requirements for SCWR Radiolysis; Report AECL-153-127160-REPT-001; Atomic Energy of Canada Limited: Mississauga, ON, Canada, 2010. [Google Scholar]
- Guzonas, D.; Brosseau, F.; Tremaine, P.; Meesungnoen, J.; Jay-Gerin, J.-P. Water chemistry in a supercritical water-cooled pressure tube reactor. Nucl. Technol. 2012, 179, 205–219. [Google Scholar] [CrossRef]
- Lin, M.; Katsumura, Y. Radiation chemistry of high temperature and supercritical water and alcohols. In Charged Particle and Photon Interactions with Matter: Recent Advances, Applications, and Interfaces; Hatano, Y., Katsumura, Y., Mozumder, A., Eds.; CRC Press: Boca Raton, FL, USA, 2011; pp. 401–424. [Google Scholar]
- Katsumura, Y. Application of radiation chemistry to nuclear technology. In Charged Particle and Photon Interactions with Matter: Chemical, Physical, and Biological Consequences with Applications; Mozumder, A., Hatano, Y., Eds.; Marcel Dekker: New York, NY, USA, 2004; pp. 697–727. [Google Scholar]
- Edwards, E.J.; Wilson, P.P.H.; Anderson, M.H.; Mezyk, S.P.; Pimblott, S.M.; Bartels, D.M. An apparatus for the study of high temperature water radiolysis in a nuclear reactor: Calibration of dose in a mixed neutron/gamma radiation field. Rev. Sci. Instrum. 2007, 78, 124101. [Google Scholar] [CrossRef]
- Liu, G.; Du, T.; Toth, L.; Beninger, J.; Ghandi, K. Prediction of rate constants of important reactions in water radiation chemistry in sub- and supercritical water: Equilibrium reactions. CNL Nucl. Rev. 2016, 5, 345–361. [Google Scholar]
- Liu, G.; Landry, C.; Ghandi, K. Prediction of rate constants of important chemical reactions in water radiation chemistry in sub- and supercritical water– non-equilibrium reactions. Can. J. Chem. 2018, 96, 267–279. [Google Scholar] [CrossRef]
- Sultana, A.; Meesungnoen, J.; Jay-Gerin, J.-P. Yields of primary species in the low-linear energy transfer radiolysis of water in the temperature range of 25–700 °C. Phys. Chem. Chem. Phys. 2020, 22, 7430–7439. [Google Scholar] [CrossRef] [PubMed]
- Sultana, A.; Meesungnoen, J.; Jay-Gerin, J.-P. Characterizing the early acidic response in advanced small modular reactors cooled with high-temperature, high-pressure water. Radiation 2024, 4, 26–36. [Google Scholar] [CrossRef]
- Guzonas, D.; Cook, W.G. Cycle chemistry and its effect on materials in a supercritical water-cooled reactor: A synthesis of current understanding. Corros. Sci. 2012, 65, 48–66. [Google Scholar] [CrossRef]
- Macdonald, D.D.; Engelhardt, G.R.; Petrov, A. A critical review of radiolysis issues in water-cooled fission and fusion reactors: Part I, Assessment of radiolysis models. Corros. Mater. Degrad. 2022, 3, 470–535. [Google Scholar] [CrossRef]
- Ndongo Assomo, J.G.G.; Ebrahimi, S.; Muroya, Y.; Jay-Gerin, J.-P.; Soldera, A. Molecular dynamics simulation reveals a change in the structure of liquid water near 150 °C, which may explain apparent anomalies in high-temperature water radiolysis. Chem. Afr. 2023, 6, 375–381. [Google Scholar] [CrossRef]
- Green, N.J.B.; Pimblott, S.M. Radiation track structure simulation in a molecular medium. Res. Chem. Intermediat. 2001, 27, 529–538. [Google Scholar] [CrossRef]
- Metatla, N.; Jay-Gerin, J.-P.; Soldera, A. Molecular dynamics simulation of subcritical and supercritical water at different densities. In Proceedings of the 5th International Symposium on Supercritical-Water-Cooled Reactors, Vancouver, BC, Canada, 13–16 March 2011; Rouben, B., Guzonas, D., Leung, L., Eds.; Canadian Nuclear Society: Toronto, ON, Canada, 2011. ISBN 978-1-926773-02-5. [Google Scholar]
