Whey Protein Sodium-Caseinate as a Deliverable Vector for EGCG: In Vitro Optimization of Its Bioaccessibility, Bioavailability, and Bioactivity Mode of Actions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Encapsulation Efficiency and Retention Efficiency
2.2. Molecular Docking of EGCG with β-Lactoglobulin and NaCas
2.3. Bioaccessibility Assessment
2.4. The Anti-Proliferative Activity of EGCG
2.5. Oxidative Stress In Vitro by Caco-2 Cells
2.6. Transport Study on Caco-2 Monolayer
2.7. The Apparent Permeability Coefficient (Papp)
3. Materials and Methods
3.1. Materials
3.2. Preparation of EGCG-Loaded S/O/W Emulsions and Solutions
3.3. Quantification of EGCG Content
3.4. In Vitro Gastrointestinal Digestion and Bioaccessibility Assessment
3.5. Evaluation of EGCG Retention and Encapsulation Efficiency
3.6. Molecular Docking and Dynamic Simulation
3.7. Cell Culture
3.8. Assessment of the Cell Viability
3.9. Transport Study with Caco-2 Confluent Monolayer and Bidirectional Permeability
3.10. Assessment of Oxidative Stress in Caco-2 Cell Model
3.11. Statistical Analysis
3.12. Experimental Overall Flow Chart
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, S.; Mo, L.; Wu, B.; Ma, C.; Wang, H. Effect of Structural Stability of Lipase in Acetonitrile on Its Catalytic Activity in EGCG Esterification Reaction: FTIR and MD Simulation. Int. J. Biol. Macromol. 2024, 255, 128266. [Google Scholar] [CrossRef] [PubMed]
- Mandel, S.; Weinreb, O.; Amit, T.; Youdim, M.B.H. Cell Signaling Pathways in the Neuroprotective Actions of the Green Tea Polyphenol (-)-Epigallocatechin-3-Gallate: Implications for Neurodegenerative Diseases. J. Neurochem. 2004, 88, 1555–1569. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Teng, J.; Selbo, J. Amorphous Solid Dispersion of Epigallocatechin Gallate for Enhanced Physical Stability and Controlled Release. Pharmaceuticals 2017, 10, 88. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhu, Q.; Chen, J.Y.; OuYang, D.; Lu, J.H. The Pharmacological Activity of Epigallocatechin-3-Gallate (EGCG) on Alzheimer’s Disease Animal Model: A Systematic Review. Phytomedicine 2020, 79, 153316. [Google Scholar] [CrossRef] [PubMed]
- Samavat, H.; Newman, A.R.; Wang, R.; Yuan, J.M.; Wu, A.H.; Kurzer, M.S. Effects of Green Tea Catechin Extract on Serum Lipids in Postmenopausal Women: A Randomized, Placebo-Controlled Clinical Trial1,2. Am. J. Clin. Nutr. 2016, 104, 1671–1682. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Zhang, H.; Yin, Y.; Sun, M.; Mao, S.; Chen, H.; Deng, Y.; Chen, S.; Li, S.; Sun, B. Engineered EGCG-Containing Biomimetic Nanoassemblies as Effective Delivery Platform for Enhanced Cancer Therapy. Adv. Sci. 2022, 9, 2105894. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Li, W.; Chen, Z.; Guo, Q.; Wang, C.; Santhanam, R.K.; Chen, H. Inhibitory Effect of Epigallocatechin-3-O-Gallate on α-Glucosidase and Its Hypoglycemic Effect via Targeting PI3K/AKT Signaling Pathway in L6 Skeletal Muscle Cells. Int. J. Biol. Macromol. 2019, 125, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Wei, B.B.; Liu, M.Y.; Zhong, X.; Yao, W.F.; Wei, M.J. Increased BBB Permeability Contributes to EGCG-Caused Cognitive Function Improvement in Natural Aging Rats: Pharmacokinetic and Distribution Analyses. Acta Pharmacol. Sin. 2019, 40, 1490–1500. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Sun, X.; Zhang, H.; Dong, M.; Wang, J.; Zhao, S.; Shang, M.; Wang, X.; Zhangsun, H.; Wang, L. Amphiphilic Nano-Delivery System Based on Modified-Chitosan and Ovalbumin: Delivery and Stability in Simulated Digestion. Carbohydr. Polym. 2022, 294, 119779. [Google Scholar] [CrossRef]
- Vieira, I.R.S.; Conte-Junior, C.A. Nano-Delivery Systems for Food Bioactive Compounds in Cancer: Prevention, Therapy, and Clinical Applications. Crit. Rev. Food Sci. Nutr. 2024, 64, 381–406. [Google Scholar] [CrossRef]
- Peng, Y.; Meng, Q.; Zhou, J.; Chen, B.; Xi, J.; Long, P.; Zhang, L.; Hou, R. Nanoemulsion Delivery System of Tea Polyphenols Enhanced the Bioavailability of Catechins in Rats. Food Chem. 2018, 242, 527–532. [Google Scholar] [CrossRef] [PubMed]
- Secretan, P.H.; Thirion, O.; Yayé, H.S.; Damy, T.; Astier, A.; Paul, M.; Do, B. Simple Approach to Enhance Green Tea Epigallocatechin Gallate Stability in Aqueous Solutions and Bioavailability: Experimental and Theoretical Characterizations. Pharmaceuticals 2021, 14, 1242. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.Q.; Qu, Y.; Gras, S.L.; Kentish, S.E. Separation Technologies for Whey Protein Fractionation. Food Eng. Rev. 2023, 15, 438–465. [Google Scholar] [CrossRef]
- Adjonu, R.; Doran, G.S.; Torley, P.; Sampson, G.O.; Agboola, S.O. Whey Protein Peptides Have Dual Functions: Bioactivity and Emulsifiers in Oil-In-Water Nanoemulsion. Foods 2022, 11, 1812. [Google Scholar] [CrossRef] [PubMed]
- Xin, Y.; Yang, C.; Zhang, J.; Xiong, L. Application of Whey Protein-Based Emulsion Coating Treatment in Fresh-Cut Apple Preservation. Foods 2023, 12, 1140. [Google Scholar] [CrossRef] [PubMed]
- Tosif, M.M.; Najda, A.; Bains, A.; Krishna, T.C.; Chawla, P.; Dyduch-Siemińska, M.; Klepacka, J.; Kaushik, R. A Comprehensive Review on the Interaction of Milk Protein Concentrates with Plant-Based Polyphenolics. Int. J. Mol. Sci. 2021, 22, 13548. [Google Scholar] [CrossRef] [PubMed]
- Mulet-Cabero, A.I.; Egger, L.; Portmann, R.; Ménard, O.; Marze, S.; Minekus, M.; Le Feunteun, S.; Sarkar, A.; Grundy, M.M.L.; Carrière, F.; et al. A Standardised Semi-Dynamic: In Vitro Digestion Method Suitable for Food-an International Consensus. Food Funct. 2020, 11, 1702–1720. [Google Scholar] [CrossRef]
- Mohamed, A.I.A.; Sultan, A.S.; Hussein, I.A.; Al-Muntasheri, G.A. Influence of Surfactant Structure on the Stability of Water-in-Oil Emulsions under High-Temperature High-Salinity Conditions. J. Chem. 2017, 2017, 5471376. [Google Scholar] [CrossRef]
- Fingas, M.; Fieldhouse, B. Formation of Water-in-Oil Emulsions and Application to Oil Spill Modelling. J. Hazard. Mater. 2004, 107, 37–50. [Google Scholar] [CrossRef]
- Akbari, S.; Nour, A.H. Emulsion Types, Stability Mechanisms and Rheology: A Review. Int. J. Innov. Res. Sci. Stud. 2018, 1, 11–17. [Google Scholar] [CrossRef]