- Metatla, N.; Lafond, F.; Jay-Gerin, J.-P.; Soldera, A. Heterogeneous character of supercritical water at 400 °C and different densities unveiled by simulation. RSC Adv. 2016, 6, 30484–30487. [Google Scholar] [CrossRef]
- Tucker, S.C. Solvent density inhomogeneities in supercritical fluids. Chem. Rev. 1999, 99, 391–418. [Google Scholar] [CrossRef] [PubMed]
- Kalinichev, A.G.; Churakov, S.V. Size and topology of molecular clusters in supercritical water: A molecular dynamics simulation. Chem. Phys. Lett. 1999, 302, 411–417. [Google Scholar] [CrossRef]
- Boero, M.; Terakura, K.; Ikeshoji, T.; Liew, C.C.; Parrinello, M. Water at supercritical conditions: A first principles study. J. Chem. Phys. 2001, 115, 2219–2227. [Google Scholar] [CrossRef]
- Kalinichev, A.G. Molecular simulations of liquid and supercritical water: Thermodynamic, structure, and hydrogen bonding. In Molecular Modeling Theory: Applications in the Geosciences; Cygan, R.T., Kubicki, J.D., Eds.; Mineralogical Society of America: Washington, DC, USA, 2001; pp. 83–130. [Google Scholar]
- Bernabei, M.; Botti, A.; Bruni, F.; Ricci, M.A.; Soper, A.K. Percolation and three-dimensional structure of supercritical water. Phys. Rev. E 2008, 78, 021505. [Google Scholar] [CrossRef]
- Wernet, P.; Testemale, D.; Hazemann, J.-L.; Argoud, R.; Glatzel, P.; Pettersson, L.G.M.; Nilsson, A.; Bergmann, U. Spectroscopic characterization of microscopic hydrogen-bonding disparities in supercritical water. J. Chem. Phys. 2005, 123, 154503. [Google Scholar] [CrossRef]
- Sahle, C.J.; Sternemann, C.; Schmidt, C.; Lehtola, S.; Jahn, S.; Simonelli, L.; Huotari, S.; Kakala, M.; Pylkkänen, T.; Nyrow, A.; et al. Microscopic structure of water at elevated pressures and temperatures. Proc. Natl. Acad. Sci. USA 2013, 110, 6301–6306. [Google Scholar] [CrossRef] [PubMed]
- Tassaing, T.; Garrain, P.A.; Bégué, D.; Baraille, I. On the cluster composition of supercritical water combining molecular modeling and vibrational spectroscopic data. J. Chem. Phys. 2010, 133, 034103. [Google Scholar] [CrossRef] [PubMed]
- Swiatla-Wojcik, D.; Szala-Bilnik, J. Transition from patchlike to clusterlike inhomogeneity arising from hydrogen bonding in water. J. Chem. Phys. 2011, 134, 054121. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Wang, Q.; Ding, D. Hydrogen bonded networks in supercritical water. J. Phys. Chem. B 2014, 118, 11253–11258. [Google Scholar] [CrossRef] [PubMed]
- Skarmoutsos, I.; Guardia, E.; Samios, J. Local structural fluctuations, hydrogen bonding and structural transitions in supercritical water. J. Supercrit. Fluids 2017, 130, 156–164. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, J.; Ma, X. Interaction between neighboring supercritical water molecules and density fluctuation by molecular dynamics simulations. J. Therm. Sci. 2022, 31, 907–922. [Google Scholar] [CrossRef]
- Kallikragas, D.; Guzonas, D.; Svishchev, I. Properties of aqueous systems relevant to the SCWR via molecular dynamics simulations. AECL Nucl. Rev. 2015, 4, 9–22. [Google Scholar] [CrossRef]
- Lemmon, E.W.; Huber, M.L.; McLinden, M.O. NIST Reference Fluid Thermodynamics and Transport Properties—REFPROP; NIST Standard Reference Database 23, Version 9.0; National Institute of Standards and Technology: Boulder, CO, USA, 2010. Available online: http://webbook.nist.gov (accessed on 1 December 2023).