- Wang, B.; Tian, H.; Xiang, D. Stabilizing the Oil-in-Water Emulsions Using the Mixtures of Dendrobium Officinale Polysaccharides and Gum Arabic or Propylene Glycol Alginate. Molecules 2020, 25, 759. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.-M.; Gouda, M.; Zhu, Y.-Y.; Ye, X.-Q.; Chen, J.-C. Ultrasound-Assisted Extraction Optimization of Proanthocyanidins from Kiwi (Actinidia chinensis) Leaves and Evaluation of Its Antioxidant Activity. Antioxidants 2021, 10, 1317. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.; Zheng, B.; Zhang, R.; Zhang, Z.; Liu, W.; Liu, C.; Xiao, H.; McClements, D.J. Food-Grade Nanoparticles for Encapsulation, Protection and Delivery of Curcumin: Comparison of Lipid, Protein, and Phospholipid Nanoparticles under Simulated Gastrointestinal Conditions. RSC Adv. 2016, 6, 3126–3136. [Google Scholar] [CrossRef]
- Dybowska, B.E. Properties of Milk Protein Concentrate Stabilized Oil-in-Water Emulsions. J. Food Eng. 2008, 88, 507–513. [Google Scholar] [CrossRef]
- Braun, K.; Hanewald, A.; Vilgis, T.A. Milk Emulsions: Structure and Stability. Foods 2019, 8, 483. [Google Scholar] [CrossRef] [PubMed]
- Gaygadzhiev, Z.; Corredig, M.; Alexander, M. Rennet Coagulation Properties of Milk in the Presence of Oil Droplets Stabilised by a Combination of Sodium Caseinate and Whey Protein Isolate. Dairy. Sci. Technol. 2011, 91, 719–737. [Google Scholar] [CrossRef]
- Huang, H.; Tian, Y.; Bai, X.; Cao, Y.; Fu, Z. Influence of the Emulsifier Sodium Caseinate–Xanthan Gum Complex on Emulsions: Stability and Digestive Properties. Molecules 2023, 28, 5460. [Google Scholar] [CrossRef]
- Zagury, Y.; Kazir, M.; Livney, Y.D. Improved Antioxidant Activity, Bioaccessibility and Bioavailability of EGCG by Delivery in β-Lactoglobulin Particles. J. Funct. Foods 2019, 52, 121–130. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, X.; Suo, H. Interaction between β-Lactoglobulin and EGCG under High-Pressure by Molecular Dynamics Simulation. PLoS ONE 2021, 16, e0255866. [Google Scholar] [CrossRef]
- Vanaei, S.; Parizi, M.S.; Abdolhosseini, S.; Katouzian, I. Spectroscopic, Molecular Docking and Molecular Dynamic Simulation Studies on the Complexes of β-Lactoglobulin, Safranal and Oleuropein. Int. J. Biol. Macromol. 2020, 165, 2326–2337. [Google Scholar] [CrossRef]
- Yang, R.; Liu, Y.; Gao, Y.; Yang, Z.; Zhao, S.; Wang, Y.; Blanchard, C.; Zhou, Z. Nano-Encapsulation of Epigallocatechin Gallate in the Ferritin-Chitosan Double Shells: Simulated Digestion and Absorption Evaluation. Food Res. Int. 2018, 108, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Gao, J.; Koh, H.S.A.; Zhou, W. Bioaccessibility and Bioavailability of (-)-Epigallocatechin Gallate in the Bread Matrix with Glycemic Reduction. Foods 2023, 12, 30. [Google Scholar] [CrossRef] [PubMed]
- Bhushani, J.A.; Karthik, P.; Anandharamakrishnan, C. Nanoemulsion Based Delivery System for Improved Bioaccessibility and Caco-2 Cell Monolayer Permeability of Green Tea Catechins. Food Hydrocoll. 2016, 56, 372–382. [Google Scholar] [CrossRef]
- Suganuma, M.; Takahashi, A.; Watanabe, T.; Iida, K.; Matsuzaki, T.; Yoshikawa, H.Y.; Fujiki, H. Biophysical Approach to Mechanisms of Cancer Prevention and Treatment with Green Tea Catechins. Molecules 2016, 21, 1566. [Google Scholar] [CrossRef] [PubMed]
- Du, G.J.; Zhang, Z.; Wen, X.D.; Yu, C.; Calway, T.; Yuan, C.S.; Wang, C.Z. Epigallocatechin Gallate (EGCG) Is the Most Effective Cancer Chemopreventive Polyphenol in Green Tea. Nutrients 2012, 4, 1679–1691. [Google Scholar] [CrossRef]
- Sabouri, S.; Arranz, E.; Guri, A.; Corredig, M. Sodium Caseinate Stabilized Emulsions as a Delivery System for Epigallocatechin-Gallate: Bioaccessibility, Anti-Proliferative Activity and Intestinal Absorption. J. Funct. Foods 2018, 44, 166–172. [Google Scholar] [CrossRef]
- Shi, M.; Shi, Y.L.; Li, X.M.; Yang, R.; Cai, Z.Y.; Li, Q.S.; Ma, S.C.; Ye, J.H.; Lu, J.L.; Liang, Y.R.; et al. Food-Grade Encapsulation Systems for (-)-Epigallocatechin Gallate. Molecules 2018, 23, 445. [Google Scholar] [CrossRef] [PubMed]
- Ransy, C.; Vaz, C.; Lombès, A.; Bouillaud, F. Use of H2O2 to Cause Oxidative Stress, the Catalase Issue. Int. J. Mol. Sci. 2020, 21, 9149. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Nakamura, S.; Kitts, D.D. Antioxidant Properties of Casein Phosphopeptides (Cpp) and Maillard-type Conjugated Products. Antioxidants 2020, 9, 648. [Google Scholar] [CrossRef]
- Green, R.J.; Murphy, A.S.; Schulz, B.; Watkins, B.A.; Ferruzzi, M.G. Common Tea Formulations Modulate in Vitro Digestive Recovery of Green Tea Catechins. Mol. Nutr. Food Res. 2007, 51, 1152–1162. [Google Scholar] [CrossRef]
- Dehkharghanian, M.; Lacroix, M.; Mookambeswaran, A.; Dehkharghanian, M.; Lacroix, M.; Antioxidant, M.A.V.; Ehkharghanian, M.D.; Acroix, M.L. Antioxidant Properties of Green Tea Polyphenols Encapsulated in Caseinate Beads to Cite This Version: Original Article Antioxidant Properties of Green Tea Polyphenols Encapsulated in Caseinate Beads. Dairy Sci. Technol. 2009, 89, 485–499. [Google Scholar] [CrossRef]
- Zhou, D.; Sun, M.H.; Jiang, W.J.; Li, X.H.; Lee, S.H.; Heo, G.; Niu, Y.J.; Ock, S.A.; Cui, X.S. Epigallocatechin-3-Gallate Protects Porcine Oocytes against Postovulatory Aging through Inhibition of Oxidative Stress. Aging 2022, 14, 8633. [Google Scholar] [CrossRef] [PubMed]
- Ru, Q.; Yu, H.; Huang, Q. Encapsulation of Epigallocatechin-3-Gallate (EGCG) Using Oil-in-Water (O/W) Submicrometer Emulsions Stabilized by β-Carrageenan and β-Lactoglobulin. J. Agric. Food Chem. 2010, 58, 10373–10381. [Google Scholar] [CrossRef] [PubMed]
- Sabouri, S.; Wright, A.J.; Corredig, M. In Vitro Digestion of Sodium Caseinate Emulsions Loaded with Epigallocatechin Gallate. Food Hydrocoll. 2017, 69, 350–358. [Google Scholar] [CrossRef]
- Xie, Y.; Kosińska, A.; Xu, H.; Andlauer, W. Milk Enhances Intestinal Absorption of Green Tea Catechins in in Vitro Digestion/Caco-2 Cells Model. Food Res. Int. 2013, 53, 793–800. [Google Scholar] [CrossRef]
- Moser, S.; Chegeni, M.; Jones, O.G.; Liceaga, A.; Ferruzzi, M.G. The Effect of Milk Proteins on the Bioaccessibility of Green Tea Flavan-3-Ols. Food Res. Int. 2014, 66, 297–305. [Google Scholar] [CrossRef]
- Ujhelyi, Z.; Fenyvesi, F.; Váradi, J.; Fehér, P.; Kiss, T.; Veszelka, S.; Deli, M.; Vecsernyés, M.; Bácskay, I. Evaluation of Cytotoxicity of Surfactants Used in Self-Micro Emulsifying Drug Delivery Systems and Their Effects on Paracellular Transport in Caco-2 Cell Monolayer. Eur. J. Pharm. Sci. 2012, 47, 564–573. [Google Scholar] [CrossRef] [PubMed]