- Soldera, A.; Qi, Y.; Capehart, W.T. Phase transition and morphology of polydispersed ABA’ triblock copolymers determined by continuous and discrete simulations. J. Chem. Phys. 2009, 130, 064902. [Google Scholar] [CrossRef]
- Fang, Z.; Xu, C. (Eds.) Near-Critical and Supercritical Water and Their Applications for Biorefineries; Springer: Dordrecht, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Schienbein, P.; Marx, D. Supercritical water is not hydrogen bonded. Angew. Chem. Int. Ed. 2020, 59, 18578–18585. [Google Scholar] [CrossRef]
- Berendsen, H.J.C.; Grigera, J.R.; Straatsma, T.P. The missing term in effective pair potentials. J. Phys. Chem. 1987, 91, 6269–6271. [Google Scholar] [CrossRef]
- Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; Hermans, J. Interaction models for water in relation to protein hydration. In Intermolecular Forces; Pullman, B., Ed.; D. Reidel: Dordrecht, The Netherlands, 1981; pp. 331–342. [Google Scholar]
- Wasserman, E.; Wood, B.; Brodholt, J. Molecular dynamic study of the dielectric constant of water under high pressure and temperature conditions. Ber. Bunsenges. Phys. Chem. 1994, 98, 906–911. [Google Scholar] [CrossRef]
- Kallikragas, D.T.; Plugatyr, A.Y.; Svishchev, I.M. High temperature diffusion coefficients for O2, H2, and OH in water, and for pure water. J. Chem. Eng. Data 2014, 59, 1964–1969. [Google Scholar] [CrossRef]
- Guissani, Y.; Guillot, B. A computer simulation study of the liquid-vapor coexistence curve of water. J. Chem. Phys. 1993, 98, 8221–8235. [Google Scholar] [CrossRef]
- Allen, M.P.; Tildesley, D.J. Computer Simulation of Liquids, 2nd ed.; Oxford University Press: Oxford, UK, 2017. [Google Scholar] [CrossRef]
- Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H.J.C. Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys. 1977, 23, 327–341. [Google Scholar] [CrossRef]
- van Gunsteren, W.F.; Berendsen, H.J.C. Computer simulation of molecular dynamics: Methodology, applications, and perspectives in chemistry. Angew. Chem. Int. Ed. Engl. 1990, 29, 992–1023. [Google Scholar] [CrossRef]
- Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- BIOVIA Materials Studio 2017, Dassault Systèmes Corporate, Waltham, MA. Available online: https://www.gga.asia/upload/pdf/474/amorphous-cell_20170927140352.pdf (accessed on 15 December 2022).
- Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519. [Google Scholar] [CrossRef]
- Hoover, W.G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695–1697. [Google Scholar] [CrossRef]
- Andersen, H.C. Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys. 1980, 72, 2384–2393. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO—The Open Visualization Tool. Modelling Simul. Mater. Sci. Eng. 2010, 18, 015012. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Assomo, J.G.G.N.; Ebrahimi, S.; Jay-Gerin, J.-P.; Soldera, A. Supercritical Water: A Simulation Study to Unravel the Heterogeneity of Its Molecular Structures. Molecules 2024, 29, 2947. https://doi.org/10.3390/molecules29122947
Assomo JGGN, Ebrahimi S, Jay-Gerin J-P, Soldera A. Supercritical Water: A Simulation Study to Unravel the Heterogeneity of Its Molecular Structures. Molecules. 2024; 29(12):2947. https://doi.org/10.3390/molecules29122947
Chicago/Turabian StyleAssomo, Joseph Guy Gérard Ndongo, Sadollah Ebrahimi, Jean-Paul Jay-Gerin, and Armand Soldera. 2024. "Supercritical Water: A Simulation Study to Unravel the Heterogeneity of Its Molecular Structures" Molecules 29, no. 12: 2947. https://doi.org/10.3390/molecules29122947
APA StyleAssomo, J. G. G. N., Ebrahimi, S., Jay-Gerin, J.-P., & Soldera, A. (2024). Supercritical Water: A Simulation Study to Unravel the Heterogeneity of Its Molecular Structures. Molecules, 29(12), 2947. https://doi.org/10.3390/molecules29122947