- Granja, A.; Neves, A.R.; Sousa, C.T.; Pinheiro, M.; Reis, S. EGCG Intestinal Absorption and Oral Bioavailability Enhancement Using Folic Acid-Functionalized Nanostructured Lipid Carriers. Heliyon 2019, 5, 1–6. [Google Scholar] [CrossRef]
- Huang, J.; Feng, S.; Liu, A.; Dai, Z.; Wang, H.; Reuhl, K.; Lu, W.; Yang, C.S. Green Tea Polyphenol EGCG Alleviates Metabolic Abnormality and Fatty Liver by Decreasing Bile Acid and Lipid Absorption in Mice. Mol. Nutr. Food Res. 2018, 62, 1700696. [Google Scholar] [CrossRef]
- Zhou, X.; Li, Y.; Mu, R.; Wang, C.; Song, Y.; Zhou, C.; Mei, X. Duyun Compound Green Tea Extracts Regulate Bile Acid Metabolism on Mice Induced by High-Fat Diet. Br. J. Nutr. 2023, 130, 33–41. [Google Scholar] [CrossRef]
- Ogawa, K.; Hirose, S.; Nagaoka, S.; Yanase, E. Interaction between Tea Polyphenols and Bile Acid Inhibits Micellar Cholesterol Solubility. J. Agric. Food Chem. 2016, 64, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Lambert, J.D.; Hong, J.; Yang, G.Y.; Liao, J.; Yang, C.S. Inhibition of Carcinogenesis by Polyphenols: Evidence from Laboratory Investigations. Am. J. Clin. Nutr. 2005, 81, 284S–291S. [Google Scholar] [CrossRef] [PubMed]
- Sabouri, S.; Corredig, M. Acid Induced Destabilization of Emulsions Prepared with Sodium Caseinate-Epigallocatechin-Gallate Complexes. Food Hydrocoll. 2016, 61, 113–118. [Google Scholar] [CrossRef]
- Xi, Y.; Liu, B.; Jiang, H.; Yin, S.; Ngai, T.; Yang, X. Sodium Caseinate as a Particulate Emulsifier for Making Indefinitely Recycled PH-Responsive Emulsions. Chem. Sci. 2020, 11, 3797–3803. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, J.; Zhong, Q. The Increased Viability of Probiotic Lactobacillus Salivarius NRRL B-30514 Encapsulated in Emulsions with Multiple Lipid-Protein-Pectin Layers. Food Res. Int. 2015, 71, 9–15. [Google Scholar] [CrossRef]
- Sui, X.; Bi, S.; Qi, B.; Wang, Z.; Zhang, M.; Li, Y.; Jiang, L. Impact of Ultrasonic Treatment on an Emulsion System Stabilized with Soybean Protein Isolate and Lecithin: Its Emulsifying Property and Emulsion Stability. Food Hydrocoll. 2017, 63, 727–734. [Google Scholar] [CrossRef]
- Naldi, M.; Fiori, J.; Gotti, R.; Périat, A.; Veuthey, J.L.; Guillarme, D.; Andrisano, V. UHPLC Determination of Catechins for the Quality Control of Green Tea. J. Pharm. Biomed. Anal. 2014, 88, 307–314. [Google Scholar] [CrossRef]
- Edwards, P.J.B.; Jameson, G.B. Structure and Stability of Whey Proteins. In Milk Proteins: From Expression to Food; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Wang, H.; Ke, L.; Zhou, J.; Li, G.; Xu, T.; Rao, P. Multi-Spectroscopic, Molecular Docking and Molecular Dynamic Simulation Evaluation of Hydroxychloroquine Sulfate Interaction with Caseins and Whey Proteins. J. Mol. Liq. 2022, 367, 120460. [Google Scholar] [CrossRef]
- Khalifa, I.; Li, Z.; Zou, X.; Nawaz, A.; Walayat, N.; Manoharadas, S.; Sobhy, R. RuBisCo Can Conjugate and Stabilize Peonidin-3-O-p-Coumaroylrutinoside-5-O-Glucoside in Isotonic Sport Models: Mechanisms from Kinetics, Multispectral, and LibDock Assays. Food Chem. 2024, 438, 138006. [Google Scholar] [CrossRef]
- Hiebl, V.; Schachner, D.; Ladurner, A.; Heiss, E.H.; Stangl, H.; Dirsch, V.M. Caco-2 Cells for Measuring Intestinal Cholesterol Transport-Possibilities and Limitations. Biol. Proced. Online 2020, 22, 7. [Google Scholar] [CrossRef]
- Zhang, L.; Zheng, Y.; Chow, M.S.S.; Zuo, Z. Investigation of Intestinal Absorption and Disposition of Green Tea Catechins by Caco-2 Monolayer Model. Int. J. Pharm. 2004, 287, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Li, D.; Zhou, Y.; Yang, J.; Yang, W.; Zhou, G.; Wen, J. Enhanced Uptake and Transport of (+)-Catechin and (-)-Epigallocatechin Gallate in Niosomal Formulation by Human Intestinal Caco-2 Cells. Int. J. Nanomed. 2014, 9, 2157–2165. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Joseph, J.A. Quantifying Cellular Oxidative Stress by Dichlorofluorescein Assay Using Microplate Reader. Free Radic. Biol. Med. 1999, 27, 612–616. [Google Scholar] [CrossRef] [PubMed]
Receptor | Binding Energy (kcal/mol) | The Amino Acids Involved in These Interactions | Binding Pose |
---|---|---|---|
β-lactoglobulin | −5.035 | Glu91, Thr120, Leu151, Glu36, Glu37, Pro90, Gln34, Phe33, Met93, LysA32, Val116, and Thr120. | |
NaCas | −5.979 | Glu45, 44, 157, 158, leu57,56, Gln68, 159, 59, Tyr20, Val43, His161, and Thr18. |
Emulsions and Solution | Initial | Applied in Apical Compartment | Applied in Basolateral Compartment | Apparent Permeability Coefficient (cm/s) |
---|---|---|---|---|
Concentration of EGCG (µg/mL) | Papp × 10−6 ± SD | |||
WPI | 290.14 ± 1.49 | 32.94 ± 3.42 | 32.01 ± 0.56 | 3.5 ± 0.33 |
NaCas | 194.55 ± 1.68 | 31.94 ± 1.94 | 30.702 ± 1.58 | 4.81 ± 1.02 |
EG Solutions | 55.79 ± 2.01 | 30.87 ± 1.14 | 29.013 ± 0.52 | 2.461.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korin, A.; Gouda, M.M.; Youssef, M.; Elsharkawy, E.; Albahi, A.; Zhan, F.; Sobhy, R.; Li, B. Whey Protein Sodium-Caseinate as a Deliverable Vector for EGCG: In Vitro Optimization of Its Bioaccessibility, Bioavailability, and Bioactivity Mode of Actions. Molecules 2024, 29, 2588. https://doi.org/10.3390/molecules29112588
Korin A, Gouda MM, Youssef M, Elsharkawy E, Albahi A, Zhan F, Sobhy R, Li B. Whey Protein Sodium-Caseinate as a Deliverable Vector for EGCG: In Vitro Optimization of Its Bioaccessibility, Bioavailability, and Bioactivity Mode of Actions. Molecules. 2024; 29(11):2588. https://doi.org/10.3390/molecules29112588
Chicago/Turabian StyleKorin, Ali, Mostafa M. Gouda, Mahmoud Youssef, Eman Elsharkawy, Amgad Albahi, Fuchao Zhan, Remah Sobhy, and Bin Li. 2024. "Whey Protein Sodium-Caseinate as a Deliverable Vector for EGCG: In Vitro Optimization of Its Bioaccessibility, Bioavailability, and Bioactivity Mode of Actions" Molecules 29, no. 11: 2588. https://doi.org/10.3390/molecules29112588
APA StyleKorin, A., Gouda, M. M., Youssef, M., Elsharkawy, E., Albahi, A., Zhan, F., Sobhy, R., & Li, B. (2024). Whey Protein Sodium-Caseinate as a Deliverable Vector for EGCG: In Vitro Optimization of Its Bioaccessibility, Bioavailability, and Bioactivity Mode of Actions. Molecules, 29(11), 2588. https://doi.org/10.3390/molecules29112588